首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phase relations have been determined at 20 kb in the simple, Fe-, Ti-free systems hydroxyphlogopite-hydroxyapatite and hydroxyfluorphlogopite-hydroxyfluorapatite in order to determine distribution of fluorine between phlogopite, apatite and melt under mantle conditions. No excess H2O was present in the hydroxyphlogopite-hydroxyapatite system and the F/(OH) ratio was unity in the F-bearing system. Both systems are pseudobinary and contain forsterite at phlogopite-rich compositions. In the F-absent system, the minimum melting occurs at 1225°C and Phl85Ap15, whereas in the F-bearing system this temperature is 1260°C and Phl66Ap34. Phlogopite in the F-absent system has lower Al than in the F-bearing system with both showing Si+Mg=[IV]Al+[VI]Al as the principal substitution. Increase in CaO in forsterite increases with increasing apatite in the bulk composition and is more pronounced in the F-absent system. Distribution of fluorine between phlogopite and liquid and apatite and liquid shows that D F (Phl/glass) ranges from 2–1.25 depending on temperature and bulk composition, whereas the D F (Apat/glass) is about unity. These results suggest that fluorine will tend to remain in the solid phases rather than the melt during partial melting in the mantle. Hence the enrichment of fluorine in ultrapotassic magmas and its role in their evolution are constrained.  相似文献   

2.
The trace element compositions of melts and minerals from high-pressure experiments on hydrous pyroxenites containing K-richterite are presented. The experiments used mixtures of a third each of the natural minerals clinopyroxene, phlogopite and K-richterite, some with the addition of 5% of an accessory phase ilmenite, rutile or apatite. Although the major element compositions of melts resemble natural lamproites, the trace element contents of most trace elements from the three-mineral mixture are much lower than in lamproites. Apatite is required in the source to provide high abundances of the rare earth elements, and either rutile and/or ilmenite is required to provide the high field strength elements Ti, Nb, Ta, Zr and Hf. Phlogopite controls the high levels of Rb, Cs and Ba.Since abundances of trace elements in the various starting mixtures vary strongly because of the use of natural minerals, we calculated mineral/melt partition coefficients (DMin/melt) using mineral modes and melting reactions and present trace element patterns for different degrees of partial melting of hydrous pyroxenites. Rb, Cs and Ba are compatible in phlogopite and the partition coefficient ratio phlogopite/K-richterite is high for Ba (1 3 6) and Rb (12). All melts have low contents of most of the first row transition elements, particularly Ni and Cu ((0.1–0.01) × primitive mantle). Nickel has high DMin/melt for all the major minerals (12 for K-richterite, 9.2 for phlogopite and 5.6 for Cpx) and so behaves at least as compatibly as in melting of peridotites. Fluorine/chlorine ratios in melts are high and DMin/melt for fluorine decreases in the order apatite (2.2) > phlogopite (1.5) > K-richterite (0.87). The requirement for apatite and at least one Ti-oxide in the source of natural lamproites holds for mica pyroxenites that lack K-richterite. The results are used to model isotopic ageing in hydrous pyroxenite source rocks: phlogopite controls Sr isotopes, so that lamproites with relatively low 87Sr/86Sr must come from phlogopite-poor source rocks, probably dominated by Cpx and K-richterite. At high pressures (>4 GPa), peritectic Cpx holds back Na, explaining the high K2O/Na2O of lamproites.  相似文献   

3.
Experiments have been conducted in a peralkaline Ti-KNCMASH system representative of MARID-type bulk compositions to delimit the stability field of K-richterite in a Ti-rich hydrous mantle assemblage, to assess the compositional variation of amphibole and coexisting phases as a function of P and T, and to characterise the composition of partial melts derived from the hydrous assemblage. K-richterite is stable in experiments from 0.5 to 8.0 GPa coexisting with phlogopite, clinopyroxene and a Ti-phase (titanite, rutile or rutile + perovskite). At 8.0 GPa, garnet appears as an additional phase. The upper T stability limit of K-richterite is 1200–1250 °C at 4.0 GPa and 1300–1400 °C at 8.0 GPa. In the presence of phlogopite, K-richterite shows a systematic increase in K with increasing P to 1.03 pfu (per formula unit) at 8.0 GPa/1100 °C. In the absence of phlogopite, K-richterite attains a maximum of 1.14 K pfu at 8.0 GPa/1200 °C. Titanium in both amphibole and mica decreases continuously towards high P with a nearly constant partitioning while Ti in clinopyroxene remains more or less constant. In all experiments below 6.0 GPa ΣSi + Al in K-richterite is less than 8.0 when normalised to 23 oxygens+stoichiometric OH. Rutiles in the Ti-KNCMASH system are characterised by minor Al and Mg contents that show a systematic variation in concentration with P(T) and the coexisting assemblage. Partial melts produced in the Ti-KNCMASH system are extremely peralkaline [(K2O+Na2O)/Al2O3 = 1.7–3.7], Si-poor (40–45 wt% SiO2), and Ti-rich (5.6–9.2 wt% TiO2) and are very similar to certain Ti-rich lamproite glasses. At 4.0 GPa, the solidus is thought to coincide with the K-richterite-out reaction, the first melt is saturated in a phlogopite-rutile-lherzolite assemblage. Both phlogopite and rutile disappear ca. 150 °C above the solidus. At 8.0 GPa, the solidus must be located at T≤1400 °C. At this temperature, a melt is in equilibrium with a garnet- rutile-lherzolite assemblage. As opposed to 4.0 GPa, phlogopite does not buffer the melt composition at 8.0 GPa. The experimental results suggest that partial melting of MARID-type assemblages at pressures ≥4.0 GPa can generate Si-poor and partly ultrapotassic melts similar in composition to that of olivine lamproites. Received: 23 December 1996 / Accepted: 20 March 1997  相似文献   

