首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stream water was analysed to determine how induced watershed acidification changed the chemistry of peakflow and baseflow and to compare the relative timing of these changes. Two watersheds in north‐central West Virginia, WS3 and WS9, were subjected to three applications of ammonium sulphate fertilizer per year to induce acidification. A third watershed, WS4, was the control. Samples were collected for 8 years from WS9 and for 9 years from WS3. Prior to analyses, concentration data were flow adjusted, and the influence of natural background changes was removed by accounting for the chemical responses measured from WS4. This yielded residual values that were evaluated using robust locally weighted regression and Mann–Kendall tests. On WS3, analyte responses during baseflow and peakflow were similar, although peakflow responses occurred soon after the first treatment whereas baseflow responses lagged 1–2 years. This lag in baseflow responses corresponded well with the mean transit time of baseflow on WS3. Anion adsorption on WS3 apparently delayed increases in SO4 leaching, but resulted in enhanced early leaching losses of Cl and NO3. Leaching of Ca and Mg was strongly tied, both by timing and stoichiometrically, to NO3 and SO4 leaching. F‐factors for WS3 baseflow and peakflow indicated that the catchment was insensitive to acid neutralizing capacity reductions both before and during treatment, although NO3 played a large role in reducing the treatment period F‐factor. By contrast, the addition of fertilizer to WS9 created an acid sensitive system in both baseflow and peakflow. On WS9, baseflow and peakflow responses also were similar to each other, but there was no time lag after treatment for baseflow. Changes in concentrations generally were not as great on WS9 as on WS3, and several ions showed no significant changes, particularly for peakflow. The lesser response to treatment on WS9 is attributed to the past abusive farming and site preparation before larch planting that resulted in poor soil fertility, erosion, and consequently, physical and chemical similarities between upper and lower soil layers. Even with fertilizer‐induced NO3 and SO4 leaching increases, base cations were in low supplies and, therefore, unavailable to leach via charge pairing. The absence of a time lag in treatment responses for WS9 baseflow indicates that it has substantially different flow paths than WS3. The different hydrologies on these nearby watersheds illustrates the importance of understanding watershed hydrology when establishing a monitoring programme to detect ecosystem change. Published in 2002 by John Wiley & Sons, Ltd.  相似文献   

2.
Hydrobiogeochemical processes controlling stream water chemistry were examined in four small (<5 km2) catchments having contrasting bedrock lithologies in the western Sierra Nevada foothills of California. The Mediterranean climate with its cool/wet and hot/dry cycle produces strong seasonal patterns in hydrological, biological and geochemical processes. Stream water solutes fall into three general groups according to seasonal fluctuation in concentration: strong, rainy season minimum–dry season maximum (Cl, SO42−, base cations); weak, rainy season minimum–dry season maximum (Si); and rainy season maximum–dry season minimum (NO3 and K+). Solute dynamics in soil solutions and stream water suggest that mixing of drainage waters from bedrock and soil sources regulate stream water solute concentrations. Patterns are further altered by the leaching of solutes accumulated in the soil over the summer period of desiccation and the temporal discoupling of nutrient cycles that occurs due to differences in the timing between vegetation growth (late spring) and leaching (early winter). Solute concentrations are remarkably similar between watersheds with varying bedrock types, with the exception of nitrate, sulfate and bicarbonate. Three watersheds have nitrogen-bearing metasedimentary bedrock that contributes to elevated nitrate concentrations in stream waters. Watersheds whose bedrock includes mineralized veins of sulfide and carbonate minerals similarly have greater sulfate and bicarbonate concentrations in stream water. Hydrobiogeochemical processes are highly dynamic at the seasonal and storm-event temporal scales and spatially complex at the watershed scale making management of stream water chemical composition, such as nitrate concentrations, very challenging.  相似文献   

