首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
This paper presents a numerical formulation of a three dimensional embedded beam element for the modeling of piles, which incorporates an explicit interaction surface between soil and pile. The formulation is herein implemented for lateral loading of piles but is able to represent soil–pile interaction phenomena in a general manner for different types of loading conditions or ground movements. The model assumes perfect adherence between beam and soil along the interaction surface. The paper presents a comparison of the results obtained by means of the present formulation and by means of a previously formulated embedded pile element without interaction surface, as well as reference semi‐analytical solutions and a fully 3D finite element (FE) model. It is seen that the proposed embedded element provides a better convergence behavior than a previously formulated embedded element and is able to reproduce key features of a full 3D FE model. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
This paper presents a superposition method expanded for computing impedance functions (IFs) of inclined‐pile groups. Closed‐form solutions for obtaining horizontal, vertical, and rocking IFs, estimated by using pile‐to‐pile interaction factors, are proposed. IFs of solitary inclined piles, crossed IFs, and explicit incorporation of compatibility conditions for pile‐head movements are also appropriately taken into consideration. All of these factors should be known in advance and will be computed and shown for the most relevant cases. The accuracy of the proposed closed‐form solutions is verified for 2 × 2 and 3 × 3 square inclined‐pile groups embedded in an isotropic viscoelastic homogeneous half‐space soil medium, with hysteretic damping. The pile‐to‐pile interaction factors are computed by means of a three‐dimensional time‐harmonic boundary elements–finite elements coupling formulation. The results indicate that the IFs obtained from the proposed method are in good agreement with those obtained from the coupling formulation. Furthermore, crossed vertical‐rocking IFs of solitary piles need to be appropriately considered for obtaining rocking IFs when the number of piles is small. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
The numerical simulation of soil-pile interaction problems, by means of full 3D finite element models, involves a large number of degrees of freedom (DOF) and difficulties during the mesh generation process. In order to reduce the unknowns and simplify and properly analyze such class of geotechnical problems, the so-called embedded beam elements (EBE) have recently been developed. In a preceding contribution of the authors, an improved EBE formulation, which brings into play the soil-pile interaction surface, was proposed with the aim to localize material plasticity in the soil surrounding the pile. This embedded beam model couples two different finite elements, each described by distinct kinematics (ie, solid and beam). The coupling is incorporated in the formulation by means of kinematical constrains established over the solid and beam displacement fields on the interaction surface. One of the main advantages of the embedded elements is that the addition of beams structural members immersed within the 3D soil model does not represent a constraint for the solid mesh, which can be adopted independently from the beam mesh. In this paper, the lateral loading of pile groups is studied by means of the proposed EBE approach with elasto-plastic interfaces. In order to represent a rigid cap, a master node and a special set of kinematical restrictions are incorporated into the formulation. The paper presents results obtained by means of the present formulation compared against other well-established analysis methods and test results published in the literature, for both elastic and elasto-plastic cases.  相似文献   

4.