4.
Chemical, mineralogical and isotopic studies have been made on nodules of the MARID (Mica-Amphibole-Rutile-Ilmenite-Diopside) xenolith suite in southern African kimberlites. All are ultramafic and ultrapotassic (MgO= 20–25%, K2O=4–9%), with bulk compositions reflecting the wide variation in relative proportions of the five minerals amongst the nodules. They are comparable in major element compositions to magnesian lamproites, in particular the ultrabasic olivine-lamproites of Western Australia. In a number of high pressure experimental studies on ultra-potassic rocks, the phases produced between 25–30 kbar from compositions comparable to those of MARID rocks (in the presence of additional water), were predominantly phlogopite and diopside (±K-richterite, ±ilmenite, ±rutile). Furthermore the compositions of experimental minerals produced in the synthetic-biotite-mafurite-H2O system by Edgar et al. (1976) are similar to those in MARID rocks.It is suggested on the basis of these observations and the textural appearance of MARID rocks that they are magmatic compositional equivalents of MgO-rich lamproites that crystallized at high pressures. While lamproites have higher average concentrations of incompatible elements, (including REE), some MARID rocks have comparable abundances. It is suggested that late stage vapour-rich melts carrying substantial REE and other incompatible elements escaped from crystallizing MARID magmas into surrounding subcontinental lithosphere, thus resulting in lower levels of these elements in most MARID rocks. In contrast faster crystallization of lamproitic rocks under volcanic/ hypabyssal conditions would prevent similar losses.The MARID proto-magmas are thought to be either partial melts of metasomatised phlogopite peridotite, or small volume asthenospheric melts which are modified and further enriched by incorporation of small partial melts of enriched subcontinental lithosphere during magma ascent.  相似文献   

5.
 The beginning of dehydration melting in the tonalite system (biotite-plagioclase-quartz) is investigated in the pressure range of 2–12 kbar. A special method consisting of surrounding a crystal of natural plagioclase (An45) with a biotite-quartz mixture, and observing reactions at the plagioclase margin was employed for precise determination of the solidus for dehydration melting. The beginning of dehydration melting was worked out at 5 kbar for a range of compositions of biotite varying from iron-free phlogopite to iron-rich Ann70, with and without titanium, fluorine and extra aluminium in the biotite. The dehydration melting of phlogopite + plagioclase (An45) + quartz begins between 750 and 770°C at pressures of 2 and 5 kbar, at approximately 740°C at 8 kbar and between 700 and 730°C at 10 kbar. At 12 kbar, the first melts are observed at temperatures as low as 700°C. The data indicate an almost vertical dehydration melting solidus curve at low pressures which bends backward to lower temperatures at higher pressures (> 5 kbar). The new phases observed at pressures ≤ 10 kbar are melt + enstatite + clinopyroxene + potassium feldspar ± amphibole. In addition to these, zoisite was also observed at 12 kbar. With increasing temperature, phlogopite becomes enriched in aluminium and deficient in potassium. Substitution of octahedral magnesium by aluminium and titanium in the phlogopite, as well as substitution of hydroxyl by fluorine, have little effect on the beginning of dehydration melting temperatures in this system. The dehydration melting of biotite (Ann50) + plagioclase (An45) + quartz begins 50°C below that of phlogopite bearing starting composition. Solid reaction products are orthopyroxene + clinopyroxene + potassium feldspar ± amphibole. Epidote was also observed above 8 kbar, and garnet at 12 kbar (750°C). The experiments on the iron-bearing system performed at ≤ 5 kbar were buffered with NiNiO. The f O 2 in high pressure runs lies close to CoCoO. With the substitution of octahedral magnesium and iron by aluminium and titanium, and replacement of hydroxyl by fluorine in biotite, the beginning of dehydration melting temperatures in this system increase up to 780°C at 5 kbar, which is 70°C above the beginning of dehydration melting of the assemblage containing biotite (Ann50) of ideal composition. The dehydration melting at 5 kbar in the more iron-rich Ann70-bearing starting composition begins at 730°C, and in the Ann25-bearing assemblage at 710°C. This indicates that quartz-biotite-plagioclase assemblages with intermediate compositions of biotite (Ann25 and Ann50) melt at lower temperatures as compared to those containing Fe-richer or Mg-richer biotites. This study shows that the dehydration melting of tonalites may begin at considerably lower temperatures than previously thought, especially at high pressures (>5 kbar). Received: 27 December 1995 / Accepted: 7 May 1996  相似文献   