3.
Sulfur and nitrogen input–output budgets were estimated for five forested Appalachian Plateau basins in Pennsylvania for the period October 1988 to March 1990. Wet and dry deposition inputs were determined on a weekly basis from data collected at atmospheric deposition monitoring stations located near the study sites. Stream export was estimated from intensively sampled stream chemistry and continuous discharge data collected on all five basins. On four of the five basins, deposited sulfur was essentially in balance with stream flow export of sulfur (92–120% exported) for the 1989 water year. The fifth basin had net retention of deposited sulfur, with only 42% exported. All five basins retained the vast majority of deposited nitrogen (only 3–18% exported). The fraction of atmospherically deposited sulfur exported in stream flow was greater by a mean factor of 14 versus nitrogen, implying that sulfur dominates base cation leaching processes on these non-carbonate-based catchments. Although basins in the study were relatively homogeneous in terms of topography, climate, geology and land use, local basin conditions caused significant differences in input–output budgets, pointing to the need for replicated basin studies in a region. © 1997 John Wiley & Sons, Ltd.  相似文献   

4.
A small stream in the Great Plains of USA was sampled to understand the streamflow components following intense precipitation and the influence of water storage structures in the drainage basin. Precipitation, stream, ponds, ground-water and soil moisture were sampled for determination of isotopic (D, 18O) and chemical (Cl, SO4) composition before and after two intense rain events. Following the first storm event, flow at the downstream locations was generated primarily through shallow subsurface flow and runoff whereas in the headwaters region – where a pond is located in the stream channel – shallow ground-water and pond outflow contributed to the flow. The distinct isotopic signatures of precipitation and the evaporated pond water allowed separation of the event water from the other sources that contributed to the flow. Similarly, variations in the Cl and SO4 concentrations helped identify the relative contributions of ground-water and soil moisture to the streamflow. The relationship between deuterium excess and Cl or SO4 content reveals that the early contributions from a rain event to streamflow depend upon the antecedent climatic conditions and the position along the stream channel within the watershed. The design of this study, in which data from several locations within a watershed were collected, shows that in small streams changes in relative contributions from ground water and soil moisture complicate hydrograph separation, with surface-water bodies providing additional complexity. It also demonstrates the usefulness of combined chemical and isotopic methods in hydrologic investigations, especially the utility of the deuterium excess parameter in quantifying the relative contributions of various source components to the stream flow.  相似文献   

5.
In 1994, a network of small catchments (GEOMON) was established in the Czech Republic to determine input–output element fluxes in semi-natural forest ecosystems recovering from anthropogenic acidification. The network consists from 16 catchments and the primary observations of elements fluxes were complemented by monitoring of biomass stock, element pools in soil and vegetation, and the main water balance components. Over last three decades, reductions of SO2, NOx and NH3 emissions were followed by sulphur (S) and nitrogen (N) deposition reductions of 75% and 30%, respectively. Steeper declines of strong acid anion concentrations compared to cations (Ca, Mg, Na, K, NH4) in precipitation resulted in precipitation pH increase from 4.5 to 5.2 in bulk precipitation and from 4.0 to 5.1 in spruce throughfall. Stream chemistry responded to changes in deposition: S leaching declined. However at majority of catchments soils acted as a net source of S to runoff, delaying recovery. Stream pH increased at acidic streams (pH < 6) and aluminium concentration decreased. Stream nitrate (NO3) concentration declined by 60%, considerably more than N deposition. Stream NO3 concentration was tightly positively related to stream total dissolved nitrogen to total phosphorus (P) ratio, suggesting the role of P availability on N retention. Trends in dissolved organic carbon fluxes responded to both acidification recovery and to runoff temporal variation. An exceptional drought occurred between 2014 and 2019. Over this recent period, streamflow decreased by ≈ 40% on average compared to 1990s, due to the increases of soil evaporation and vegetation transpiration by ≈ 30% and declines in precipitation by ≈ 15% on average across the elevational gradient. Sharp decreases of stream runoff at catchments <650 m a.s.l. corresponded to areas of recent forest decline caused by bark beetle infestation on drought stressed spruce forests. Understanding of the interactions among legacies of acidification and eutrophication, drought effects on the water cycle and forest disturbance dynamics is requisite for effective management of forested ecosystems under anthropogenic influence.  相似文献   

