首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
刘洋  李爽 《岩土力学》2018,39(6):2237-248
基于离散单元法对不同密实度理想散粒体进行了双轴剪切试验的宏微观数值模拟,通过网格剖分将Voronoi多边形表征的loop单元作为散粒介质细观力学结构的基本单元,模拟了剪切过程中不同类型loop单元数量、几何形态和力学特征的演化过程,并重点分析了临界状态时散粒介质的细观力学结构特征。模拟结果显示,初始密实度不同的试样在向临界状态发展的过程中,高阶单元与低阶单元的发展规律完全不同,不同初始密实度试样中同阶loop单元的发展规律也不相同,但同阶loop单元的数量比例、几何形态、颗粒接触力及单元内滑动率最终均达到了各自的临界状态。从细观角度分析,散体介质的临界状态是高阶和低阶loop单元在荷载作用下相互转化的结果,是所有loop单元物理力学状态的综合平均与外在表现,临界状态时不同阶数的loop单元处于一个动态平衡状态,宏观上表现为常剪应力和常体积下剪切变形的不断发展。数值模拟结果也表明,loop细观结构单元包含了丰富的信息,其数量、几何形态、受力特征及接触稳定性的发展与散粒体的强度、剪胀以及临界状态的发展密切相关,可以将其作为散粒介质细观尺度的分析单元。  相似文献   

4.
In an effort to study the relation of fabrics to the critical states of granular aggregates, the discrete element method (DEM) is used to investigate the evolution of fabrics of virtual granular materials consisting of 2D elongated particles. Specimens with a great variety of initial fabrics in terms of void ratios, preferred particle orientations, and intensities of fabric anisotropy were fabricated and tested with direct shear and biaxial compression tests. During loading of a typical specimen, deformation naturally localizes within shear bands while the remaining of the sample stops deforming. Thus, studying the evolution of fabric requires performing continuous local fabric measurements inside these bands, a suitable task for the proposed DEM methodology. It is found that a common ultimate/critical state is eventually reached by all specimens regardless of their initial states. The ultimate/critical state is characterized by a critical void ratio e which depends on the mean stress p, while the other critical state fabric variables related to particle orientations are largely independent of p. These findings confirm the uniqueness of the critical state line in the e ? p space, and show that the critical state itself is necessarily anisotropic. Additional findings include the following: (1) shear bands are highly heterogeneous and critical states exist only in a statistical sense; (2) critical states can only be reached at very large local shear deformations, which are not always obtained by biaxial compression tests (both physical and numerical); (3) the fabric evolution processes are very complex and highly dependent on the initial fabrics. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Discrete element modeling of direct shear tests for a granular material   总被引:1,自引:0,他引:1  
A succinct 3D discrete element model, with clumps to resemble the real shapes of granular materials, is developed. The quaternion method is introduced to transform the motion and force of a clump between local and global coordinates. The Hertz–Mindlin elastic contact force model, incorporated with the nonlinear normal viscous force and the Mohr–Coulomb friction law, is used to describe the interactions between particles. The proposed discrete element model is used to simulate direct shear tests of the irregular limestone rubbles. The simulation results of vertical displacements and shear stresses with a mixture of clumps are compared well with that of laboratory tests. The bulk friction coefficients are calculated and discussed under different contact friction coefficients and normal stresses. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
7.
This paper presents a synthesis of the works performed by various teams from France, Italy and Canada around the question of second‐order work criterion. Because of the non‐associative character of geomaterials plastic strains, it is now recognized that a whole bifurcation domain exists in the stress space with various possible modes of failure. In a first part these failure modes are observed in lab experimental tests and in discrete element modelling. Then a theoretical study of second‐order work allows to establish a link with the kinetic energy, giving a basis to explain the transition from a prefailure (quasi)static regime to a postfailure dynamic regime. Eventually the main features of geomaterials failure are obtained by applying second‐order work criterion to five different constitutive rate‐independent models—three being phenomenological and two micromechanical. As a whole this paper tries to gather together all the elements for a proper understanding and use of second‐order work criterion in geomechanics. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Bonded particle modelling (BPM) is nowadays being extensively used for simulating brittle material failure. In BPM, material is modelled as a dense assemblage of particles (grains) connected together by contacts (cement). This sort of modelling seriously depends on the mechanical properties of particle and contact, which are named here as micro‐parameters. However, a definite calibration methodology to obtain micro‐parameters has not been so far established; and many have reported some serious problems. In this research, a calibration procedure to find a unique set of micro‐parameters is established. To attain this purpose, discrete element code of UDEC is used to perform BPM. This code can be conveniently developed by the user. The proposed BPM is composed of rigid polygonal particles interacting at their contact points. These contacts can undergo a certain amount of tension, and their shear resistance is provided by cohesion and friction angle. The results demonstrate that each material macro‐property (i.e. Young's modulus, Poisson's ratio, internal friction angel, internal cohesion, and tensile strength) is directly originated from and distinctly related to the contact properties (i.e. normal and shear stiffness, friction angel, cohesion, and tensile strength). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
The flow stress in the yield surface of plastic constitutive equation is modified with a higher order gradient term of the effective plastic strain to model the effect of inhomogeneous deformation in granular materials. The gradient constitutive model has been incorporated into the finite element code ABAQUS and used to simulate biaxial shear tests on dry sand. It is shown that the shape of the post-peak segment of the load displacement curve predicted by the numerical analysis is dependent on the mesh size when gradient term is not used. Use of an appropriate gradient coefficient is shown to correct this and predict a unique shape of the load displacement curve regardless of the mesh size. The gradient coefficient required turns out to be approximately inversely proportional to the mesh elemental area. Use of the strain gradient term is found to diffuse the concentration of plastic strains within shear band resulting in its consistent width. The coefficient of the higher gradient term appears as a function of the grain size, the mean confining stress, and the plastic softening modulus. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
Mechanical properties of granular materials can be significantly improved by the inclusion of small amounts of short synthetic fibres. This phenomenon has been experimentally studied before by many researchers who have found that the shear strength of a granular material can be significantly improved. This study presents a visualisation of the phenomenon using discrete element method (DEM) simulations of direct shear tests conducted on mixtures of an idealised granular material and randomly oriented fibres. Snapshots showing the deformation of the samples, the velocity vectors of the particles and the force chains produced inside the samples are presented at different stages of the tests. Changes in shear strength and porosity are also illustrated. It was found that the reinforcement produced depends mostly on the rigidity of the fibres.  相似文献   