6.
Melting experiments on ultramafic rocks rich in the hydrous minerals phlogopite or phlogopite + K-richterite, some including 5% of accessory phases, have been conducted at 15 and 50 kbar. The assemblages represent probable source components that contribute to melts in cratonic regions, but whose melt compositions are poorly known. A main series of starting compositions based on MARID xenoliths consisted of a third each of clinopyroxene (CPX), phlogopite (PHL) and K-richterite (KR) with or without 5% ilmenite, rutile or apatite. Additional experiments were run without KR and with higher proportions of accessory phases. Melt traps were used at near-solidus temperatures to facilitate accurate analysis of well-quenched melts, for which reversal experiments demonstrate equilibrium.Results show that KR melts rapidly and completely within 50 °C of the solidus, so that melts reflect the composition of the amphibole and its melting reaction. Melts have high SiO2 and especially K2O but low CaO and Al2O3 relative to basaltic melts produced from peridotites at similar pressures. They have no counterparts amongst natural rocks, but most closely resemble leucite lamproites at 15 kbar. KR and PHL melt incongruently to form olivine (OL) and CPX at 15 kbar, promoting SiO2 contents of the melt, whereas orthopyroxene OPX is increasingly stable at lower lithosphere pressures, leading to an increase in MgO and decrease in SiO2 in melts, which resemble olivine lamproites. Melts of mica pyroxenites without KR are richer in CaO and Al2O3 and do not resemble lamproites. These experiments show that low CaO and Al2O3 in igneous rocks is not necessarily a sign of a depleted peridotite source. Accessory phases produce melts exceptionally rich in P2O5 or TiO2 depending on the phases present and are unlike any melts seen at the Earth’s surface, but may be important agents of metasomatism seen in xenoliths. The addition of the 5% accessory phases ilmenite, rutile or apatite result in melting temperatures a few ten of degrees lower; at least two of these appear essential to explain the compositions of many alkaline igneous rocks on cratons.Melting temperatures for CPX + PHL + KR mixtures are close to cratonic geotherms at depths > 130 km: minor perturbations of the stable geotherm at >150 km will rapidly lead to 20% melting. Melts of hydrous pyroxenites with a variety of accessory phases will be common initial melts at depth, but will change if reaction with wall-rocks occurs, leading to volcanism that contains chemical components of peridotite even though the temperature in the source region remains well below the melting point of peridotite. At higher temperatures, extensive melting of peridotite will dilute the initial alkaline melts: this is recognizable as alkaline components in basalts and, in extreme cases, alkali picrites. Hydrous pyroxenites are, therefore, components of most mantle-derived igneous rocks: basaltic rocks should not be oversimplified as being purely melts of peridotite or of mixtures of peridotite and dry pyroxenite without hydrous phases.  相似文献   

7.
Melting experiments were performed on a natural mica-amphibole-rutile-ilmenite-clinopyroxene (MARID) sample from the Kaapvaal mantle lithosphere (AJE137) at 20 to 35 kbar and 800 to 1450°C. A solidus was determined at 1260°C and 30 kbar above which phlogopite, clinopyroxene and olivine were stable with an alkali-rich silicate melt. Olivine is the only crystallizing phase just below the liquidus of the AJE137 bulk composition and K-richterite was only stable in the subsolidus region ( 1100°C at 30 kbar). These results are consistent with previous studies in more simple systems. In experiments with 10 wt% added water the solidus was depressed by ca. 300°C and K-richterite was stabilized above this solidus. MARIDs represent a potential lowtemperature component in the lithospheric mantle beneath the Kaapvaal Craton of southern Africa. The addition of > 10 wt% water (with less than a 120°C rise of temperature above the geotherm) to this mantle region would create conditions for the melting of this component. This may then be incorporated in any continental flood basalt parent magma that traverse this lithospheric mantle. The derivation of MARIDs from a silicate melt of their bulk composition, even if water saturated, is considered unlikely as such small degree melts could not sustain the elevated liquidus temperatures required (> 1200°C at 30 kbar) in a cold (< 800°C at 30 kbar) mantle lithosphere. MARID xenoliths may be produced by the interaction of an alkali-rich fluid with a peridotite or as the residue to a group II kimberlitic parent magma that has undergone fractionation of olivine and the exsolution of a carbonatite component.  相似文献   