6.
Measured, calculated and simulated values were combined to develop an annual nitrogen budget for Loch Vale Watershed (LVWS) in the Colorado Front Range. Nine-year average wet nitrogen deposition values were 1·6 (s=0·36) kg NO3-N ha−1, and 1·0 (s=0·3) kg NH4-N ha−1. Assuming dry nitrogen deposition to be half that of measured wet deposition, this high elevation watershed receives 3·9 kg N ha−1. Although deposition values fluctuated with precipitation, measured stream nitrogen outputs were less variable. Of the total N input to the watershed (3·9 kg N ha−1 wet plus dry deposition), 49% of the total N input was immobilized. Stream losses were 2·0 kg N ha−1 (1125 kg measured dissolved inorganic N in 1992, 1–2 kg calculated dissolved organic N, plus an average of 203 kg algal N from the entire 660 ha watershed). Tundra and aquatic algae were the largest reservoirs for incoming N, at approximately 18% and 15% of the total 2574 kg N deposition, respectively. Rocky areas and forest stored the remaining 11% and 5%, respectively. Fully 80% of N losses from the watershed came from the 68% of LVWS that is alpine. © 1997 John Wiley & Sons, Ltd.  相似文献   

7.
The Sarma Stream is located in Turkey, southwest of the town of Akcakoca in the Duzce Province. It was decided that the Sariyayla reservoir should be built on the Sarma Stream in order to address the water needs of Akcakoca. This research was conducted in the Sarma Stream basin to determine the effects of environmental and hydrological processes. Samples of rocks, soil, stream water, rain, snowmelt and bed and suspended sediment were collected in the Sarma Stream basin. Geochemical and water chemistry analyses of the samples were performed at the ALS Global laboratories in Canada. The sandstone, which is easily weathering and rich by clay minerals, and soil samples cause the Sarma Stream to flow muddy in rainy season. The kaolinite, illite, montmorillonite and clay minerals that type of chlorite is found in the bed and suspended sediments of the Sarma Stream. The water of the Sarma Stream is rich in calcium and bicarbonate, the water type is Ca–HCO3. Acid rain affects the dissolution of geological units and the abundance of principal ions. Some heavy metal and elements in the Sarma Stream basin waters exceed the drinking water limit values (e.g. Al, Fe, Mn, NH4 and NO3). Hence, water in the Sariyayla Reservoir should be treated.  相似文献   

8.
S. V. Panno  W. R. Kelly   《Journal of Hydrology》2004,290(3-4):229-242
This investigation was designed to estimate the mass loading of nitrate (NO3) and herbicides in spring water discharging from groundwater basins in an agriculturally dominated, mantled karst terrain. The loading was normalized to land use and NO3 and herbicide losses were compared to estimated losses in other agricultural areas of the Midwestern USA. Our study area consisted of two large karst springs that drain two adjoining groundwater basins (total area of 37.7 km2) in southwestern Illinois' sinkhole plain, USA. The springs and stream that they form were monitored for almost 2 years. Nitrate–nitrogen (NO3–N) concentrations at three monitoring sites were almost always above the background concentration (1.9 mg/l). NO3–N concentrations at the two springs ranged from 1.08 to 6.08 with a median concentration of 3.61 mg/l. Atrazine and alachlor concentrations ranged from <0.01 to 34 μg/l and <0.01 to 0.98 μg/l, respectively, with median concentrations of 0.48 and 0.12 μg/l, respectively. Approximately 100,000 kg/yr of NO3–N, 39 kg/yr of atrazine, and 2.8 kg/yr of alachlor were discharged from the two springs. Slightly more than half of the discharged NO3 came from background sources and most of the remainder probably came from fertilizer. This represents a 21–31% loss of fertilizer N from the groundwater basins. The pesticide losses were 3.8–5.8% of the applied atrazine, and 0.05–0.08% of the applied alachlor. The loss of atrazine adsorbed to the suspended solid fraction was about 2 kg/yr, only about 5% of the total mass of atrazine discharged from the springs.  相似文献   

