首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper discusses the existence of periodic and quasi-periodic solutions in the space relativistic problem of three bodies with the help of Poincaré's small parameter method starting from non-Keplerian generating solutions, i.e., using Gauss's method. The main peculiarity of these periodic orbits is the fact that they close, in general, after many revolutions. It is worth noticing that these periodic orbits give a new class of periodic solutions of the classical circular problem of three bodies, if relativistic effects are neglected.  相似文献   

2.
In this paper by means of a Poincaré map, we prove the existence of symmetric periodic orbits of the elliptic Sitnikov problem. Furthermore, using the presence of the Bernoulli shift as a subsystem of that Poincaré map, we prove that not all the periodic orbits of the Sitnikov problem are symmetric periodic orbits.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

3.
We have calculated several families of classical periodic orbits in simple Hamiltonian systems of two degrees of freedom and the corresponding quantum mechanical eigenvalues and eigenfuctions. We have found that in most cases the eigenfunctions have their maxima and minima on some simple periodic orbits. These periodic orbits are of several resonant types and can be either stable or unstable. In the latter case the quantum Poincaré surfaces of section are very different from the classical Poincaré surfaces of section.  相似文献   

4.
The accurate computation of families of periodic orbits is very important in the analysis of various celestial mechanics systems. The main difficulty for the computation of a family of periodic orbits of a given period is the determination within a given region of an individual member of this family which corresponds to a periodic orbit. To compute with certainty accurate individual members of a specific family we apply an efficient method using the Poincaré map on a surface of section of the considered problem. This method converges rapidly, within relatively large regions of the initial conditions. It is also independent of the local dynamics near periodic orbits which is especially useful in the case of conservative dynamical systems that possess many periodic orbits, often of the same period, close to each other in phase space. The only computable information required by this method is the signs of various function evaluations carried out during the integration of the equations of motion. This method can be applied to any system of celestial mechanics. In this contribution we apply it to the photogravitational problem.  相似文献   

5.
It is already known (Froeschlé et al., 1997a) that the fast Lyapunov indicator (hereafter FLI), i.e. the computation on a relatively short time of a quantity related to the largest Lyapunov indicator, allows us to discriminate between ordered and weak chaotic motion. Using the FLI many results have been obtained on the standard map taken as a model problem. On this model we are not only able to discriminate between a short time weak chaotic motion and an ordered one, but also among regular motion between non resonant and resonant orbits. Moreover, periodic orbits are characterised by constant FLI values which appear to be related to the order of periodic orbits (Lega and Froeschlé, 2001). In the present paper we extend all these results to the case of continuous dynamical systems (the Hénon and Heiles system and the restricted three-body problem). Especially for the periodic orbits we need to introduce a new value: the orthogonal FLI in order to fully recover the results obtained for mappings.  相似文献   

6.
We distinguish between regular orbits, that bifurcate from the main families of periodic orbits (those that exist also in the unperturbed case) and irregular periodic orbits, that are independent of the above. The genuine irregular families cannot be made to join the regular families by changing some parameters. We present evidence that all irregular families appear inside lobes formed by the asymptotic curves of the unstable periodic orbits. We study in particular a dynamical system of two degrees of freedom, that is symmetric with respect to the x-axis, and has also a triple resonance in its unperturbed form. The distribution of the periodic orbits (points on a Poincaré surface of section) shows some conspicuous lines composed of points of different multiplicities. The regular periodic orbits along these lines belong to Farey trees. But there are also lines composed mainly of irregular orbits. These are images of the x-axis in the map defined on the Poincaré surface of section. Higher order iterations of this map , close to the unstable triple periodic orbit, produce lines that are close to the asymptotic curves of this unstable orbit. The homoclinic tangle, formed by these asymptotic curves, contains many regular orbits, that were generated by bifurcation from the central orbit, but were trapped inside the tangle as the perturbation increased. We found some stable periodic orbits inside the homoclinic tangle, both regular and irregular. This proves that the homoclinic tangle is not completely chaotic, but contains gaps (islands of stability) filled with KAM curves.  相似文献   

7.
We prove the following weakened version of Poincaré's conjecture on the density of periodic orbits of the restricted three-body problem: The measure of Lebesgue of the set of bounded orbits which are not contained in the closure of the set of periodic orbits goes to zero when the mass parameter does.  相似文献   