8.
Suprasolidus phase relations at pressures from 8 to 30 kb andtemperatures from 950 to 1380C have been determined experimentallyfor a glassy armalcolite–phlogopite lamproite from thechilled margin of a medium–grained lamproite from SmokyButte, Montana: The armalcolite-phlogopite lamproite has microphenocrystsof olivine in a groundmass of phlogopite, sanidine, armalcolite,clinopyroxene, chromite, priderite, apatite, and abundant glass.The lamproite is SiO2-rich and has high F/H2O relative to lamproitesthat have been investigated in previous experimental studies.Our data show that with decreasing temperature from the liquidusat pressures above 12 kb, melt coexists successively with:olivine; orthopyroxene + clinopyroxene; orthopyroxene + clinopyroxene+ phlogopite; clinopyroxene +phlogopite; and clinopyroxene +orthopyroxene + K-richterite. Below 12 kb, the assemblage successionis: olivine; olivine + clinopyroxene; olivine + clinopyroxene+ phlogopite; and olivine +clinopyroxene + phlogopite + armalcolite.The main difference from the natural paragenesis is that therock does not contain any orthopyroxene—a feature thatis rather remarkable inasmuch as it has 16% normative hypersthene—andthe rock differs also in that it contains sanidine and priderite.In the experiments, sanidine is observed only as ghostlike domainsin some of the glass and appears to have formed during quenching. The solid phases crystallized experimentally are generally compositionallysimilar to the minerals in the rock. These similarities andthe experimental phase relations support the concept of a rapidinitial magma ascent with only a small temperature drop andcrystallization of olivine, but not of orthopyroxene. At lowerpressures, less than 12 kb, it appears that the magma ascendedmore slowly with a larger temperature drop suggested by thesimilarity of the experimentally determined sequence of assemblagesto the paragenesis of the rock. No quasi-invariant multiphase-saturation point was found suchas might be indicative of pressure and temperature conditionsfor formation of the lamproite magma by eutectic-type partialmelting of a mantle source. The occurrence of olivine, orthopyroxene,and clinopyroxene near the liquidus, and the high proportionof normative hypersthene in the melt suggest that lherzoliteor harzburgite was probable in the magma source rock. The highSiO2 and MgO contents of the Smoky Butte lamproites may indicatethat orthopyroxene was a source mineral even though it did notcrystallize under near-surface conditions. The curve definingthe appearance of phlogopite appears at progressively lowertemperatures from the liquidus as pressure increases, so itwould appear that either phlogopite was not the mantle K-reservoir,or it was entirely consumed during the partial melting process.The composition of the near-liquidus glass in the experimentsis likely to be the composition of the bulk rock less the verysmall amounts of olivine + clinopyroxene + orthopyroxene crystallizedwithin a few degrees below the liquidus. From the inferred compositionof this glass, anhydrous phlogopite is a potential mineral.The principal variable that determines whether phlogopite crystallizesas a near-liquidus mineral is F/H2O; low values of this ratiopromote the presence of phlogopite as a near-liquidus mineralwhereas high values deter its crystallization. The common practiceof adding H2O but not F in experiments to compensate for degassingmay obscure the role of phlogopite in the evolution of lamproitemagmas.  相似文献   

9.
Melting experiments on a mantle-derived nodule assemblage consisting of clinopyroxene, phlogopite and minor titanomagnetite, sphene and apatite have been done at 20 and 30 kbar between 1,175 and 1,300° C. The nodule composition was selected on the basis of modal and chemical analyses of 84 mantle derived nodules with metasomatic textures from the Katwe-Kikorongo and Bunyaruguru volcanic fields of south-west Uganda. At 30 kbar, 1,225 and 1,250° C, representing 20–30% partial melting, the compositions of glasses compare favourably to those of the average composition of 26 high potassic mafic lavas from the same region. Glasses produced by sufficiently low degrees of partial melting at 20 kbar could not be analysed. Glass compositions obtained for 20–30% melting at 30 kbar have high K2O (3.07–5.05 wt.%), low SiO2 (35.0–39.2 wt.%), high K/K + Na (0.54–0.71), K + Na/Al (0.99–1.08) and Mg/ Mg + FeT of 0.59–0.62. These results support the suggestion of Lloyd and Bailey (1975) that the nodules represent the source material for the high K-rich lavas of south-west Uganda. If this conclusion is correct it implies that anomalous mantle source of phlogopite clinopyroxenite composition could produced the Ugandan lavas by relatively higher degrees of partial melting than that normally considered for highly alkaline mafic magmas derived from a pyrolitic mantle source. Higher degrees of melting are considered likely from such a different source region, rich in alkalis, water and radioactive elements. Steeper geotherms and increased fluxing of sub-rift mantle by degassing would also produce higher degrees of partial melting.  相似文献   

10.
Dehydration melting of tonalites. Part II. Composition of melts and solids   总被引:6,自引:0,他引:6  
 Dehydration melting of tonalitic compositions (phlogopite or biotite-plagioclase-quartz assemblages) is investigated within a temperature range of 700–1000°C and pressure range of 2–15 kbar. The solid reaction products in the case of the phlogopite-plagioclase(An45)-quartz starting material are enstatite, clinopyroxene and potassium feldspar, with amphiboles occurring occasionally. At 12 kbar, zoisite is observed below 800°C, and garnet at 900°C. The reaction products of dehydration melting of the biotite (Ann50)-plagioclase (An45)-quartz assemblage are melt, orthopyroxene, clinopyroxene, amphibole and potassium feldspar. At pressures > 8 kbar and temperatures below 800°C, epidote is also formed. Almandine-rich garnet appears above 10 kbar at temperatures ≥ 750°C. The composition of melts is granitic to granodioritic, hence showing the importance of dehydration melting of tonalites for the formation of granitic melts and granulitic restites at pressure-temperature conditions within the continental crust. The melt compositions plot close to the cotectic line dividing the liquidus surfaces between quartz and potassium feldspar in the haplogranite system at 5 kbar and a H 2O = 1. The composition of the melts changes with the composition of the starting material, temperature and pressure. With increasing temperature, the melt becomes enriched in Al2O3 and FeO+MgO. Potash in the melt is highest just when biotite disappears. The amount of CaO decreases up to 900°C at 5 kbar whereas at higher temperatures it increases as amphibole, clinopyroxene and more An-component dissolve in the melt. The Na2O content of the melt increases slightly with increase in temperature. The composition of the melt at temperatures > 900°C approaches that of the starting assemblage. The melt fraction varies with composition and proportion of hydrous phases in the starting composition as well as temperature and pressure. With increasing modal biotite from 20 to 30 wt%, the melt proportion increases from 19.8 to 22.3 vol.% (850°C and 5 kbar). With increasing temperature from 800 to 950°C (at 5 kbar), the increase in melt fraction is from 11 to 25.8 vol.%. The effect of pressure on the melt fraction is observed to be relatively small and the melt proportion in the same assemblage decreases at 850°C from 19.8 vol.% at 5 kbar to 15.3 vol.% at 15 kbar. Selected experiments were reversed at 2 and 5 kbar to demonstrate that near equilibrium compositions were obtained in runs of longer duration. Received: 27 December 1995 / Accepted: 7 May 1996  相似文献   