Different phenomena such as soil consolidation, erosion, and scour beneath an embedded footing supported on piles may lead to loss of contact between soil and the pile cap underside. The importance of this separation on the dynamic stiffness and damping of the foundation is assessed in this work. To this end, a numerical parametric analysis in the frequency domain is performed using a rigorous three‐dimensional elastodynamic boundary element–finite element coupling scheme. Dimensionless plots relating dynamic stiffness functions computed with and without separation effects are presented for different pile–soil configurations. Vertical, horizontal and rocking modes of oscillation are analyzed for a wide range of dimensionless frequencies. It is shown that the importance of separation is negligible for frequencies below those for which dynamic pile group effects start to become apparent. Redistribution of stiffness contributions between piles and footing is also addressed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
This paper presents a numerical formulation for a three dimensional elasto‐plastic interface, which can be coupled with an embedded beam element in order to model its non‐linear interaction with the surrounding solid medium. The formulation is herein implemented for lateral loading of piles but is able to represent soil‐pile interaction phenomena in a general manner for different types of loading conditions or ground movements. The interface is formulated in order to capture localized material plasticity in the soil surrounding the pile within the range of small to moderate lateral displacements. The interface is formulated following two different approaches: (i) in terms of beam degrees of freedoms; and (ii) considering the displacement field of the solid domain. Each of these alternatives has its own advantages and shortcomings, which are discussed in this paper. The paper presents a comparison of the results obtained by means of the present formulation and by other well‐established analysis methods and test results published in the literature. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
A two‐parameter model has been proposed previously for predicting the response of laterally loaded single piles in homogenous soil. A disadvantage of the model is that at high Poisson's ratio, unreliable results may be obtained. In this paper, a new load transfer approach is developed to simulate the response of laterally loaded single piles embedded in a homogeneous medium, by introducing a rational stress field. The approach can overcome the inherent disadvantage of the two‐parameter model, although developed in a similar way. Generalized solutions for a single pile and the surrounding soil under various pile‐head and base conditions were established and presented in compact forms. With the solutions, a load transfer factor, correlating the displacements of the pile and the soil, was estimated and expressed as a simple equation. Expressions were developed for the modulus of subgrade reaction for a Winkler model as a unique function of the load transfer factor. Simple expressions were developed for estimating critical pile length, maximum bending moment, and the depth at which the maximum moment occurs. All the newly established solutions and/or expressions, using the load transfer factor, offer satisfactory predictions in comparison with the available, more rigorous numerical approaches. The current solutions are applicable to various boundary conditions, and any pile–soil relative stiffness. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents a non‐linear coupled finite element–boundary element approach for the prediction of free field vibrations due to vibratory and impact pile driving. Both the non‐linear constitutive behavior of the soil in the vicinity of the pile and the dynamic interaction between the pile and the soil are accounted for. A subdomain approach is used, defining a generalized structure consisting of the pile and a bounded region of soil around the pile, and an unbounded exterior linear soil domain. The soil around the pile may exhibit non‐linear constitutive behavior and is modelled with a time‐domain finite element method. The dynamic stiffness matrix of the exterior unbounded soil domain is calculated using a boundary element formulation in the frequency domain based on a limited number of modes defined on the interface between the generalized structure and the unbounded soil. The soil–structure interaction forces are evaluated as a convolution of the displacement history and the soil flexibility matrices, which are obtained by an inverse Fourier transformation from the frequency to the time domain. This results in a hybrid frequency–time domain formulation of the non‐linear dynamic soil–structure interaction problem, which is solved in the time domain using Newmark's time integration method; the interaction force time history is evaluated using the θ‐scheme in order to obtain stable solutions. The proposed hybrid formulation is validated for linear problems of vibratory and impact pile driving, showing very good agreement with the results obtained with a frequency‐domain solution. Linear predictions, however, overestimate the free field peak particle velocities as observed in reported field experiments during vibratory and impact pile driving at comparable levels of the transferred energy. This is mainly due to energy dissipation related to plastic deformations in the soil around the pile. Ground vibrations due to vibratory and impact pile driving are, therefore, also computed with a non‐linear model where the soil is modelled as an isotropic elastic, perfectly plastic solid, which yields according to the Drucker–Prager failure criterion. This results in lower predicted free field vibrations with respect to linear predictions, which are also in much better agreement with experimental results recorded during vibratory and impact pile driving. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
A hybrid boundary element formulation for the steady state analysis of piles and pile groups embedded in a soil stratum in which the modulus increases linearly with depth is presented. The piles are represented by compressible columns or flexible beams and the soil as a hysteretic, layered medium. The explicit Green's function corresponding to dynamic loads in the interior of a layered stratum, developed earlier by Kausel is used in the study. The governing differential equations for the pile domain are solved for a distributed periodic loading intensity and those for the soil domain by a system of boundary elements at the pile-soil interface. These are then assembled into a system of algebraic equations by satisfying interface equilibrium and compatibility. The results of the analysis have been compared against those from alternative formulations, e.g. finite elements, and confirm the accuracy of the proposed formulation. Representative results for single piles and pile groups are presented.  相似文献   

9.
