共查询到20条相似文献,搜索用时 15 毫秒
1.
提出一种多向荷载作用下层状地基中刚性桩筏基础的计算方法。基于剪切位移法,采用传递矩阵形式分析了竖向荷载下桩顶面-桩顶面相互作用;引入修正桩侧地基模量,采用有限差分法分析了水平荷载下桩顶面-桩顶面相互作用;基于层状弹性半空间理论,分析了多向荷载下桩顶面-土表面、土表面-桩顶面、土表面-土表面的相互作用关系。建立了桩土体系柔度矩阵,得到了多向荷载下层状地基中刚性桩筏基础的受力和变形的关系以及桩的内力和变形沿桩身分布规律。通过与有限元对比,验证了该方法的合理性和修正地基模量的优越性,并对多向荷载作用下的桩筏基础进行了计算分析,计算结果表明,水平力将会引起桩筏基础的倾斜。 相似文献
2.
A simplified analysis method has been developed to estimate the vertical movement and load distribution of pile raft foundations subjected to ground movements induced by tunneling based on a two‐stage method. In this method, the Loganathan–Polous analytical solution is used to estimate the free soil movement induced by tunneling in the first stage. In the second stage, composing the soil movement to the pile, the governing equilibrium equations of piles are solved by the finite difference method. The interactions between structural members (such as pile–soil, pile–raft, raft–soil, and pile–pile) are modeled based on the elastic theory method of a layered half‐space. The validity of the proposed method is verified through comparisons with some published solutions for single piles, pile groups, and pile rafts subjected to ground movements induced by tunneling. Good agreements between these solutions are demonstrated. The method is also used for a parametric study to develop a better understanding of the behavior of pile rafts influenced by tunneling operation in layered soil foundations. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
3.
This paper develops a method to analyze the piled raft foundation under vertical harmonic load. This method takes into account the interactions among the piles, soil, and raft. The responses of the piles and raft are formulated as a series of equations in a suitable way and that of layered soils is simulated with the use of the analytical layer‐element method. Then, according to the equilibrium and continuity conditions at the piles–soil–raft interface, solutions for the piled raft systems are obtained and further demonstrated to be correct through comparing with the existing results. Finally, some examples are given to investigate the influence of the raft, pile length‐diameter ratio, and layering on the response of the piled raft foundations. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
4.
成层地基中倾斜偏心荷载下单桩计算分析 总被引:3,自引:0,他引:3
针对工程中地基土性质变化的具体情况,假定地基系数满足(mz+C)的线性增长规律,考虑P-Δ效应并计入桩身自重和桩侧摩阻力的影响,采用矩阵计算方法,分别得到单层土中倾斜偏心荷载作用、桩段顶端倾斜偏心荷载作用以及桩身水平分布荷载共同作用下的竖向单桩计算分析的幂级数解答。并在此基础上,利用上述两幂级数解答对成层地基中倾斜偏心荷载下单桩的受力进行了分析计算,列出了具体的计算步骤;最后,结合某具体实例,对上述方法进行了验证,结果表明,该解答与实际吻合较好,具有一定的应用价值。 相似文献
5.
6.
7.
A simplified method of numerical analysis based on elasticity theory has been developed for the analysis of axially and laterally loaded piled raft foundations embedded in non‐homogeneous soils and incorporated into a computer program “PRAB”. In this method, a hybrid model is employed in which the flexible raft is modelled as thin plates and the piles as elastic beams and the soil is treated as springs. The interactions between structural members, pile–soil–pile, pile–soil–raft and raft–soil–raft interactions, are approximated based on Mindlin's solutions for both vertical and lateral forces with consideration of non‐homogeneous soils. The validity of the proposed method is verified through comparisons with some published solutions for single piles, pile groups and capped pile groups in non‐homogeneous soils. Thereafter, the solutions from this approach for the analysis of axially and laterally loaded 4‐pile pile groups and 4‐pile piled rafts embedded in finite homogeneous and non‐homogeneous soil layers are compared with those from three‐dimensional finite element analysis. Good agreement between the present approach and the more rigorous finite element approach is demonstrated. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
8.
A new method of analysis of piles in multi‐layered elastic soil subjected to a torque at the head is developed. The differential equation governing the angle of twist in the pile is derived using the variational principles of mechanics. The method of initial parameters is used to obtain closed‐form solutions of the angle of twist and torque in the pile as a function of depth. The inputs required for the analysis are shear moduli of pile and soil, pile geometry and thickness of soil layers. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
9.