11.
刘彪  王桥  张宗亮  周伟  FENG Y T  彭张振  李蕴升  徐俊  郭凯 《岩土力学》2022,43(12):3493-3502
结合边界元法和离散元法,提出一种可以进行计算颗粒内部应力和破碎路径的方法。该方法利用离散元法求解颗粒的相互作用和每个颗粒上的荷载。然后利用边界元法计算颗粒的应力分布,为了实现动态平衡,将颗粒的加速度视为恒定大小的体力。但体力导致边界积分方程中出现域积分,故采用直线积分法将域积分转化为边界积分,以保证边界元法降维的优势。为了提高边界元的计算效率,对于几何形状相似的颗粒,以其中一个颗粒作为模板颗粒,只需要计算模板颗粒在局部坐标系中的系数矩阵,其他相似颗粒可以通过局部和全局坐标系之间的映射获得。在得到应力后,基于Hoek-Brown准则来判断颗粒是否破碎。此外,将破坏路径简化为直线,并采用最小二乘法拟合得到破坏路径。  相似文献   

12.
A methodology has been developed to extend the incremental (Eulerian) Digital Image Correlation (DIC) technique to enable a Lagrangian‐based large‐strain analysis framework to examine the nature of strain and kinematic nonuniformity within shear bands in sands. Plane strain compression tests are performed on dense sands in an apparatus that promotes unconstrained persistent shear band formation. DIC is used to capture incremental, grain‐scale displacements in and around shear bands. The performance of the developed accumulation algorithm is validated by comparing accumulated displacements with two sources of reference measurements. A comparison between large and infinitesimal rotation is performed, demonstrating the nature of straining within shear bands in sands and the necessity of using a finite strain formulation to characterize ensuing behavior. Volumetric strain variation along the shear band is analyzed throughout macroscopic postpeak deformation. During softening, volumetric activity within the shear band is purely dilative. During the global critical state, the shear band material is seen on the average to deform at zero volumetric strain; however, locally, the sand is seen to exhibit significant nonzero volumetric strain, putting into question the current definition of critical state. At the softening‐critical state transition, a spatially periodic pattern of alternating contraction and dilation along the shear band is evidenced, and a preliminary evaluation indicates that the periodicity appears to be a physical phenomenon dictated only in part by median grain size. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
戴北冰  杨峻 《岩土力学》2015,36(Z1):619-623
针对含细颗粒砂土的反常剪切行为,开展了双轴剪切试验的数值模拟,从宏细观角度分析了其反常剪切行为发生的内在机制。数值模拟结果表明,增加围压能提高含细颗粒砂土的抗剪切液化能力,该反常行为的根本原因在于围压上升使得粗细颗粒更有效地参与了力链传递,增加了颗粒间的接触,增强了土体的密实度。细颗粒在土骨架中的移动对砂土的液化起着至关重要的作用,而粗颗粒仅起次要作用。研究表明,细颗粒在剪切过程中会持续从有效土骨架中移出成为无效颗粒,而部分粗颗粒也因失去细颗粒的支撑作用会脱离土骨架,直至试样最终液化。细颗粒一般参与土骨架中的弱力链,而粗颗粒则一般参与强力链,导致细颗粒较粗颗粒更容易在土骨架中移动。  相似文献   