11.
In this paper we describe the mineralogy and geochemistry of basanites and melt inclusions in minerals from the Tergesh pipe, northern Minusinsk Depression. The rocks are composed of olivine and clinopyroxene phenocrysts and a groundmass of olivine, clinopyroxene, titanomagnetite, plagioclase, apatite, ilmenite, and glass. Melt inclusions were found only in the olivine and clinopyroxene phenocrysts. Primary melt inclusions in olivine contain glass, rh?nite, clinopyroxene, a sulfide globule, and low-density fluid. The phase composition of melt inclusions in clinopyroxene is glass + low-density fluid ± xenogenous magnetite. According to thermometric investigations, the olivine phenocrysts began crystallizing at T = 1280–1320°C and P > 3.5 kbar, whereas groundmass minerals were formed under near-surface conditions at T ≤ 1200°C. The oxygen fugacity gradually changed during basanite crystallization from oxidizing (NNO) to more reducing conditions (QFM). The investigation of glass compositions (heated and unheated inclusions in phenocrysts and groundmass) showed that the evolution of a basanite melt during its crystallization included mainly an increase in SiO2, Al2O3, and alkalis, while a decrease in femic components, and the melt composition moved gradually toward tephriphonolite and trachyandesite. Geochemical evidence suggests that the primary basanite melt was derived from a mantle source affected by differentiation. Original Russian Text ? T.Yu. Timina, V.V. Sharygin, A.V. Golovin, 2006, published in Geokhimiya, 2006, No. 8, pp. 814–833.  相似文献   

12.
An absarokite from a phlogopite lherzolite source   总被引:1,自引:0,他引:1  
An absarokite (SiO2 47.72 wt %, K2O 3.41 wt %) occurs in the Katamata volcano, SW Japan. The rock carries phenocrysts of olivine, phlogopite, clinopyroxene, and hornblende. Chemical compositions of bulk rock (FeO*/ MgO 0.73) and minerals (Mg-rich olivine and phlogopite, Cr-rich chromite) suggest that the absarokite is not differentiated. Melting experiments at high pressures on the Katamata absarokite have been conducted. The completely anhydrous absarokite melt coexists with olivine, orthopyroxene, and clinopyroxene at 1310° C and 1.0 GPa. The melt with 3.29 wt % of H2O also coexists with the above three phases at 1230° C and 1.4 GPa; phlogopite appears at temperatures more than 80° C below the liquidus. On the other hand, the melt is not saturated with lherzolite minerals in the presence of 5.13 wt % of H2O and crystallizes olivine and phlogopite as liquidus phases; the stability limit of phlogopite is little affected at least by the present variation of H2O content in the absarokite melt. It is suggested that the absarokite magma was segregated from the upper mantle at 1170° C and 1.7 GPa leaving a phlogopite lherzolite as a residual material on the basis of the above experimental results and the petrographical observation that olivine and phlogopite crystallize at an earlier stage of crystallization sequence than clinopyroxene. The contribution of phlogopite at the stage of melting processes is also suggested by the geochemical characteristics that the absarokite is more enriched in Rb, K, and Ba and depleted in Ca and Na than a typical alkali olivine basalt from the same volcanic field.  相似文献   

13.
Clinopyroxene + liquid equilibria to 100 kbar and 2450 K   总被引:5,自引:1,他引:4  
One of the most active issues in igneous petrology is the investigation of mantle melting, and subsequent differentiation. To evaluate alternative hypotheses for melting and differentiation it is essential to accurately predict clinopyroxene compositions in natural systems. Expressions have thus been derived that describe clinopyroxene-melt equilibria, and allow equilibrium clinopyroxene compositions to be calculated. These equations were constructed from least-squares regression analysis of experimental clinopyroxene-liquid pairs. The calibration database included clinopyroxenes synthesized from both natural and synthetic basalt compositions; experimental conditions ranged from 0 to 100 kbar and 1350 to 2450 K. Regression equations were based on thermodynamic functions. Empirical expressions were also derived, since such models yield more precise estimates of clinopyroxene compositions, and may be easily incorporated into existing liquid line-of-descent models. Such equations may be useful for calculation of high pressure liquid fractionation, or for constraining P-T conditions for basalts produced by partial melting of a pyroxene-bearing source. Models of mantle melting often rely on expressions involving simple element ratios. Partition coefficients (K d cpx/liq ) for the minor elements, Na and Ti, were thus also calibrated as a function of P, T and composition. K Ti cpx/liq , while sensitive to composition was relatively insensitive to P and T. In contrast, K Na cpx/liq increases substantially with increasing P, and exceeded 1 in some experiments. Since oceanic basalts show variations in Na/Ti ratios, the potential exists for partial melting depths to be inferred from K Na cpx/liq . Received: 28 May 1997 / Accepted: 20 November 1998  相似文献   

