首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The main purpose of the paper is to present a relatively simple, yet realistic, constitutive model for simulations of structured sensitive clays. The proposed constitutive model can simulate 1‐D and isotropic consolidation, and drained and undrained shear response of sensitive structured clay. The proposed sensitive bounding surface model is based on concepts from the modified Cam clay model 8 and bounding surface plasticity 27 , with the addition of a simple degradation law. The key material parameters are M, λ, κ, and ν from the modified Cam clay framework, h from the bounding surface framework to model a smoothed elasto‐plastic transition, and ωv, ωq, and Ssr to model softening associated with destructuration. The model has separate parameters to model destructuration caused by volumetric strain and deviatoric strain. The model is capable of modeling unusual behavior of strain softening during 1‐D compression (i.e., a reduction of effective stress as void ratio decreases). A good match between test results and the model simulation is demonstrated. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Finite element cavity expansion analysis investigating the effect of penetration rate on piezocone tests in clay is presented. A coupled analysis was performed, in which the rate of cavity expansion was linked to the penetration rate of the cone and the cone angle, using the assumption that the deformation was wholly radial, and took place only between the cone tip and the cone shoulder. The soil was modelled using modified cam clay with two sets of parameters and varying values of overconsolidation ratio (OCR). The influence of penetration rate on the stress and pore pressure distributions was examined. For slower penetration rates, the excess pore pressure at the cone shoulder is lower since consolidation is permitted coincident with penetration. The radial profiles of post‐penetration voids ratio demonstrate that partially drained penetration is permitted by volume change in the near field, in addition to radial movement in the far field. The radial distribution of excess pore pressure after slow penetration differs from the undrained case, with a relatively low radial gradient existing at the cone face. As a result, the dissipation curves after slow penetration lag behind those following fast penetration. The cone velocity is made dimensionless by normalizing with the coefficient of consolidation and the cone diameter. ‘Backbone’ curves of normalized velocity against normalized tip resistance and excess pore pressure capturing the transition from undrained to drained penetration are derived. The normalized pore pressure backbone curve is unique, whilst the normalized tip resistance shows a small dependency on OCR. These backbone penetration curves are compared with centrifuge model piezocone tests conducted at varying rates, and subsequent dissipation tests. The numerical and experimental results suggest that the value of consolidation coefficient operative during the dissipation phase is 2–4 times higher than the virgin compression value due to changes in the operative soil stiffness, as demonstrated from the stress paths of individual soil elements. The use of multi‐rate penetration tests to deduce values of consolidation coefficient is discussed, in light of these differences. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
利用自行研制的高压固结试验系统,对重塑黏土试样进行了竖向压力从0.25 MPa到12.00 MPa的一维固结试验;并利用三轴设备对该土样进行了0.3~2.5 MPa的等向固结试验。试验结果表明:一维固结试验获得的各级压力固结曲线均有明显的次固结阶段,重塑黏土的次固结系数随竖向压力增大而非线性变化;具体而言,当固结压力小于2 MPa,次固结系数随竖向压力增大而显著减小,当固结压力大于2 MPa后,次固结系数则几乎不变;等向固结试验获得的次固结系数则远小于一维固结试验获得的相应值,其随固结压力的变化规律也与一维固结不同。此外,从微观角度对试验结果进行的分析表明,高压下黏土次固结变形的物理机制不同于低压。即低压下黏土次固结变形的主因是颗粒间的相对滑移,而高压下则是结合水膜的蠕变;而且低压下偏应力对次固结变形有控制性影响,但高压下其影响很小。  相似文献   

4.
针对上海地区淤泥质粘土的原状土样(具有凝聚型结构)和重塑土样(具有分散型结构)进行一维压缩试验,探讨结构性对上海淤泥质软土次压缩特性的影响。结果表明,具有分散型结构重塑土的压缩指数Cc、次压缩系数Ca以及Ca/Cc为定值,并不随固结压力的变化而产生明显变化;但原状土在达到结构屈服强度时,由凝聚型结构向分散型结构转化,并造成Ce、Ca。以及Ca/Ce值迅速增大直至峰值,再随着压力的增大而减小。另外,结构上的大幅调整造成了原状土e-1gt曲线的反S特征不明显。  相似文献   

