首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
General geographic features of the Thames River, its basin, and mouth area, consisting of the tidal mouth reach of the river, a large estuary, and an open nearshore zone of the river mouth (the North Sea coastal zone) are discussed. The peculiarities of river and sea hydrological factors responsible for the regime of the Thames River mouth area are described in detail. Characteristics of the river water runoff were specified and supplemented by the data on the river inundations in the area of London. Particular emphasis was placed on variations in the mean sea level in the area of the Thames River mouth as well as on specific features of tides and storm surges in the area of the sea inlet into the estuary. Main regularities in the estuary evolution during Holocene and present-day morphological processes in the Thames River mouth area were revealed.  相似文献   

2.
The main regularities in the interaction of tides and storm surges at river mouths are discussed. A study of the Elbe River mouth area is used to describe the processes of interaction of the eustatic sea level rise, tides, surges, and river flow and special features of formation of maximum water levels. As shown, the intensification of cyclonic activity over the Northern Atlantic in the second half of the XX century resulted in more frequent extremely high storm surges at the Elbe River mouth. An assessment is given for possible changes in the regime of tides and surges at the Elbe River mouth in the XXI century, which may be caused by the acceleration of the eustatic sea level rise. The impact of local hydraulic engineering works (diking, dredging, and channel straightening) on maximum water levels within the town of Hamburg is analyzed.  相似文献   

3.
4.
《Continental Shelf Research》2007,27(10-11):1548-1567
A two-way nested coupled tide-surge prediction model was established and applied in the Taiwan Strait and adjacent sea area in this study. This two-dimensional (2D) model had a fine horizontal resolution and took into account the interaction between storm surges and astronomical tides, which made it suitable for depicting the complicated physical properties of storm surges in the Taiwan Strait. A two-way nesting technique and an open boundary condition developed from Flather's radiation condition and Røed and Smedstad's local mode idea, were successfully implemented in the model. A simulation experiment showed that the open boundary condition could be used in the coupled tide-surge model and that the performance of the two-way nested model was slightly superior in accuracy to that of the one-way nested one.The fluctuations of storm surge residuals with tidal period at Sansha and Pingtan tide stations during the period of typhoon Dan in 1999 were well reproduced by the model, with the coupling effect between storm surges and tides indicating that the effect of astronomical tides upon typhoon surges should be considered in a storm-surge prediction model for the Taiwan Strait. The forecast experiment during typhoon Talim in 2005 showed that the storm surge prediction outputs by the model were better in the early 20 h of the forecast period of each model run than those in the later period due to the prediction accuracy of the typhoon track, maximum winds, and central air pressures.  相似文献   

5.
Planning and design of coastal protection rely on information about the probabilities of very severe storm tides and the possible changes that may occur in the course of climate change. So far, this information is mostly provided in the form of high percentiles obtained from frequency distributions or return values. More detailed information and assessments of events that may cause extreme damages or have extreme consequences at the coast are so far still unavailable. We describe and compare two different approaches that may be used to identify highly unlikely but still physically possible and plausible events from model simulations. Firstly, in the case when consistent wind and tide-surge data are available, different metrics such as the height of the storm surge can be derived directly from the simulated water levels. Secondly, in cases where only atmospheric data are available, the so called effective wind may be used. The latter is the projection of the horizontal wind vector on that direction which is most effective in producing surges at the coast. Comparison of events identified by both methods show that they can identify extreme events but that knowledge of the effective wind alone does not provide sufficient information to identify the highest storm surges. Tracks of the low-pressure systems over the North Sea need to be investigated to find those cases, where the duration of the high wind is too short to induce extreme storm tides. On the other hand, factors such as external surges or variability in mean sea level may enhance surge heights and are not accounted for in estimates based on effective winds only. Results from the analysis of an extended data set suggest that unprecedented storm surges at the German North Sea coast are possible even without taking effects from rising mean sea level into account. The work presented is part of the ongoing project “Extreme North Sea Storm Surges and Their Consequences” (EXTREMENESS) and represents the first step towards an impact assessment for very severe storm surges which will serve as a basis for development of adaptation options and evaluation criteria.  相似文献   

6.
The main features of hydrological processes taking place in the mouth area of the Hong Ha River in Vietnam are considered. The geographic and hydrological conditions in the Hong Ha River basin and in its receiving water body—the Gulf of Tonkin, South China Sea—are briefly characterized. The main features of the mouth area of the Hong Ha River as a specific geographic object are identified. The hydrological regime of the delta and the nearshore zone of the Hong Ha River are described in detail. Water balance of the delta, runoff water levels and delta inundation, water and sediment runoff distributions over delta branches, and the effect of tides, typhoons, and storm surges on delta regime are considered. Present-day problems of the use and protection of natural resources at the Hong Ha River mouth are briefly discussed.  相似文献   