14.
薛龙  王睿  张建民 《岩土力学》2018,39(12):4681-4690
实际荷载条件下(如交通、地震荷载),粒状岩土材料常受到三维复杂应力路径作用。目前,多数粒状岩土材料的本构理论和模型都基于简单应力路径加载条件下的物理试验提出,在更加复杂应力路径下的适用性则需要进一步验证。但受机械控制的限制,物理试验中无法实现很多客观存在的三维复杂应力路径加载。为了能够再现并分析三维复杂应力路径下粒状介质的力学响应,提出了一种离散元数值试验方法,该方法采用球形数值试样,通过直接控制试样边界应力达到对3个主应力大小和方向的任意控制,从而可以实现诸多物理试验中无法实现的复杂应力路径。通过与目前常见的一些物理试验进行定性对比,论证了该数值试验方法通过高精度的加载控制和测量能够再现已有物理试验现象。在此基础上,进一步开展了应力主轴的三维旋转,分析了在这种实际存在却无法通过物理试验再现的加载条件下粒状介质的变形规律,初步显示了提出的数值试验方法在深入研究三维复杂应力路径下粒状介质力学响应方面所拥有的能力和优势。  相似文献   

15.
Granular materials like sand are widely used in civil engineering. They are composed of different sizes of grains, which generate a complex behaviour, difficult to assess experimentally. Internal instability of a granular material is its inability to prevent the loss of its fine particles under flow effect. It is geometrically possible if the fine particles can migrate through the pores of the coarse soil matrix and results in a change in its mechanical properties. This paper uses the three‐dimensional Particle Flow Code (PFC3D/DEM) to study the stability/instability of granular materials and their mechanical behaviour after suffusion. Stability properties of widely graded materials are analysed by simulating the transport of smaller particles through the constrictions formed by the coarse particles under the effect of a downward flow with uniform pressure gradient. A sample made by an initially stable material according to the Kenney & Lau geometrical criterion was divided into five equal layers. The classification of these layers by this criterion before and after the test shows that even stable granular materials can lose fine particles and present local instability. The failure criterion of eroded samples, in which erosion is simulated by progressive removal of fine particles, evolves in an unexpected way. Internal friction angle increases with the initial porosity, the rate of lost fine particles and the average diameter D50. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
17.
18.
A series of micromechanical tests were conducted to investigate the bond failure criterion of bonded granules considering the effect of bond thickness, with the aim of enhancing the bond contact model used in the distinct element simulations of cemented geomaterials. The granules were idealized in a two‐dimensional context as one pair of aluminum rods bonded by resin epoxy or cement. The mechanical responses of nearly 500 rod pairs were tested under different loading paths to attain the yield loads of bonded granules at variable bond thickness. This study leads to a generic bond failure criterion incorporating the effect of the bond thickness. The results show that the bond compressive resistance largely decreases with increasing bond thickness owing to the presence of the confinement at the bond‐particle interface. The strength envelopes obtained from the combined shear compression tests and combined torsion compression tests have identical functional form, and they decrease in size with increasing bond thickness but remain unchanged in shape. Given the same cementation material, the generic bond strength envelope in a three‐dimensional contact force space under different loading paths remains the same in shape but shrinks with the increase of bond thickness. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
This paper is concerned with diffuse and other ensuing failure modes in geomaterials when tested under homogeneous states of shearing in various loading programs and drainage conditions. Material instability is indeed the basic property that accounts for the instability of an initially homogeneous deformation field leading to diffuse failure and strain localization in geomaterials. The former is normally characterized by a runaway type of failure accompanied with a sudden and violent collapse of the material in the absence of any localization phenomena. Against this backdrop, we present a brief overview of material instability in elastoplastic solids where one finds a rich source of theoretical concepts including bifurcation, strain localization, diffuse failure and second‐order work, as well as a considerable body of experiments. Some compelling laboratory experimental studies of material instability with focus to diffuse failure are then presented and interpreted based on the second‐order work. Finally, various material instability analyses using an elastoplastic constitutive and a general finite element analysis of the above‐mentioned laboratory experimental tests are presented as a boundary value problem. It is shown that instability can be captured from otherwise uniform stress, density and hydraulic states, whereas uniform deviatoric loads are being applied on the external boundaries of a specimen. Although the numerical simulations reproduce well the laboratory experimental results, they also highlight the hierarchy of failure modes where localization phenomena emerge in the post‐bifurcation regime as a result of a degradation of homogeneity starting from a diffuse mode signalled by a zero second‐order work. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
The direct simple shear (DSS) device is one of the commonly used laboratory element testing tools to characterize the shear behaviour of soil. The interpretation of results from an element test requires understanding of the degree of stress and strain non-uniformities in a given test specimen. So far, studies on stress and strain non-uniformities in the DSS test have been conducted using direct boundary measurements of stresses in laboratory specimens supported by a continuum based analytical approach. Discrete element modelling now provides a means of modelling the soil behaviour in a realistic manner using a particulate approach. Accordingly, the performance of a DSS specimen was modelled using discrete element modelling with emphasis on assessing stress and strain non-uniformities in the specimen during shearing. The approach allowed for the numerical determination of stresses not only at the boundaries, but also within the DSS specimen. It was shown that mobilised stress ratio distribution throughout the shearing phase for the majority of specimen volume at locations near the central planes parallel and perpendicular to the direction of shearing is fairly uniform. Finally, it was noted that the potential for particle slippage at locations near the specimen centre can result in non-uniform shear strain distributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号