A numerical method of analysis is proposed for computation of the elastic settlement of raft foundations using a FEM–BEM coupling technique. The structural model adopted for the raft is based on an isoparametric plate bending finite element and the raft–soil interface is idealized by boundary elements. Mindlin's half-space solution is used as a fundamental solution to find the soil flexibility matrix and consequently the soil stiffness matrix. Transformation of boundary element matrices are carried out to make it compatible for coupling with plate stiffness matrix obtained from the finite element method. This method is very efficient and attractive in the sense that it can be used for rafts of any geometry in terms of thickness as well as shape and loading. Depth of embedment of the raft can also be considered in the analysis. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
10.
The finite element (FE) simulation of large‐scale soil–structure interaction problems (e.g. piled‐raft, tunnelling, and excavation) typically involves structural and geomaterials with significant differences in stiffness and permeability. The symmetric quasi‐minimal residual solver coupled with recently developed generalized Jacobi, modified symmetric successive over‐relaxation (MSSOR), or standard incomplete LU factorization (ILU) preconditioners can be ineffective for this class of problems. Inexact block diagonal preconditioners that are inexpensive approximations of the theoretical form are systematically evaluated for mitigating the coupled adverse effects because of such heterogeneous material properties (stiffness and permeability) and because of the percentage of the structural component in the system in piled‐raft foundations. Such mitigation led the proposed preconditioners to offer a significant saving in runtime (up to more than 10 times faster) in comparison with generalized Jacobi, modified symmetric successive over‐relaxation, and ILU preconditioners in simulating piled‐raft foundations. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
11.
桩周土场受冲刷作用的变化是部分埋置单桩结构失效的主要原因之一。工程中土场多呈层状,此类场地中桩基的力学特性研究日益受到关注。为精确揭示冲刷作用对层状土场中部分埋置单桩动力响应的影响,基于改进Vlasov地基模型,利用Hamilton原理建立层状土场中横向受荷单桩的动力学模型。利用有限差分法求解受冲刷作用单桩的固有频率,实现对冲刷作用下土−结构相互作用系统的准确建模,进而用Green函数法求得单桩受迫振动的解析解。通过数值计算和参数分析,研究了层状土场的物理特性对受冲刷作用部分埋置单桩动力响应的影响。结果表明:基于改进Vlaosv地基模型建立的层状土场中部分埋置单桩动力学模型可精确预测冲刷作用对桩基动力学特性的影响。随冲刷程度加剧,层状土场中单桩的第一阶固有频率显著降低,改进Vlasov地基模型中各层土体的地基反力系数均减小,剪切系数则增大。当冲刷至非埋置段桩长 ( 为桩长)时,部分埋置单桩在动荷载作用下出现横向失稳现象。随底层土体厚度增加,各冲刷等级下单桩的第一阶固有频率均增大。如果第1层土的弹性模量增大了约0.43倍、1.14倍、1.86倍,则冲刷等级为0时单桩第一阶固有频率分别增大了约8.9%、19.5%、27.1%。 相似文献
12.
A multiphase model is proposed to describe the mechanical behaviour of geomaterials reinforced by linear inclusions. This macroscopic approach considers the reinforced soil or rock mass as the superposition of continuous media. Equations of motion and constitutive laws of the model are first derived. Its implementation in a finite element computer code is then detailed. A modified implicit algorithm for elastoplastic problems is proposed. The model and its implementation are fully validated for rock‐bolted tunnels (comparison with scale model experiments) and piled raft foundations (comparison with the classical ‘hybrid method’). The Messeturm case history is finally presented to assess the handiness of the approach for real structures. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
13.
桩筏基础由桩和筏组成一种联合基础,筏将大部分总荷载传递给桩,同时其本身也承担总荷载的一部分。因此,充分认识桩筏基础对上部荷载向地基土的传递特性是非常必要的。该文提出一个桩筏基础传递荷载的计算模型,模型考虑了桩的布置形式对地基接触压力的影响,同时还考虑了桩的受荷过程中的变化特性,并详细分析了桩与筏之间的荷载分配问题。 相似文献
14.
15.