9.
Water and cation budgets were calculated for two sub-basins within a small low relief watershed in South-Central Ontario during a period of ephemeral runoff which was initiated by spring snow melt. The hydrology of one (upland) sub-basin was strongly influenced by seasonal fluctuations in the level of regional ground water. Saturated contributing areas formed in low lying regions adjacent to the stream channel where the water table rose to the surface, and stream discharge was a mixture of ground water and saturation overland flow. In the second sub-basin a wetland provided a large and spatially less variable saturated contributing area. Clay soils underlying the wetland resulted in a shallow perched water table, poorly drained and highly organic soils, and greatly reduced inputs of regional ground water. Stream discharge was largely the result of surface runoff from the wetland and adjacent areas of saturated soil.Inter-basin variations in water export were by far greater than variations in stream chemistry. As a result, inter-basin variations in cation export strongly reflected variations in water export over the time interval in which the majority of a given ion was lost from the watershed. Spatial differences in water export were least at the onset of runoff when basin saturation was greatest and overland flow made large contributions to the discharge from both sub-basins. Potassium and hydrogen had high concentrations at this time which caused these ions to show only small spatial differences in export. With decreases in the areal extent of soil saturation, and increases in the storage capacity of the wetland, the hydrologic contrast between sub-basins increased. Greater water loss from the upland area resulted from a greater discharge of regional ground water, and a more rapid expansion of the saturated contributing areas during storm events. Calcium, magnesium, and sodium concentrations increased steadily during the first 3 weeks of runoff, so that the peak export of these cations occurred later in the runoff period at times of higher concentration, but lower and spatially more variable discharges. Consequently, spatial differences in the loss of these ions was great and favoured the upland sub-basin, since the majority of export occurred when the hydrologic contrast between sub-basins was largest.  相似文献   

10.
A series of Co-60 compounds, considered as potentially useful tracers of groundwater movement, were prepared and evaluated in soil column and batch studies. The compounds were: potassium hexacyanocobaltate (III), K3Co(CN)6; potassium ethylenediamminetetraacetato-cobaltate (III), KCo(EDTA); ammonium 12-tungstodicobaltoate (III), (NH4)8[Co(II)Co(II)W12O42] · 20 H2O; chloraquotetrammine cobalt (III) chloride, [Co(NH3)4(H2O)Cl]Cl2; and sodium hexanitrocobaltate (III), Na3Co(NO2)6. The performance of K3 60Co(CN)6 and K 60Co EDTA were dependent on their environment and more especially on the type and amount of clay present. The EDTA cobalt complex cannot be used in soils that are basic or where a large fraction of the clay is saturated with Na+ and/or Ca++. Of the other radioactive tracers tested, none were suitable for groundwater tracing because of instability in aqueous solution (Na3Co(NO2)6), variable anionic structure under acid conditions ((NH3)8[Co(II)Co(II)W12O42] · 20 H2O), or preferential uptake by the clay fraction ([Co(NH3)4(H2O)Cl]Cl2).  相似文献   

11.
Urbanization represents a dramatic example of human interference with the hydrological cycle. Changes to ground cover affect both the hydrological and geochemical characteristics in a watershed. Ecosystem degradation also occurs in undisturbed watersheds at the “urban fringe” due to regional atmospheric deposition. These urban fringe catchments can also serve as an upstream source of various chemical constituents into downstream (urban) river systems. The current study focuses on the impacts of regional urbanization in the upper Arroyo Seco watershed located on the eastern edge of the Los Angeles basin, where estimates of dry deposition are considered some of the highest in North America. Collected hydrologic, geochemical and atmospheric data were assessed at seasonal time scales to evaluate current hydrochemical dynamics. Stream water chemical composition in the upper Arroyo Seco watershed exhibits significant seasonal variability, particularly for . Almost all study solutes show dilution behavior. However, hydrologically enhanced behavior was observed for with increased concentrations during the wet season. Seasonal stream concentration–discharge relationships were developed using a hyperbolic dilution model. The developed model was then used to predict concentrations for observational gaps in stream water chemical composition, allowing for seasonal and annual mass loadings to be estimated for the downstream urban stream. The hydrological signal in the resultant chemical loads is extremely strong, especially during the wet season. Both observations and model predictions indicate the watershed is a sink for atmospheric nitrate and a source for various cations.  相似文献   