5.
软黏土层一维有限应变固结的超静孔压消散研究   总被引:1,自引:0,他引:1  
根据土力学固结理论计算分析软黏土层固结过程的超静孔隙水压力值,确定软黏土体固结过程的强度增长,对排水固结法处理软土地基至关重要。软黏土层固结过程中土体变形较大时,有限应变固结理论和小应变固结理论计算分析软黏土固结所得结果差异较大。利用非线性有限元法及程序,通过对软黏土层固结工程算例的计算结果分析,研究了有限应变固结理论和小应变固结理论计算分析软黏土层一维固结超静孔压值消散的差异;探讨了软黏土体一维固结过程中,几何非线性、土体渗透性变化和压缩性变化对超静孔隙水压力消散的影响。研究结果表明,当土体的变形较大时,有限应变固结理论计算出的超静孔压要比小应变固结理论得到的值消散的更快。考虑土体固结过程中渗透性的变化时,超静孔压消散变慢;可用软黏土渗透性变化指数ck 反映渗透性变化对超静孔压消散的影响,渗透性变化指数ck值越小、超静孔压消散越慢。固结过程中软黏土压缩性的大小及变化也影响超静孔压的消散,可用软黏土的压缩指数cc反映固结过程中压缩性的大小及变化对超静孔压消散的影响,软黏土的压缩指数cc越小,固结过程软黏土层中的超静孔压消散越快。  相似文献   

6.
The coefficient of consolidation is one of the most important parameters that control the rate of consolidation. Conventional consolidation theories assume that the coefficient of consolidation is constant during the whole consolidation process. In the case of sensitive clay, the coefficient of consolidation is strongly dependent on the level of effective stress of clay. With the dissipation of pore water pressure and the increase of effective stress, the soil structure of the upper subsoil is gradually destroyed downwards and its coefficient of consolidation becomes smaller. At the same time, the coefficient of permeability of the vertical drains drops down because of the kinking or bending effect. The destructured upper subsoil and the kinking of the vertical drain hinder the dissipation of the pore pressure in the lower subsoil. This paper presents a model to describe the above important phenomena during the consolidation of sensitive clay with vertical drain. The solution for proposed model can be obtained by extending the closed‐form solution of the consolidation of double‐layered ground with vertical drain by the interactive method introducing the concept of the moving boundary and the reduction of discharge capacity of vertical drain. The numerical results obtained from the finite element method package PLAXIS (Ver. 7.2) are adopted to compare those obtained from the present algorithm. Moreover, the rationality of the moving boundary is explained by the distributions of the excess pore water pressure in natural soil zone along the radial direction. Wenzhou airport project is taken as a case study in this paper. The results for the sensitive soil with decaying sand drain agree very well with the in situ measured data. The calculated results can properly explain two general phenomena observed in the consolidation of soft sensitive soil ground with vertical drains: one is that the time to achieve the same consolidation degree is much longer under heavy loading than that under light loading; the other is that the consolidation speed is much slower in the lower subsoil than in the upper subsoil. Finally, it is indicated that the vertical drains can decrease the hindrance effect of the destructured subsoil. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
负孔压可以为饱和黏土地基的结构基础提供抗拔阻力,准确计算负孔压的大小对研究上拔承载力的意义重大。通过等向固结的三轴伸长试验研究了卸荷状态下饱和黏土中孔压的发展规律,提出了计算超静负孔压的方法;结合修正剑桥模型和Henkel孔压理论,揭示了卸荷作用下超静负孔压产生的机制,合理地解释了在卸荷过程中超静孔压由负转正的过程。研究表明,卸荷试验条件下广义剪应力产生正孔压,而平均主应力对孔压的贡献为负,卸荷初期广义剪应力产生的正孔压不足以抵消平均主应力产生的负孔压,因此,超静孔压呈现负值。研究成果为负孔压预测以及上拔承载力研究提供了理论依据。  相似文献   