公路交通荷载作用下分层地基的三维动响应分析 总被引:3,自引:1,他引:3
根据高速公路路基的实际情况,建立了三维分层地基模型,分别考虑了刚性路面和柔性路面的情况,利用传递矩阵法获得了置于刚性基岩上的层状地基和分层半无限地基的刚度矩阵,将车辆荷载简化为矩形均布移动荷载,利用Fourier变换方法得到了层状地基系统在交通荷载作用下的三维振动解,并用快速傅立叶逆变换方法得到了数值结果,与模型试验结果进行了比较,显示出了较好的一致性,同时分析了荷载大小、土层性状对响应结果的影响,得出了一些有意义的结论。研究结果可为路面施工设计及路基动力响应分析提供参考。 相似文献
16.
运用对偶积分方程来求解层状横观各向同性地基与墙下条形基础的共同作用问题。从直角坐标平面应变问题控制方程出发,通过傅里叶(Fourier)变换和层间连续性条件,可以得到层状横观各向同性地基的传递矩阵解。基于该传递矩阵解,并利用条形基础与地基接触的混合边值条件,推导出一组关于基础挠度和地基反力的对偶积分方程。考虑墙下条形基础受到竖向集中荷载的情况,利用弹性薄板理论先求解出条形基础挠度;随后应用雅可比(Jacobi)正交多项式和级数展开的方法,将对偶积分方程转化为线性代数方程组进行求解。编制了相应的计算程序,其计算结果与有限元软件ABAQUS的结果基本吻合,从而验证了所提理论的正确性。算例分析表明,板土相对刚度与地基成层性对地基反力、地表沉降和沿z轴竖向正应力有很大的影响。 相似文献
17.
This paper, under the assumption that the pile–pile interaction showed elasticity, analyzed the pile–pile interaction between two dissimilar piles in layered soils using the shear displacement method and taking the sheltering effect into account to modify the conventional interaction factor between two dissimilar piles. The linear stiffness of single pile was adopted herein to analyze the influence of the pile stiffness factor, the pile length factor, and the diameter of shorter pile on the pile–pile interaction factor between two dissimilar piles. The interaction factor between two dissimilar piles drew from the present method was generally in good agreement with the interaction factor computed by Wong and Poulos. However, this paper intends to provide a different but more convenient means of estimating the interaction factor between piles that have dissimilar diameters, lengths and pile tip conditions, and the settlement of dissimilar piles in pile groups. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
18.
坐落于上海的金茂大厦、上海环球金融中心和上海中心大厦三幢闻名世界的超高层建筑的基础均为补偿深埋桩筏基础。在补偿深埋桩筏基础设计中如何充分考虑补偿基础的优越性,如何考虑深埋基础的抗风能力,是值得研究的问题。利用高层建筑与地基基础共同作用的分析方法,结合统计-经验公式对该三幢大楼的桩筏深基础进行了再分析。通过再分析在节约相当数量的桩之后,其地基承载力和变形仍然能够满足设计要求。同时在再分析中进一步探讨优化设计的能力,论证地下连续墙可以分担相当数量的荷载。相关案例的再分析对进一步完善补偿深埋桩筏基础设计理论提出建议,可为国家节省大量投资。 相似文献
19.
提出一种层状地基中柔性筏板-群桩共同作用分析方法,探讨筏板刚度对桩筏基础沉降的影响,并成功预测了往复荷载下桩筏基础的长期沉降。筏板刚度采用Mindlin板理论的有限单元法分析;桩-土体系的刚度矩阵中,桩顶面-桩顶面、桩顶面-土表面以及土表面-土表面的相互作用分析采用层状剪切位移法借助层状地基的Burmister位移解求得。基于层状地基中柔性筏板-群桩的沉降计算方法以及往复荷载下土体压缩模量的衰减特性得到了桩筏基础的长期沉降预测方法。与已有文献方法和离心模型试验结果的对比分析表明,柔性筏板-群桩共同作用方法得到的沉降值具有较高的精度。 相似文献
20.
In this paper, a coupling method between finite element and analytical layer‐elements is utilized to analyze the time‐dependent behavior of a plate of any shape and finite rigidity resting on layered saturated soils. Based on the integral transform techniques together with the aid of an order reduction method, an analytical layer‐element solution is derived from the governing equations for three‐dimensional Biot consolidation with respect to a Cartesian coordinate system and then extended to be the fundamental solution for the layered saturated soil under a point load. The Mindlin plate is modeled by eight‐noded isoparametric elements. The governing equations of the interaction between soil and plate in the Laplace‐Fourier transformed domain are deduced by referring to the coupling theory of FEM/BEM, and the final solution is obtained by applying numerical inversion. Numerical examples concerned with the time‐dependent response of a plate are performed to demonstrate the influence of soil and plate properties on the interaction process. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献