12.
How much stream temperatures increase within riparian canopy openings and whether stream temperatures cool downstream of these openings both have important policy implications. Past studies of stream cooling downstream of riparian openings have found mixed results including rapid, slow, and no cooling. We collected longitudinal profiles of stream temperatures above, within, and below riparian forest openings along stream segments within otherwise forested riparian conditions to evaluate how sensitivity of stream temperatures to riparian conditions varied across landscape factors. We conducted these temperature surveys across openings in 12 wadeable streams within and near the Upper Little Tennessee River Basin in western North Carolina and northeastern Georgia. Basin areas ranged from 74 to 6,913 ha, and bankfull channel widths varied from 3.4 to 16.4 m. Stream temperatures were collected every 15 min using HOBO® data loggers for 2 weeks in each stream, repeated later in summer in some streams. Reference temperatures were highest in stream reaches at low elevations and with large drainage areas. Stream temperature increases in the middle of riparian gaps were highest when streams drained small high-elevation watersheds, and increases at the end of openings were highest when the opening length was large relative to watershed size. Downstream from openings, cooling rates were greatest in small, high-elevation headwater streams and also increased with larger increases in canopy cover. Stream segments that warmed the most within openings also featured higher cooling rates downstream. The data show that stream temperature sensitivity to canopy change is highly dependent on network position and watershed size. A better understanding of stream temperature responses to riparian vegetation may be useful to land managers and landowners prioritizing riparian forest restoration.  相似文献   

13.
Differences in the impact of irrigation with freshwater versus wastewater on the underlying shallow groundwater quality were investigated in the Coastal Aquifer of Israel. Seven research boreholes were drilled to the top-most 3–5 m of the saturated zone (the water table region-WTR) in the agricultural fields. The unsaturated zone and the WTR below the irrigated fields consist mainly of clayey sands, while the main aquifer comprises mainly of calcareous sandstones and sands. We show that the salinity and composition of the groundwater at the WTR are highly variable over a distance of less than 1 km and are controlled by the irrigating water and the processes in the overlying unsaturated zone. Tritium data in this groundwater (4.6 tritium units (TU)) support that these water are modern recharge. The water at the WTR is more saline and has a different chemical composition relative to the overlying irrigation water. High SAR values (sodium adsorption ratio) in wastewater irrigation lead to absorption of Na+ onto the clay and release of Ca2+ into the recharging water, resulting in low Na/Cl (0.4 compared to 1.2 in the wastewater) and high Ca/Cl ratios. In contrast, in the freshwater-irrigated field the irrigation water pumped from the aquifer (Na/Cl=0.9; SAR=0.6) is modified into Na-rich groundwater (Na/Cl=2.0) due to reverse base-exchange reactions. The high NO3 concentration (>100 mg/l) in the WTR below both fields is derived from the agricultural activities. In the freshwater field, the source of NO3 is fertilizer leachates, whereas in the wastewater field, where less fertilizers are applied, nitrate is probably derived from nitrification of the NH4 in the wastewater. Some of the original inorganic nitrogen in the wastewater is consumed by the agricultural plants, resulting in a lower inorganic-N/Cl ratio in the WTR as compared to that in the wastewater. This study demonstrates the important role of the composition of irrigation water, combined with lithology and land use, in determining the quality of the water that recharge the aquifer below agricultural fields.  相似文献   

14.
C. Soulsby 《Journal of Hydrology》1995,170(1-4):159-179
The hydrochemistry of stream water in an acidic afforested catchment in the Welsh uplands was monitored routinely between 1985 and 1990. Nineteen storm episodes were sampled intensively during this period. Although the general storm response of the stream can be characterised by increased concentrations of H+, Al and dissolved organic carbon (DOC), and a dilution of Ca and SiO2, the detailed hydrochemistry of individual acid episodes exhibited marked contrasts. The minimum pH reached during specific episodes ranged from 4.1 to 5.0, and peak dissolved Al concentrations varied from 9 to 44 μmol l−1. The reasons for such differences in the hydrochemical response can be identified for each individual episode by examining the complex interactions between (1) the quantity and quality of event precipitation, (2) antecedent patterns of weather and atmospheric deposition and (3) the hydrological processes which dominate the storm runoff response. The dynamic nature of catchment hydrology was found to exert a particularly strong influence on the hydrochemistry of specific acid episodes.  相似文献   