8.
We study the distribution of regular and irregular periodic orbits on a Poincaré surface of section of a simple Hamiltonian system of 2 degrees of freedom. We explain the appearance of many lines of periodic orbits that form Farey trees. There are also lines that are very close to the asymptotic curves of the unstable periodic orbits. Some regular orbits, sometimes stable, are found inside the homoclinic tangle. We explain this phenomenon, which shows that the homoclinic tangle does not cover the whole area around an unstable orbit, but has gaps. Inside the lobes only irregular orbits appear, and some of them are stable. We conjecture that the opposite is also true, i.e. all irregular orbits are inside lobes.  相似文献   

9.
We investigate the break-down threshold of librational invariant curves. As a model problem, we consider a variant of a mapping introduced by M. Hénon, which well describes the dynamics of librational motions surrounding a stable invariant point. We verify in concrete examples the applicability of Greene's method, by computing the instability transition values of a sequence of periodic orbits approaching an invariant curve with fixed noble frequency. However, this method requires the knowledge of the location of the periodic orbits within a very good approximation. This task appears to be difficult to realize for a libration regime, due to the different topology of the phase space. To compute the break-down threshold, we tried an alternative method very easy to implement, based on the computation of the fast Lyapunov indicators and frequency analysis. Such technique does not require the knowledge of the periodic orbits, but again, it appears very difficult to have a precision better than Greene's method for the computation of the critical parameter.  相似文献   

10.
We study two and three-dimensional resonant periodic orbits, usingthe model of the restricted three-body problem with the Sun andNeptune as primaries. The position and the stability character ofthe periodic orbits determine the structure of the phase space andthis will provide useful information on the stability and longterm evolution of trans-Neptunian objects. The circular planarmodel is used as the starting point. Families of periodic orbitsare computed at the exterior resonances 1/2, 2/3 and 3/4 withNeptune and these are used as a guide to select the energy levelsfor the computation of the Poincaré maps, so that all basicresonances are included in the study. Using the circular planarmodel as the basic model, we extend our study to more realisticmodels by considering an elliptic orbit of Neptune and introducingthe inclination of the orbit. Families of symmetric periodicorbits of the planar elliptic restricted three-body problem andthe three-dimensional problem are found. All these orbitsbifurcate from the families of periodic orbits of the planarcircular problem. The stability of all orbits is studied. Althoughthe resonant structure in the circular problem is similar for allresonances, the situation changes if the eccentricity of Neptuneor the inclination of the orbit is taken into account. All theseresults are combined to explain why in some resonances there aremany bodies and other resonances are empty.  相似文献   

11.
Periodic orbits in the Stormer problem are studied using the symmetry lines of the Poincaré map introduced by De Vogelaere. Many known facts are explained by mean of these lines. The dynamics of four special symmetry lines when the Stormer parameter 1 changes is presented, and we obtain a clear global view of the structure of the simple periodic orbits and their bifurcations, including the asymmetrical ones. New asymmetrical multiple periodic orbits are obtained.  相似文献   

12.
We reexamine the classical virial theorem for bounded orbits of arbitrary autonomous Hamiltonian systems possessing both regular and chaotic orbits. New and useful forms of the virial theorem are obtained for natural Hamiltonian flows of arbitrary dimension. A discrete virial theorem is derived for invariant circles and periodic orbits of natural symplectic maps. A weak and a strong form of the virial theorem are proven for both flows and maps. While the Birkhoff Ergodic Theorem guarantees the existence of the relevant time averages for both regular and chaotic orbits, the convergence is very rapid for the former and extremely slow for the latter. This circumstance leads to a simple and efficient measure of chaoticity. The results are applied to several problems of current physical interest, including the Hénon–Heiles system, weak chaos in the standard map, and a 4D Froeschlé map.  相似文献   

13.
Existence of periodic orbits inside elliptical galaxies has been investigated. Necessary conditions for regular, small amplitude periodic motion around the center of galaxy have been derived using implicit functions and solved by approximating through Taylor's series. The solution procedure requires to obtain functions of partial derivatives of dependent variables with respect to initial conditions. Derivation of these functions can be accomplished through solving a set of ordinary differential equations by proper choices of associated initial conditions. The results obtained show complete agreement with those obtained through the application of Poincaré-Lindstedt's method.  相似文献   