8.
This paper integrates random field simulation of soil spatial variability with numerical modeling of coupled flow and deformation to investigate consolidation in spatially random unsaturated soil. The spatial variability of soil properties is simulated using the covariance matrix decomposition method. The random soil properties are imported into an interactive multiphysics software COMSOL to solve the governing partial differential equations. The effects of the spatial variability of Young's modulus and saturated permeability together with unsaturated hydraulic parameters on the dissipation of excess pore water pressure and settlement are investigated using an example of consolidation in a saturated‐unsaturated soil column because of loading. It is found that the surface settlement and the pore water pressure profile during the process of consolidation are significantly affected by the spatially varying Young's modulus. The mean value of the settlement of the spatially random soil is more than 100% greater than that of the deterministic case, and the surface settlement is subject to large uncertainty, which implies that consolidation settlement is difficult to predict accurately based on the conventional deterministic approach. The uncertainty of the settlement increases with the scale of fluctuation because of the averaging effect of spatial variability. The effects of spatial variability of saturated permeability ksat and air entry parameters are much less significant than that of elastic modulus. The spatial variability of air entry value parameters affects the uncertainties of settlement and excess pore pressure mostly in the unsaturated zone. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
江文豪  李江山  黄啸  程鑫  万勇 《岩土力学》2022,43(10):2744-2756
温度的变化会导致土体的物理力学性质改变,且在一些实际工程中,饱和黏土会处于非等温分布状态。为此,针对非等温分布条件下饱和黏土的一维固结问题,考虑了更具普遍性的半透水边界,通过某些假定推导了单级线性加荷形式下饱和黏土一维固结控制方程,并利用分离变量法求解得到了控制方程的解析解。通过将所提解析解分别与已有解析解和有限差分解展开对比分析,验证了所提解答的正确性。基于所提解析解,利用某一算例分析了温度梯度、半透水边界参数及加荷时间对固结性状的影响。结果表明:温度梯度 M 越大,土体的渗透性越大,土体的固结速率越快;半透水边界参数 R1和 R2越大,相同时间内土体的超孔隙水压力越小,土体的平均固结度越大;土体的平均固结度随加荷时间 tc 的增大而减小,这主要是由于加荷阶段所施加的外荷载小于最终荷载,但加荷时间tc的延长可一定程度减小土体中产生的最大超孔隙水压力。  相似文献   

10.
淤泥质软土在冲击荷载作用下孔压增长模式   总被引:8,自引:0,他引:8  
孟庆山  汪稔  陈震 《岩土力学》2004,25(7):1017-1022
通过室内淤泥质饱和软粘土的动力固结试验,考虑不同锤重和落距组合情况,对冲击荷载作用下饱和软粘土孔隙水压力的动态响应特征进行分析。试验结果表明,孔隙水压力和冲击击数之间是双曲线对应关系,高围压下冲击荷载激发的孔压随击数增长的速率快,超固结软土在冲击过程中孔压出现了负值。冲击荷载对土体产生的附加应力能导致孔压上升,孔压消散使得土体内有效应力增加,强度提高。对强夯施工中以孔压控制施工质量具有指导性意义。  相似文献   

11.
在精准温控动三轴试验系统上开展了不同温度及不同升温路径饱和黏土剪切试验研究,探讨了不同温度对饱和软黏土不排水剪切特性的影响,分析不同升温固结方式对饱和软黏土孔压发展、体变、强度以及模量的影响规律。试验结果显示:在4~76 ℃试验研究范围内,环境温度升高导致饱和软黏土的不排水剪切强度有所减少,但温度升高对土体模量增加影响明显,温度T和模量ET关系可用ET = 2.69T 0.3表达;升温变化时正常固结黏土产生超孔隙水压力并随着温度增大而增大,升温热固结后土的剪切强度将明显提高,且排水状态下升温固结对土剪切强度增长小于升温完成后再固结情况;土体从26 ℃分别升高20、40 ℃时,升温引起的超孔压比分别为0.41、0.61,剪切峰值强度分别增加8.23%、22.37%。研究表明:升温幅值增大会使土体热固结程度越大,升温分级越多,热固结也越充分,其对应的体变、强度增长率则越大;同时最终温度及热固结路径对其剪切相转换特征存在影响,升温越高、热固结路径越多其剪胀性越明显,但温度变化范围、固结分级、热固结路径总体上对孔隙水压力的发展基本不产生影响。  相似文献   