7.
An operational storm surge forecasting system aimed at providing warning information for storm surges has been developed and evaluated using four typhoon events. The warning system triggered by typhoon forecasts from Taiwan Cooperative Precipitation Ensemble Forecast Experiment (TAPEX) has been executed with two storm surge forecasting scenarios with and without tides. Three numerical experiments applying different meteorological inputs have been designed to assess the impact of typhoon forcing on storm surges. One uses synthetic wind fields, and the others use realistic wind fields with and without adjustments to the initial wind fields for the background circulation. Local observations from Central Weather Bureau (CWB) weather stations and tide gauge stations are used to evaluate the wind fields and storm surges from our numerical experiments. The comparison results show that the accuracy of the storm surge forecast is dominated by the track, the intensity, and the driving flow of a typhoon. When the structure of a typhoon is disturbed by Taiwan’s topography, using meteorological inputs from real wind fields can result in a better typhoon simulation than using inputs from synthetic wind fields. The driving flow also determines the impact of topography on typhoon movement. For quickly moving typhoons, storm forcing from TAPEX is reliable when a typhoon is strong enough to be relatively unaffected by environmental flows; otherwise, storm forcing from a sophisticated typhoon initialization scheme that better simulates the typhoon and environmental flows results in a more accurate prediction of storm surges. Therefore, when a typhoon moves slowly and interacts more with the topography and environmental flows, incorporating realistic wind fields with adjustments to the initial wind fields for the background circulation in the warning system will obtain better predictions for a typhoon and its resultant storm surges.  相似文献   

8.
Understanding the interaction of tides and waves is essential in many studies, including marine renewable energy, sediment transport, long-term seabed morphodynamics, storm surges and the impacts of climate change. In the present research, a COAWST model of the NW European shelf seas has been developed and applied to a number of physical processes. Although many aspects of wave–current interaction can be investigated by this model, our focus is on the interaction of barotropic tides and waves at shelf scale. While the COWAST model was about five times more computationally expensive than running decoupled ROMS (ocean model) and SWAN (wave model), it provided an integrated modelling system which could incorporate many wave–tide interaction processes, and produce the tide and wave parameters in a unified file system with a convenient post-processing capacity. Some applications of the model such as the effect of tides on quantifying the wave energy resource, which exceeded 10% in parts of the region, and the effect of waves on the calculation of the bottom stress, which was dominant in parts of the North Sea and Scotland, during an energetic wave period are presented, and some challenges are discussed. It was also shown that the model performance in the prediction of the wave parameters can improve by 25% in some places where the wave-tide interaction is significant.  相似文献   

9.
Storm surges have a major impact on land use and human habitation in coastal regions. Our knowledge of this impact can be improved by correlating long-term historical storm records with sedimentary evidence of storm surges, but so far few studies have applied such an approach. Here we apply, for the first time, state-of-the-art optically stimulating luminescence (OSL) methods to obtain high-resolution age information on a sequence of Late Holocene storm surge deposits. By combining this chronological framework of storm surges with other reconstruction methods, we investigate the storm surge impact on the former island Schokland, located in a former inlet of the North Sea (central Netherlands).During the Late Holocene, Schokland transformed from a peat area that gradually inundated (~800 CE) via an island in a marginal marine environment (~1600 CE) to a land-locked island in the reclaimed Province of Flevoland (1942 CE). These transitions are recorded in the sediment archive of the island, consisting of silty clay with sandy intervals deposited during storm surges. A series of ten quartz OSL ages, obtained using best-practice methods to deal with incomplete resetting of the OSL signal and dose rate heterogeneity, reveal two periods of storm surge deposition, around 1600 CE and between 1742 and 1822 CE. Historical sources indicate that major storm surges hit Schokland during these periods. Laboratory analyses (thermogravimetry, grain-size, foraminifera, bivalves and ostracods) corroborates the existence of the two sets of storm surge deposits within the clay sequence. Our study sets a benchmark for obtaining robust depositional age constraints from storm surge sediments, and demonstrates the great potential of modern OSL methods to contribute to improved assessment of storm surge risk. © 2018 John Wiley & Sons, Ltd.  相似文献   