14.
In the current study, the existence of periodic orbits around a fixed homogeneous cube is investigated, and the results have powerful implications for examining periodic orbits around non-spherical celestial bodies. In the two different types of symmetry planes of the fixed cube, periodic orbits are obtained using the method of the Poincaré surface of section. While in general positions, periodic orbits are found by the homotopy method. The results show that periodic orbits exist extensively in symmetry planes of the fixed cube, and also exist near asymmetry planes that contain the regular Hex cross section. The stability of these periodic orbits is determined on the basis of the eigenvalues of the monodromy matrix. This paper proves that the homotopy method is effective to find periodic orbits in the gravity field of the cube, which provides a new thought of searching for periodic orbits around non-spherical celestial bodies. The investigation of orbits around the cube could be considered as the first step of the complicated cases, and helps to understand the dynamics of orbits around bodies with complicated shapes. The work is an extension of the previous research work about the dynamics of orbits around some simple shaped bodies, including a straight segment, a circular ring, an annulus disk, and simple planar plates.  相似文献   

15.
For the circular restricted three-body problem of celestial mechanics with small secondary mass, we prove the existence of uniformly hyperbolic invariant sets of non-planar periodic and chaotic almost collision orbits. Poincaré conjectured existence of periodic ones and gave them the name “second species solutions”. We obtain large subshifts of finite type containing solutions of this type.  相似文献   

16.
We explore the periodic orbits and the regions of quasi-periodic motion around both the primaries in the Saturn-Titan system in the framework of planar circular restricted three-body problem. The location, nature and size of periodic and quasi-periodic orbits are studied using the numerical technique of Poincare surface of sections. The maximum amplitude of oscillations about the periodic orbits is determined and is used as a parameter to measure the degree of stability in the phase space for such orbits. It is found that the orbits around Saturn remain around it and their stability increases with the increase in the value of Jacobi constant C. The orbits around Titan move towards it with the increase in C. At C=3.1, the pericenter and apocenter are 358.2 and 358.5 km, respectively. No periodic or quasi-periodic orbits could be found by the present method around the collinear Lagrangian point L 1 (0.9569373834…).  相似文献   

17.
We apply a numerical searching method to investigate three-dimensional periodic orbits of charged dust particles in planetary magnetospheres. A classic generalized Stormer model of magnetic planets along with the parameters of Saturn is employed. More periodic orbits are found, besides the already known circular periodic orbits in or parallel to the equatorial plane. We divide all these orbits into six categories based on their appearances. By calculating the characteristic multipliers of the orbits, we investigate the stabilities of these periodic orbits.  相似文献   

18.
Hale's method is used to show the existence of symmetric periodic orbits of the second kind for the particular case of the elliptic restricted problem of three bodies. In this treatment we also obtain a new proof of the existence of periodic orbits of the first and second kinds in the circular restricted problem.  相似文献   

19.
The three-dimensional periodic solutions originating at the equilibrium points of Hill's limiting case of the Restricted Three Body Problem, are studied. Fourth-order parametric expansions by the Lindstedt-Poincaré method are constructed for them. The two equilibrium points of the problem give rise to two exactly symmetrical families of three-dimensional periodic solutions. The familyHL 2v e originating at L2 is continued numerically and is found to extend to infinity. The family originating at L1 behaves in exactly the same way and is not presented. All orbits of the two families are unstable.  相似文献   

20.
Numerical simulations of the one-dimensional Newtonian four-body problem have been conducted for the special case in which the bodies are distributed symmetrically about the centre of mass. Simulations show a great similarity between this problem and the one-dimensional Newtonian three-body problem. As in that problem the orbits can be divided into three different categories which form well-defined regions on a Poincaré section: there is a region of quasiperiodic orbits about a Schubart-like periodic orbit, there is a region of fast-scattering encounters and in between these two regions there is a chaotic scattering region. The Schubart-like periodic orbit's stability to perturbation is studied. It is apparently stable in one-dimension but is unstable in three-dimensions.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号