12.
冲击荷载下饱和软土动态响应特征的试验研究   总被引:1,自引:0,他引:1  
孟庆山  汪稔 《岩土力学》2005,26(1):17-21
基于现场动力排水固结法加固饱和软土地基工程实践和室内动力固结试验,结合土体压力分析了饱和软粘土在冲击荷载作用下的变形与孔压的发展变化规律。研究表明:冲击荷载引起土体变形和激发的孔压具有不同发展模式,土体变形与冲击击数是对数双曲线关系,而孔压与冲击击数之间仅是双曲线关系。  相似文献   

13.
不同固结压力下强结构性黏土孔隙分布试验研究   总被引:2,自引:0,他引:2  
张先伟  孔令伟  郭爱国  拓勇飞 《岩土力学》2014,35(10):2794-2800
为探讨结构性土变形的微观机制,以湛江地区结构性黏土为研究对象,对原状土和压缩试验后土样进行压汞试验,分析不同固结压力下土的孔隙分布、孔径大小以及孔隙结构特征参数的变化规律,辅以SEM图像进行孔隙形态的定性分析,并从分形理论角度对此解释与验证。结果表明,湛江黏土各孔隙组对外力的敏感度与孔隙体积含量正相关。由于压汞过程存在瓶颈效应以及边-面-角的空间接触形式,其结果可能会夸大真实小孔隙的分布密度而低估大孔隙的分布密度。结构性对压缩过程中孔隙分布影响较大,当固结压力增大至结构屈服压力后,孔径为0.01~0.50 μm的孔隙组变化明显,孔隙的连通性变差,孔径分布向小孔径范围移动,孤立式孔隙增多,大、中孔隙的界限变得不明显。湛江黏土孔隙具有多重分形特征,据此确定微裂隙、粒间孔隙和孤立孔隙孔径的分界点为0.01 μm与0.50 μm,同时给出了湛江黏土的孔径界定标准。  相似文献   

14.
邓志勇  张翠兵  张志毅 《岩土力学》2008,29(7):1931-1937
袋装砂井爆夯法处理软土地基是利用炸药在设置有排水通道的软土中爆炸产生冲击和振动而使土体加固的方法。针对该法进行理论研究,提出了一种将袋装砂井爆夯处理软土地基的三维问题转化为二维平面应变问题的数值模拟方法:袋装砂井转化为等价砂墙;利用等效冲量原理,炮孔爆炸压力则转化为等效压力墙。数值模拟中考虑了土体骨架变形与孔隙水非达西渗流的耦合。对数值模拟的现场试验验证分析表明,沉降数值分析的结果与铁路宁启线软基处理现场测试结果具有很好的可比性。所提出的数值分析方法可模拟袋装砂井爆夯处理软土地基的超静孔隙水压产生和消散以及土体沉降变形的动态过程。  相似文献   

15.
现有的饱和软黏土循环荷载累积孔压显式模型未能反映路基土体单元在土体自重作用下主应力轴的偏转现象。在确定饱和软黏土固结时间的基础上,在固结压力分别为100、150、200 kPa下,对软黏土进行主应力轴偏转角为15°、30°、45°的不排水循环加载试验,得到了固结围压、主应力轴旋转角及动应力比对循环累积孔压影响的规律。基于第一次循环加载累积孔压变化规律和修正动偏应力水平,建立了能考虑恒定主应力轴偏转角循环加载下累积孔压显式模型,并利用恒定主应力轴偏转角循环加载试验结果验证了模型的合理性。建立的循环荷载下饱和软黏土累积孔压显式模型参数易于确定,参数具有明确的物理意义且能考虑主应力轴的恒定偏转现象。  相似文献   

16.
软土结构性对次固结系数的影响   总被引:5,自引:0,他引:5  
张先伟  王常明 《岩土力学》2012,33(2):476-482
天然沉积的软土普遍具有结构性,常规计算软土次固结变形的方法并没有反映结构性的影响。通过对漳州与青岛地区原状软土与重塑土进行次固结试验,研究软土结构性对次固结系数 的影响。结果表明,软土的 随压力 增大而增大,在 接近结构屈服压力 时达到最大值,此后逐渐减小,受 影响减弱,最后与重塑土的 趋于一致;重塑土的 受压力影响很小,可视为常数。根据次固结系数与压缩指数比值 确定 可能存在一定误差。由于结构性的影响,正常固结软土表现出“假超固结”现象,采用超固结角度对结构性软土 变化规律进行说明并不合适,而根据不同压力下软土结构破损的情况可以很好解释这一现象。  相似文献   