This study is conducted with a numerical method to investigate the seismic behaviour among certain soils, single piles, and a structure. A series of numerical simulations of the seismic behaviour of a single‐pile foundation constructed in a two‐layer ground is carried out. Various sandy soils, namely, dense sand, medium dense sand, reclaimed soil, and loose sand, are employed for the upper layer, while one type of clayey soil is used for the lower layer. The results reveal that when a structure is built in a non‐liquefiable ground, an amplification of the seismic waves is seen on the ground surface and in the upper structure, and large bending moments are generated at the pile heads. When a structure is built in a liquefiable ground, a de‐amplification of the seismic waves is seen on the ground surface and in the upper structure, and large bending moments are generated firstly at the pile heads and then in the lower segment at the boundary between the soil layers when liquefaction takes place. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
In geotechnical engineering, numerical analysis of pile capacity is often performed in such a way that piles are modeled using only the geometry of their final position in the ground and simply loaded to failure. In these analyses, the stress changes caused by the pile installation are neglected, irrespective of the installation method. For displacement piles, which are either pushed or hammered into the ground, such an approach is a very crude simplification. To model the entire installation process of displacement piles a number of additional nonlinear effects need to be considered. As the soil adjacent to the pile is displaced significantly, small deformation theory is no longer applicable and a large deformation finite element formulation is required. In addition, the continuously changing interface between the pile and the soil has to be considered. Recently, large deformation frictional contact has been used to model the pile installation and cone penetration processes. However, one significant limitation of the analysis was the use of linear elements, which have proven to be less accurate than higher order elements for nonlinear materials such as soils.

This paper presents a large deformation frictional contact formulation which can be coupled consistently with quadratic solid elements. The formulation uses the so-called mortar-type discretisation of the contact surfaces. The performance of this contact discretisation technique is demonstrated by accurately predicting the stress transfer between the pile and the soil surfaces.  相似文献   


11.
It is common in the analysis of piles under lateral loads to use a model of a beam on elastic foundation, or a finite element model with the pile represented by a one dimensional beam–column with its axis coinciding with the central line of the finite element mesh. In both cases the lateral stiffness of the pile itself, as a structural element, is a function of the product of its Young’s modulus of elasticity by the moment of inertia of the cross section (EI). For solid piles the moment of inertia is directly related to the radius but this is not the case when dealing with hollow piles where the value of the radius corresponding to a given moment of inertia is not unique. Both of the above models ignore the effect of the value of the radius of the soil cavity occupied by the pile. In this work a more accurate model of the pile with the soil around it represented. A consistent boundary matrix valid for static and dynamic analyses is used to evaluate the accuracy of the results provided by the model of a beam on elastic foundation. In addition, a 1D model of the pile is analyzed with finite elements for the soil. This analysis considers a fixed value of the product EI, but a variable radius in order to illustrate the importance of the radial dimension. Results are obtained for a pile fixed at the bottom, but long enough so that the top boundary conditions do not affect the results and for a shorter floating pile were the shear and moment at the bottom resulting from the underlying soil would not be zero. For the beam on elastic foundation model, the top of the pile was assumed to be fixed.  相似文献   

12.
《Computers and Geotechnics》2001,28(6-7):379-396
A wall consisting of anchored steel piles with horizontal timber laggings was selected to support a 16 m deep excavation with a length of more than three kilometres near Cologne in Germany. Vertical holes were bored on the wall line, at 4 m centres, and steel piles were placed within these holes. Good contact between the piles and the surrounding soil was ensured by concreting the remaining space in the holes. In this way the earth pressure behind the wall was transferred to the piles through horizontal arching, so relieving the timber laggings. As a result, lighter timber laggings could be used and the economy of the wall construction could be increased. In situ tests as well as non-linear 3D finite element (FE) analyses were carried out. Horizontal arching was promoted by means of flexible horizontal lagging timbers and solid contact between the piles and the surrounding soil. Vertical arching was induced by high pre-stress forces in the upper ground anchors. FE analyses were based on both the elasto-plastic Mohr–Coulomb model and a more advanced hardening-soil model.  相似文献   

13.