15.
Nutrient-rich exfiltrating groundwater may impose a heavy phosphate load on surface water systems. However, iron oxides that bind PO4 precipitate fast upon oxygenation at neutral pH and PO4 may also become bound in Ca precipitates following upon pH increase, so load estimates based on conservative behaviour during exfiltration will be overestimates. Aeration experiments using natural groundwater were performed to characterise the immobilisation of PO4 within one day after aeration started. Groundwaters having a wide variety in composition, were sampled in the coastal lowlands of the Western Netherlands. Three models were considered to describe the fast binding of PO4 by Fe oxide type phases that form upon the oxygenation of dissolved Fe(II), each based on a different concept. The concepts were surface complexation, solid-solution precipitation and two-mineral precipitation. When the experimental data were compared with model results, all three models were found to be inadequate. Frequently, more immobilisation of PO4 occurred than could be explained by binding to a Fe oxide type of phase alone. Uptake by Ca phosphates and/or Ca carbonates must additionally have played a role; alternatively, a non-ideal phase consisting of Ca, Fe and PO4 precipitated upon oxygenation and CO2 degassing. A predictive multiple regression model with two primary variables that reflect the driving forces for PO4 immobilisation was deduced that describes immobilisation of phosphate after aeration of anoxic groundwater. The two primary variables are the log value of the groundwater Fe to PO4 molar ratio and the saturation state for hydroxyapatite after the CO2 degassing of groundwater. The model is useful for calculating the PO4 load of surface water from exfiltration groundwater, taking into account fast immobilisation (<1 day) during exfiltration.  相似文献   

16.
Hemispherical photographs of forest canopies can be used to develop sophisticated models that predict incident below canopy shortwave radiation on the surface of interest (i.e. soil and water). Hemispherical photographs were collected on eight dates over the course of a growing season to estimate leaf area index and to quantify solar radiation incident on the surface of two stream reaches based on output from Gap Light Analyser and Hemisfer software. Stream reaches were shaded by a mixed‐deciduous Ozark border forested riparian canopy. Hemispherical photo model results were compared to observed solar radiation sensed at climate stations adjacent to each stream reach for the entire 2010 water year. Modeled stream‐incident shortwave radiation was validated with above‐stream pyranometers for the month of September. On average, the best hemispherical photo models underestimated daily averages of solar radiation by approximately 14% and 12% for E–W and N–S flowing stream reaches, respectively (44.7 W/m2 measured vs 38.4 W/m2 modeled E–W, 46.8 W/m2 vs. 41.1 W/m2N–S). The best hemispherical photo models overestimated solar radiation relative to in–Stream pyranometers placed in the center of each stream reach by approximately 7% and 17% for E–W and N–S stream reaches respectively (31.3 W/m2 measured vs 33.5 W/m2 modeled E–W, 31.5 W/m2 vs. 37.1 W/m2N–S). The model provides a geographically transferable means for quantifying changes in the solar radiation regime at a stream surface due to changes in canopy density through a growing season, thus providing a relatively simple method for estimating surface and water heating in canopy altered environments (e.g. forest harvest). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Wetlands often form the transition zone between upland soils and watershed streams, however, stream–wetland interactions and hydrobiogeochemical processes are poorly understood. We measured changes in stream nitrogen (N) through one riparian wetland and one beaver meadow in the Archer Creek watershed in the Adirondack Mountains of New York State, USA from 1 March to 31 July 1996. In the riparian wetland we also measured changes in groundwater N. Groundwater N changed significantly from tension lysimeters at the edge of the peatland to piezometer nests within the peatland. Mean N concentrations at the peatland perimeter were 1·5, 0·5 and 18·6 µmol L?1 for NH4+, NO3? and DON (dissolved organic nitrogen), respectively, whereas peatland groundwater N concentration was 56·9, 1·5 and 31·6 µmol L?1 for NH4+, NO3? and DON, respectively. The mean concentrations of stream water N species at the inlet to the wetlands were 1·5, 10·1 and 16·9 µmol L?1 for NH4+, NO3? and DON, respectively and 1·6, 28·1 and 8·4 µmol L?1 at the wetland outlet. Although groundwater total dissolved N (TDN) concentrations changed more than stream water TDN through the wetlands, hydrological cross‐sections for the peatland showed that wetland groundwater contributed minimally to stream flow during the study period. Therefore, surface water N chemistry was affected more by in‐stream N transformations than by groundwater N transformations because the in‐stream changes, although small, affected a much greater volume of water. Stream water N input–output budgets indicated that the riparian peatland retained 0·16 mol N ha?1 day?1 of total dissolved N and the beaver meadow retained 0·26 mol N ha?1 day?1 during the study period. Nitrate dominated surface water TDN flux from the wetlands during the spring whereas DON dominated during the summer. This study demonstrates that although groundwater N changed significantly in the riparian peatland, those changes were not reflected in the stream. Consequently, although in‐stream changes of N concentrations were less marked than those in groundwater, they had a greater effect on stream water chemistry—because wetland groundwater contributed minimally to stream flow. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
吕超甲  刘雷  周晓成  杜建国  易丽 《地震》2017,37(1):52-60
根据氢、 氧、 氦同位素与水化学组分资料, 讨论了甘肃东南地区温泉水的来源、 地球化学变化及其与2008年汶川MS8.0地震的关系。 测定结果表明: 样品的溶解性固体总量(TDS)范围为241.7~2 372.1 mg/L。 采集的7处温泉(通渭汤池河温泉、 清水地震台、 天水地震台、 武山地震台、 武山22号井、 成县地震台、 武都地震台)水样可归为四种化学类型: Na·Ca-SO4、 Ca·Mg-SO4、 Na-HCO3·SO4、 Ca·Mg-SO4·HCO3。 地下热水的化学类型与裂隙深度和围岩的岩性有关, 离子浓度和断裂深度基本成正相关。 通渭汤池河温泉和武都地震台的δ18O和δD值分别在-11.4‰ ~ -7.6‰和-85.7‰ ~ -57.1‰的范围内, 通渭汤池河温泉和武都地震台中3He/4He的值分别为0.4×10-7和12.7×10-7。 氢、 氧、 氦同位素组成特征表明温泉水源于大气降水, 在循环过程中经历了水岩反应, 且可能有地表水的混入。 2008年汶川MS8.0地震发生后, 研究区域内温泉水中K+、 Ca2+含量总体上升, SO2-4、 Cl-含量总体下降, Na+含量变化不明显; 热水循环深度受地震影响发生变化。 本文确定了甘肃东南地区温泉来源、 水化学类型成因及其与汶川MS8.0地震的关系。  相似文献   