14.
The equilibrium phase relations of a mafic durbachite (53 wt.% SiO2) from the Třebíč pluton, representative of the Variscan ultrapotassic magmatism of the Bohemian Massif (338–335 Ma), have been determined as a function of temperature (900–1,100°C), pressure (100–200 MPa), and H2O activity (1.1–6.1 wt.% H2O in the melt). Two oxygen fugacity ranges were investigated: close to the Ni–NiO (NNO) buffer and 2.6 log unit above NNO buffer (∆NNO + 2.6). At 1,100°C, olivine is the liquidus phase and co-crystallized with phlogopite and augite at 1,000°C for the whole range of investigated pressure and water content in the melt. At 900°C, the mineral assemblage consists of augite and phlogopite, whereas olivine is not stable. The stability field of both alkali feldspar and plagioclase is restricted to low pressure (100 MPa) at nearly water-saturated conditions (<3–4 wt.% H2O) and T < 900°C. A comparison between experimental products and natural minerals indicates that mafic durbachites have a near-liquidus assemblage of olivine, augite, Ti-rich phlogopite, apatite and zircon, followed by alkali feldspar and plagioclase, similar to the mineral assemblage of minette magma. Natural amphibole, diopside and orthopyroxene were not reproduced experimentally and probably result from sub-solidus reactions, whereas biotite re-equilibrated at low temperature. The crystallization sequence olivine followed by phlogopite and augite reproduces the sequence inferred in many mica-lamprophyre rocks. The similar fractionation trends observed for durbachites and minettes indicate that mafic durbachites are probably the plutonic equivalents of minettes and that K- and Mg-rich magmas in the Bohemian Massif may have been generated from partial melting of a phlogopite–clinopyroxene-bearing metasomatized peridotite. Experimental melt compositions also suggest that felsic durbachites can be generated by simple fractionation of a more mafic parent and mixing with mantle-derived components at mid crustal pressures.  相似文献   

15.
Summary The phase relations of K-richterite, KNaCaMg5Si8O22(OH)2, and phlogopite, K3Mg6 Al2Si6O20(OH)2, have been investigated at pressures of 5–15 GPa and temperatures of 1000–1500 °C. K-richterite is stable to about 1450 °C at 9–10 GPa, where the dp/dT-slope of the decomposition curve changes from positive to negative. At 1000 °C the alkali-rich, low-Al amphibole is stable to more than 14 GPa. Phlogopite has a more limited stability range with a maximum thermal stability limit of 1350 °C at 4–5 GPa and a pressure stability limit of 9–10 GPa at 1000 °C. The high-pressure decomposition reactions for both of the phases produce relatively small amounts of highly alkaline water-dominated fluids, in combination with mineral assemblages that are relatively close to the decomposing hydrous phase in bulk composition. In contrast, the incongruent melting of K-richterite and phlogopite in the 1–3 GPa range involves a larger proportion of hydrous silicate melts. The K-richterite breakdown produces high-Ca pyroxene and orthoenstatite or clinoenstatite at all pressures above 4 GPa. At higher pressures additional phases are: wadeite-structured K2SiVISiIV 3O9 at 10 GPa and 1500 °C, wadeite-structured K2SiVISiIV 3O9 and phase X at 15 GPa and 1500 °C, and stishovite at 15 GPa and 1100 °C. The solid breakdown phases of phlogopite are dominated by pyrope and forsterite. At 9–10 GPa and 1100–1400 °C phase X is an additional phase, partly accompanied by clinoenstatite close to the decomposition curve. Phase X has variable composition. In the KCMSH-system (K2CaMg5Si8O22(OH)2) investigated by Inoue et al. (1998) and in the KMASH-system investigated in this report the compositions are approximately K4Mg8Si8O25(OH)2 and K3.7Mg7.4Al0.6Si8.0O25(OH)2, respectively. Observations from natural compositions and from the phlogopite-diopside system indicate that phlogopite-clinopyroxene assemblages are stable along common geothermal gradients (including subduction zones) to 8–9 GPa and are replaced by K-richterite at higher pressures. The stability relations of the pure end member phases of K-richterite and phlogopite are consistent with these observations, suggesting that K-richterite may be stable into the mantle transition zone, at least along colder slab geotherms. The breakdown of moderate proportions of K-richterite in peridotite in the upper part of the transition zone may be accompanied by the formation of the potassic and hydrous phase X. Additional hydrogen released by this breakdown may dissolve in wadsleyite. Therefore, very small amounts of hydrous fluids may be released during such a decomposition. Received April 10, 2000; revised version accepted November 6, 2000  相似文献   