Recent study indicates that the response of rigid passive piles is dominated by elastic pile–soil interaction and may be estimated using theory for lateral piles. The difference lies in that passive piles normally are associated with a large scatter of the ratio of maximum bending moment over maximum shear force and induce a limiting pressure that is ~1/3 that on laterally loaded piles. This disparity prompts this study. This paper proposes pressure‐based pile–soil models and develops their associated solutions to capture response of rigid piles subjected to soil movement. The impact of soil movement was encapsulated into a power‐law distributed loading over a sliding depth, and load transfer model was adopted to mimic the pile–soil interaction. The solutions are presented in explicit expressions and can be readily obtained. They are capable of capturing responses of model piles in a sliding soil owing to the impact of sliding depth and relative strength between sliding and stable layer on limiting force prior to ultimate state. In comparison with available solutions for ultimate state, this study reveals the 1/3 limiting pressure (of the active piles) on passive piles was induced by elastic interaction. The current models employing distributed pressure for moving soil are more pertinent to passive piles (rather than plastic soil flow). An example calculation against instrumented model piles is provided, which demonstrates the accuracy of the current solutions for design slope stabilising piles. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
In the framework of elastostatics, a mathematical treatment is presented for the boundary value problem of the interaction of a flexible cylindrical pile embedded in a transversely isotropic half‐space under transverse loadings. Taking the pile region as a stiffened subdomain of an extended half‐space, the formulation of the interaction problem is reduced to a Fredholm integral equation of the second kind. The necessary set of Green's functions for the transversely isotropic half‐space is obtained by means of a method of potentials. The resulting Green's functions are incorporated into a numerical procedure for the solution of the integral equation. The theoretical response of the pile is presented in terms of bending moment, displacement and slope profiles for a variety of transversely isotropic materials so that the effect of different anisotropy parameters can be meaningfully discussed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Integrating ground heat exchanger elements into concrete piles is now considered as an efficient energy solution for heating/cooling of buildings. In addition to the static load of buildings, the concrete piles also undergo a cycle of thermal deformation. In the case of single energy pile, calculation methods already exist and permit to perform a proper geotechnical design. In the case of energy pile group, the thermo‐mechanical interactions within the group are more complex. Very few experimental results on the energy pile group are available so that numerical analysis can be an interesting way to provide complementary results about their behavior. This paper deals with a numerical analysis including a comparison between a single energy pile and an energy pile group with different boundary conditions at the pile head. In order to take into account the stress reversal induced by the thermal expansions and contractions, a cyclic elastoplastic constitutive model is introduced at the soil–pile interface. The analysis aims to give some insights about the long‐term cyclic interaction mechanisms in the energy pile group. Based on this qualitative study, some guidance can be brought for the design of energy piles in the case where group effects should be considered. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Within the framework of soil–pile interaction, a novel displacement scheme for the transverse kinematic response of single piles to vertically propagating S waves is proposed on the basis of the modified Vlasov foundation model. The displacement model contains a displacement function along the pile axis and an attenuation function along the radial direction. The governing equations and boundary conditions of the two undetermined functions are obtained in a coupled form by using Hamilton's principle. An iterative algorithm is adopted to decouple and solve the two unknown functions. In light of the governing equation of the pile kinematics, a mechanical model is proposed to evaluate the present method on a physical basis considering material damping. The coefficient of the equivalent Winkler spring is derived explicitly as function of the displacement decay parameter γ and soil Poisson's ratio. A parametric study is performed to investigate the effects of the soil–pile system properties on the kinematic response of single piles. The results show that the dimensionless pile length controls the transverse kinematics of piles. In terms of the theory of beams on elastic foundation, the classification limits of the dimensionless pile length may be π ∕ 4 and π, respectively. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
A cavity expansion procedure for the simulation of pile driving is presented and assessed in this paper. The analysis uses a non-linear finite-element model and the penetration of the pile into the soil is simulated by a radial opening of the soil around the pile. The case of a pile advanced by expansion will be compared to a similar pile subjected to computational driving (referred to, respectively, as ‘expanded’ and ‘driven’ piles for convenience). The state of stress and deformation, and the evolution of pore-water pressure in the soil will be monitored for the expanded and driven piles. Further computational driving will be applied to both cases and the pile response and soil resistance will be compared. The computational cost of advancing the pile by expansion will finally be investigated. Copyright © John Wiley & Sons, Ltd.  相似文献   

18.