10.
Bo Yang  Jinyu Sheng 《Ocean Dynamics》2008,58(5-6):375-396
This study examines main physical processes affecting the three-dimensional (3D) circulation and hydrographic distributions over the inner Scotian Shelf (ISS) in June and July 2006 using a nested-grid coastal ocean circulation modeling system known as the NCOPS-LB. The nested-grid system has five relocatable downscaling submodels, with the outermost submodel of a coarse horizontal resolution of (1/12)° for simulating storm surges and barotropic shelf waves over the Eastern Canadian shelf and the innermost submodel of a fine resolution of ~180 m for simulating the 3D coastal circulation and hydrography over Lunenburg Bay of Nova Scotia in the default setup. The NCOPS-LB is driven by meteorological and astronomical forcing and used to study the storm-induced circulation over the ISS during tropical storm Alberto. Model results demonstrate that the coastal circulation and hydrographic distributions over the ISS are affected significantly by tides, local wind forcing, and remotely generated coastal waves during the study period.  相似文献   

11.
DYNAMICCHARACTERISTICSOFSEACURRENTSANDSEDIMENTDISPERSIONINTHEYELLOWRIVERESTUARYHUChunhong1,JIZuwen2andWANGTao3ABSTRACTDynamic...  相似文献   

12.
Summary After reviewing current theories on synoptic types producing coastal inundations, the author proposed a theory on the dynamics of catastrophic typhoon tides after resonance and hydraulic analogy. As examples, case studies of the storm tides caused by the Muroto Typhoon of 1934 and the 1917 Typhoon are given. Another type of the storm tide caused by the crossing of two wave fronts (Inland Sea type) is also discussed. Many figures given in this study will help the forecasters to forecast storm tides.  相似文献   

13.
The research presented in this paper involves the application of the joint probability method to the estimation of extreme water levels resulting from astronomical tides and surge residuals and the investigation of the effects of tide–surge interactions on extreme water levels. The distribution of tide peaks was analysed from field records (<20 years) and a 46-year dataset of monthly maximum tidal amplitudes. Large surges were extracted from both field records and a numerical model hindcast covering the 48 largest storm events in the Irish Sea over the period 1959–2005. Extreme storm surges and tides were independently modelled using the generalised extreme value statistical model, and derived probability distributions were used to compute extreme water levels. An important, and novel, aspect of this research is an analysis of tide–surge interactions and their effects on total water level; where interactions exist, they lead to lower total water levels than in the case of independency. The degree of decrease varies with interaction strength, magnitude of surge peak at a particular phase of tide and the distribution of peaks over a tidal cycle. Therefore, including interactions in the computation of extreme levels may provide very useful information at the design stage of coastal protection systems.  相似文献   

14.
Mikhailova  M. V. 《Water Resources》2021,48(5):654-665
Water Resources - The causes and features of storm surges formation in the Venetian Lagoon are discussed. The experience of sea level observations in Venice and the history of floods caused by...  相似文献   

15.
Abstract

A pilot investigation of the direction and speed of movement of storm rainfall patterns in an area near London is briefly described. The results of the study are discussed, and suggestions made for future work in the form of a more comprehensive investigation.  相似文献   

16.
Two mathematical models of surface gravity wave refraction were applied to a coastal area of the northern Ligurian Sea. A series of refraction patterns was computed by means of wave data recorded at a moored platform operating 1.5 miles off the harbour of Genoa. The numerical calculations provided an effect of wave energy concentration near Chiavari and Lavagna where coastal structures and beaches are often damaged during storm surges.  相似文献   

17.
Classical models of the residual circulation in the North Sea predict a north-bound residual flow in the Southern Bight. A more refined model, taking into account the mesoscale Reynolds stress exerted in the mean on the residual flow by the non-linear interactions of mesoscale processes (tides, storm surges, etc.), shows on the contrary off the Belgian coast a south-bound coastal current in relation with a residual coastal gyre. Observations of the physico-chemical characteristics of coastal waters confirm the existence of the gyre. The dynamics of coastal ecosystems here are found to be determined by the gyre; successive stages of the pelagic food chain displaying a typical spatial distribution along the deflected plume of the Scheldt estuary around the gyre ‘outerlagoon’.  相似文献   

18.
Chikin  A. L.  Kleshchenkov  A. V.  Chikina  L. G. 《Water Resources》2019,46(6):919-925
Water Resources - Observation data on salinity variations in the Gulf of Taganrog during storm surges are analyzed; a mathematical model of the transport of salt water masses is described in...  相似文献   

19.
Low‐elevation areas within a sandy barrier island are subject to flooding via saturation overland flow following moderate storm surges and rainfall events. Using a high resolution topographic survey and simple hydrology models, we estimate the discharge and velocities from storm surge return flow and saturation overland flow. Results show that return flow velocities are of the same magnitude as the critical velocity necessary to mobilize sand when a hydraulic connection between the watershed and back‐barrier bay is present. Storms of moderate strength and rainfall intensity may be sufficient to keep the return channels open within the back‐barrier, thus providing natural conduits for water exchange from overwash events during extreme storm surges triggered by hurricanes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号