16.
Spinel peridotite xenoliths from the Atsagin-Dush volcanic centre, SE Mongolia range from fertile lherzolites to clinopyroxene(cpx)-bearing harzburgites. The cpx-poor peridotites typically contain interstitial fine-grained material and silicate glass and abundant fluid inclusions in minerals, some have large vesicular melt pockets that apparently formed after primary clinopyroxene and spinel. No volatile-bearing minerals (amphibole, phlogopite, apatite, carbonate) have been found in any of the xenoliths. Fifteen peridotite xenoliths have been analysed for major and trace elements; whole-rock Sr isotope compositions and O isotope composition of all minerals were determined for 13 xenoliths. Trace element composition and Sr-Nd isotope compositions were also determined in 11 clinopyroxene and melt pocket separates. Regular variations of major and moderately incompatible trace elements (e.g. heavy-rare-earth elements) in the peridotite series are consistent with its formation as a result of variable degrees of melt extraction from a fertile lherzolite protolith. The Nd isotope compositions of LREE (light-rare-earth elements)-depleted clinopyroxenes indicate an old (≥ 1 billion years) depletion event. Clinopyroxene-rich lherzolites are commonly depleted in LREE and other incompatible trace elements whereas cpx-poor peridotites show metasomatic enrichment that can be related to the abundance of fine-grained interstitial material, glass and fluid inclusions in minerals. The absence of hydrous minerals, ubiquitous CO2-rich microinclusions in the enriched samples and negative anomalies of Nb, Hf, Zr, and Ti in primitive mantle-normalized trace element patterns of whole rocks and clinopyroxenes indicate that carbonate melts may have been responsible for the metasomatic enrichment. Low Cu and S contents and high δ34S values in whole-rock peridotites could be explained by interaction with oxidized fluids that may have been derived from subducted oceanic crust. The Sr-Nd isotope compositions of LREE-depleted clinopyroxenes plot either in the MORB (mid-ocean-ridge basalt) field or to the right of the mantle array, the latter may be due to enrichment in radiogenic Sr. The LREE-enriched clinopyroxenes and melt pockets plot in the ocean island-basalt field and have Sr-Nd isotope signatures consistent with derivation from a mixture of the DMM (depleted MORB mantle) and EM (enriched mantle) II sources. Received: 18 January 1996 / Accepted: 23 August 1996  相似文献   

17.
One mantle xenolith from a basanite host of the Mt. Melbourne Volcanic Field (Ross Sea Rift) is extraordinary in containing veins filled with leucite, plagioclase, clinopyroxene, nepheline, Mg-ilmenite, apatite, titaniferous mica, and the rare mineral zirconolite. These veins show extensive reaction with the dunitic or lherzolitic host (olivine+spinel+orthopyroxene+clinopyroxene). The reaction areas contain skeletal olivine and diopside crystals, plagioclase, phlogopite, aluminous spinel and ilmenite in a fine grained groundmass of aluminous spinel, clinopyroxene, olivine, plagioclase and interstitial leucite. The vein composition estimated from modal abundances and microprobe analyses is a mafic leucite-phonolite with high amounts of K, Al, Ti, Zr and Nb but low volatile contents. The melt is unrelated to the host basanite and was probably derived by smallscale melting of incompatible element-enriched phlogopite-bearing mantle material and must have lost most of its volatile content during migration, crystallization and reaction with the host dunite. While the veins are completely undeformed the dunitic host shows slight deformation. Vein minerals crystallized at high temperatures above 1000°C and pressures below 5 kbar according to the phase assemblage including leucite, nepheline and K-feldspar. Spinel/olivine geothermometry yielded 800–920°C for the re-equilibration of the host peridotite. Thus the xenolith must have been at shallow depth prior to and during the late veining event. Mantle material at shallow depths is consistent with rifting and the regional extreme displacement at the transition from the rifted Victoria Land Basin in the Ross Sea to the uplifted Trans-Antarctic Mountains.  相似文献   

18.
Trace element distribution in Central Dabie eclogites   总被引:16,自引:0,他引:16  
Coesite-bearing eclogites from Dabieshan (central China) have been studied by ion microprobe to provide information on trace element distributions in meta-basaltic mineral assemblages during high-pressure metamorphism. The primary mineralogy (eclogite facies) appears to have been garnet and omphacite, usually with coesite, phengite and dolomite, together with high-alumina titanite or rutile, or both titanite and rutile; kyanite also occurs occasionally as an apparently primary phase. It is probable that there was some development of quartz, epidote and apatite whilst the rock remained in the eclogite facies. A later amphibolite facies overprint led to partial replacement of some minerals and particularly symplectitic development after omphacite. They vary from very fine-grained dusty-looking to coarser grained Am + Di + Pl symplectites. The eclogite facies minerals show consistent trace element compositions and partition coefficients indicative of mutual equilibrium. Titanite, epidote and apatite all show high concentrations of REE relative to clinopyroxene. The compositions of secondary (amphibolite facies) minerals are clearly controlled by local rather than whole-rock equilibrium, with the composition of amphibole in particular depending on whether it is replacing clinopyroxene or garnet. REE partition coefficients for Cpx/Grt show a dependence on the Ca content of the host phases, with D REE Cpx/Grt decreasing with decreasing D Ca . This behaviour is very similar to that seen in mantle eclogites, despite differences in estimated temperatures of formation of 650–850 °C (Dabieshan) and 1000–1200 °C (mantle eclogites). With the exception of HREE in garnet, trace elements in the eclogites are strongly distributed in favour of minor or accessory phases. In particular, titanite and rutile strongly concentrate Nb and Zr, whilst LREE–MREE go largely into epidote, titanite and apatite. If these minor/accessory minerals behave in a refractory manner during melting or fluid mobilisation events and do not contribute to the melt/fluid, then the resultant melts and fluids will be strongly depleted in LREE–MREE. Received: 11 February 1999 / Accepted: 31 January 2000  相似文献   