Simulation of frictional contact between soils and rigid or deformable structure in the framework of smoothed particle hydrodynamics (SPH) is presented in this study. Two algorithms are implemented into the SPH code to describe contact behavior, where the contact forces are calculated using the law of conservation of momentum based on ideal plastic collision or using the criteria of partial penetrating. In both algorithms, the problem of boundary deficiency inherited from SPH is properly handled so that the particles located at contact boundary can have precise acceleration, which is critical for contact detection. And the movement and rotation of the rigid structure are taken into account so that it is easy to simulate the process of pile driving or movement of a retaining wall in geotechnical engineering analysis. Furthermore, the capability of modeling deformability of a structure during frictional contact simulations broadens the fields of SPH application. In contrast to previous work dealing with contact in SPH, which usually use particle‐to‐particle contact or ignoring sliding between particles and solid structure, the method proposed here is more efficient and accurate, and it is suitable to simulate interaction between soft materials and rigid or deformable structures, which are very common in geotechnical engineering. A number of numerical tests are carried out to verify the accuracy and stability of the proposed algorithms, and their results are compared with analytical solutions or results from finite element method analysis. Good agreement obtained from these comparisons suggests that the proposed algorithms are robust and can be applied to extend the capability of SPH in solving geotechnical problems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
对桩及承台采用线弹性有限元模型,对承台下桩周土采用弹塑性有限元模型,对群桩以外的土体采用线弹性无限元模型,在桩土接触面上设置接触面单元,利用三维弹塑性有限元对桩%D土%D承台相互作用进行了分析。得出了如下结论 :承台下桩顶反力总体表现出角桩最大,边桩次之,中桩最小的分布规律,随着作用在承台上的荷载增大,桩顶反力趋于均匀分布,承台下桩侧摩阻力是由桩端向桩顶逐渐发展的,承台对桩上部侧摩擦阻力存在削弱作用。为了验证本文方法的可行性,对承台下有九桩的情况进行了静载试验,将试验结果与本文计算结果进行了比较。  相似文献   

20.
Kinematic pile–soil interaction under vertically impinging seismic P waves is revisited through a novel continuum elastodynamic solution of the Tajimi type. The proposed model simulates the steady‐state kinematic response of a cylindrical end‐bearing pile embedded in a homogeneous viscoelastic soil stratum over a rigid base, subjected to vertically propagating harmonic compressional waves. Closed‐form solutions are obtained for the following: (i) the displacement field in the soil and along the pile; (ii) the kinematic Winkler moduli (i.e., distributed springs and dashpots) along the pile; (iii) equivalent, depth‐independent, Winkler moduli to match the motion at the pile head. The solution for displacements is expressed in terms of dimensionless transfer functions relating the motion of the pile head to the free‐field surface motion and the rock motion. It is shown that (i) a pile foundation may significantly alter (possibly amplify) the vertical seismic excitation transmitted to the base of a structure and (ii) Winkler moduli pertaining to kinematic loading differ from those for inertial loading. Simple approximate expressions for kinematic Winkler moduli are derived for use in applications. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号