19.
北京边界层大气污染物的垂直廓线监测与分析   总被引:2,自引:1,他引:1       下载免费PDF全文
基于扫描差分光学吸收光谱(DOAS)系统,于2007年8月27日~9月4日期间对北京市朝阳区大气污染物SO2,HCHO,O3和NO2的垂直分布进行了连续监测,并对污染物垂直廓线进行了分析,详细探讨了SO2垂直分布特征以及夜间NO对O3的滴定作用.结果表明,SO2浓度通常没有明显垂直分层分布特征,但在清晨风速较低时呈现负梯度变化.研究发现夜间O3、NO和NO2之间存在稳态作用,表明城市区域O3的滴定主要来自于地面NO的直接排放,显示出NO的滴定作用对夜间O3、NO和NO2的垂直变化起到重要作用.  相似文献   

20.
A multivariate assessment has been adapted to the classification of a large, irregular dataset of approximately 34,000 surface water samples accumulated over more than 30 years. A two-stage K-means clustering method was designed to analyse chemical data in the form of percentages of major ions (Na, Mg, Ca, Cl, HCO3 and SO4); the first stage of clustering produced 347 groups, which were then re-clustered to generate the final nine water types. The analysis enabled the definition of provinces of water composition and highlighted natural processes influencing the surface water chemistry. On a statewide basis, sodium is the dominant cation and around 50% at all stream flows, while proportions of calcium and magnesium are about equal. Chloride and bicarbonate constitute the bulk of anions present, while sulfate occurs occasionally and tends to be localised. On a global basis, Queensland surface waters are relatively high in sodium, chloride and magnesium, and low in calcium and sulfate. It was also found that the geographical location has a greater impact on major ion ratios than does the stage of stream flow.

The regional chemical trends are consistent with geology and climate. Streams in northeast Queensland, with short, steep catchments and high rainfall, yield low salinity, sodium-dominated water; this is also the case for sandy southern coastal catchments. Both also reflect an oceanic influence. The proportions of sodium and chloride decrease westward; streams draining the western side of the Great Dividing Range or flowing into the Gulf of Carpentaria have low salinity but relatively hard water. Streams in western Queensland are higher in calcium and bicarbonate. In the large catchments flowing from Queensland into central Australia, the water composition is highly variable, commonly with elevated sulfate. Also in Queensland, there are several other clearly definable water provinces such as the high magnesium waters of basaltic areas.

The findings of this study confirm that the application of such analytical methods can provide a useful assessment of controls over water composition and support management at regional level; the approach used is shown and are applicable to large, disparate datasets.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号