17.
The aim of this paper is to present a methodology for identifying the soil parameters controlling the delayed behaviour from laboratory and in situ pressuremeter tests by using an elasto‐viscoplastic model (EVP‐MCC) based on Perzyna's overstress theory and on the elasto‐plastic Modified Cam Clay model. The influence of both the model parameters and the soil permeability was studied under the loading condition of pressuremeter tests by coupling the proposed model equations with Biot's consolidation theory. On the basis of the parametric study, a methodology for identifying model parameters and soil permeability by inverse analysis from three levels of constant strain rate pressuremeter tests was then proposed and applied on tests performed on natural Saint‐Herblain clay. The methodology was validated by comparing the optimized values of soil parameters and the values of the same parameters obtained from laboratory test results, and also by using the identified parameters to simulate other tests on the same samples. The analysis of the drainage condition and the strain rate effect during a pressuremeter test demonstrated the coupled influence of consolidation and viscous effects on the test results. The numerical results also showed that the inverse analysis procedure could successfully determine the parameters controlling the time‐dependent soil behaviour. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Consolidation of sensitive clays: a numerical investigation   总被引:1,自引:1,他引:0  
Consolidation of sensitive clay layers, which have significant compressibility at different stress states, is investigated via a nonlinear one-dimensional consolidation approach with a piecewise linear e ~ log10σ′ model. The behaviour of sensitive clays during consolidation and the limitations of conventional consolidation theory are addressed. It is shown that (1) the sensitive clay layer can be divided by the preconsolidation pressure into two zones, that is, high- and low-compressibility zones. The progressive destruction of particle cementation bonding through the soil layer is shown by the moving front of the interface between these two zones; (2) the excess pore pressure dissipation primarily takes place in the low-compressibility zone, which results in a small settlement during the early stages of consolidation; (3) conventional consolidation theory highly overestimates the settlement and gives a poor prediction of effective stress distribution.  相似文献   

19.
This paper presents a general semi-analytical solution for undrained cylindrical and spherical cavity expansion in Modified Cam Clay (MCC) and subsequent consolidation. The undrained cylindrical and spherical cavity expansion response in MCC model is obtained through the similarity solution technique. Then, the subsequent consolidation process around the cavity is governed by the classical partial differential equation for consolidation. Finite Difference Method (FDM) is selected for solving the consolidation equation numerically. The proposed semi-analytical solution is validated by comparing the prediction of the dissipations of the pore pressure with Randolph’s closed-form solution for elastic-perfectly plastic soil. Parametric study shows that G0/p0′, R and M have significant influence on the cavity wall excess pore pressure dissipation curve, while it is not sensitive to the value of ν′. It is also found that the negative pore pressure generates around the expanded cylindrical and spherical cavity wall during the consolidation process when R > 5 for typical Boston blue clay. The developed solution has potential applications in geotechnical problems, such as the pile foundation, in-situ test, tunnel construction, compaction grouting, and so forth.  相似文献   

20.
The phenomenon of excess pore water pressure increase or stagnation and continuing large ground deformation in soft sensitive clay following the completion of construction of embankment is simulated for a case study at Saint Alban, Quebec, Canada. The present model employs an updated Lagrangian finite element framework and is combined with an automatic time increment selection scheme. The simulation based on an elasto‐viscoplastic constitutive model considers soil‐structure degradation effect. It is shown that without consideration for the microstructural degradation effect, it is not possible to reproduce the field responses of soft sensitive clay even during the construction of the embankment. When the soil‐structure degradation effect is considered, the present model can offer reasonably accurate prediction for the consolidation behavior of soft sensitive clay, including the so‐called anomalous pore water pressure generation and continuing large deformation even after the end of construction, which has been posing numerous uncertainties on the long‐term performance of earth structures. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号