19.
Carbonatite veinlets in fergusite from the Dunkeldyk potassium-rich basaltoid complex (southeastern Pamirs) are composed of clinopyroxene, phlogopite, and apatite phenocrysts embedded in a crystallized calcite-bearing groundmass. The examination of back-scattered electron images revealed areas of significantly different compositions in fluorapatite and fluorphlogopite. The content of BaO in the phlogopite ranges from 0.68 to 10.9 wt %. There are also variations in MgO and F contents. The maximum BaO content corresponds to high mole fractions of the Ba end member kinoshitalite (up to 0.24) in the phlogopite. The zoned fluorapatite phenocrysts are rich in SrO (0.77–25.4 wt %). An increase in SrO content is accompanied by an increase in Ce2O3, La2O3, and BaO and a distinct decrease in CaO. Most of the apatite grains are rimmed by elongated colorless crystals showing the maximum SrO contents. Based on the experimentally determined Ba and Sr partition coefficients between these minerals, silicate and carbonate melts, and fluid, a model was proposed for the enrichment of phases in these trace elements. It was shown that the mineral-forming media of the Ba-rich phlogopites was a residual melt enriched in volatiles (including F) and fluid-mobile elements. During that stage, the decomposition reactions of early Ba-bearing feldspars with subsequent incorporation of BaO in Ba-rich phlogopites played an important role. The mechanism of formation of Sr-rich apatites is fundamentally different: early apatite grains with moderate Sr contents recrystallized under the influence of Sr-rich fluids released during the late magmatic stage. Thus, despite their close association in a single rock, the Ba-bearing phlogopite and Sr-rich apatite were formed by significantly different mechanisms. Our previous investigations of melt and fluid inclusions in minerals from the rocks of the Dunkeldyk complex and the results obtained in this study allowed us to suggest that the barium, fluorite-carbonatite, and rare metal mineralization occurring in the region developed owing to the prolonged evolution of primary magmas, resulting in the formation of melt-solutions (brines) and hydrothermal systems.  相似文献   

20.
The Lherz orogenic lherzolite massif (Eastern French Pyrenees) displays one of the best exposures of subcontinental lithospheric mantle containing veins of amphibole pyroxenites and hornblendites. A reappraisal of the petrogenesis of these rocks has been attempted from a comprehensive study of their mutual structural relationships, their petrography and their mineral compositions. Amphibole pyroxenites comprise clinopyroxene, orthopyroxene and spinel as early cumulus phases, with garnet and late-magmatic K2O-poor pargasite replacing clinopyroxene, and subsolidus exsolution products (olivine, spinel II, garnet II, plagioclase). The original magmatic mineralogy and rock compositions were partly obscured by late-intrusive hornblendites and over a few centimetres by vein–wallrock exchange reactions which continued down to subsolidus temperatures for Mg–Fe. Thermobarometric data and liquidus parageneses indicate that amphibole pyroxenites started to crystallize at P ≥ 13 kbar and recrystallized at P < 12 kbar. The high AlVI/AlIV ratio (>1) of clinopyroxenes, the early precipitation of orthopyroxene and the late-magmatic amphibole are arguments for parental melts richer in silica but poorer in water than alkali basalts. Their modelled major element compositions are similar to transitional alkali basalt with about 1–3 wt% H2O. In contrast to amphibole pyroxenites, hornblendites only show kaersutite as liquidus phase, and phlogopite as intercumulus phase. They are interpreted as crystalline segregates from primary basanitic magmas (mg=0.6; 4–6 wt% H2O). These latter cannot be related to the parental liquids of amphibole pyroxenites by a fractional crystallization process. Rather, basanitic liquids mostly reused pre-existing pyroxenite vein conduits at a higher structural level (P ≤ 10 kbar). A continuous process of redox melting and/or alkali melt/peridotite interaction in a veined lithospheric mantle is proposed to account for the origin of the Lherz hydrous veins. The transitional basalt composition is interpreted in terms of extensive dissolution of olivine and orthopyroxene from wallrock peridotite by alkaline melts produced at the mechanical boundary layer/thermal boundary layer transition (about 45–50 km deep). Continuous fluid ingress allowed remelting of the deeper veined mantle to produce the basanitic, strongly volatiles enriched, melts that precipitated hornblendites. A similar model could be valid for the few orthopyroxene-rich hydrous pyroxenites described in basalt-hosted mantle xenoliths. Received: 15 September 1999 / Accepted: 31 January 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号