首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The piecewise linear (‘multilinear’) approximation of realistic force‐deformation capacity curves is investigated for structural systems incorporating generalized plastic, hardening, and negative stiffness behaviors. This fitting process factually links capacity and demand and lies at the core of nonlinear static assessment procedures. Despite codification, the various fitting rules used can produce highly heterogeneous results for the same capacity curve, especially for the highly‐curved backbones resulting from the gradual plasticization or the progressive failures of structural elements. To achieve an improved fit, the error introduced by the approximation is quantified by studying it at the single‐degree‐of‐freedom level, thus avoiding any issues related to multi‐degree‐of‐freedom versus single‐degree‐of‐freedom realizations. Incremental dynamic analysis is employed to enable a direct comparison of the actual backbones versus their candidate piecewise linear approximations in terms of the spectral acceleration capacity for a continuum of limit‐states. In all cases, current code‐based procedures are found to be highly biased wherever widespread significant stiffness changes occur, generally leading to very conservative estimates of performance. The practical rules determined allow, instead, the definition of standardized low‐bias bilinear, trilinear, or quadrilinear approximations, regardless of the details of the capacity curve shape. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Error equations for kinematic wave and diffusion wave approximations were derived for time‐independent flows on infiltrating planes and channels under one upstream boundary and two downstream boundary conditions: zero flow at the upstream boundary, and critical flow depth and zero depth gradient at the downstream boundary. These equations specify error in the flow hydrograph as a function of space. The diffusion wave approximation was found to be in excellent agreement with the dynamic wave approximation, with errors below 2% for values of KF (e.g. KF ≥ 7·5), where K is the kinematic wave number and F is the Froude number. Even for small values of KF (e.g. KF = 2·5), the errors were typically less than 3%. The accuracy of the diffusive approximation was greatly influenced by the downstream boundary condition. For critical flow depth downstream boundary condition, the error of the kinematic wave approximation was found to be less than 10% for KF ≥ 7·5 and greater than 20% for smaller values of KF. This error increased with strong downstream boundary control. The analytical solution of the diffusion wave approximation is adequate only for small values of K. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
VTI介质P波非双曲时差分析   总被引:5,自引:3,他引:5       下载免费PDF全文
具有垂直对称轴的横向各向同性介质模型(VTI)是目前各向异性理论研究和多波多分量地震资料叠前成像处理中最常用的一种各向异性模型.VTI介质中反射 P波时距曲线一般不再是双曲线.基于不同的相速度近似公式会得到不同的时距关系式.文中对几种典型的非双曲时距曲线与射线追踪得到的准确时距曲线在不同各向异性强度下进行了对比,结果表明Muir等和Stovas等提出的非双曲时距公式由于过高地考虑了横波垂直速度的影响与精确的时距曲线有很大偏差;Tsvankin等提出的弱各向异性非双曲时距公式在ε-δ<0时误差增大;Alkhalifah等提出的非双曲时距公式在大炮检距任意各向异性强度下都具有较高的精度,适于在实际资料处理中应用.  相似文献   

4.
We present some error expressions for approximate modal solutions of viscously damped linear structural vibration equations; these approximations are calculated by a variety of modal techniques. Motivated by our numerical experience, we show the equivalence of some different modal solutions in the presence of classical damping and, in passing, we obtain a previously unremarked manifestation of this type of damping. We make some brief comments about obtaining error estimates and, finally, we show some numerical results for a standard test problem which illustrate properties of the modal solutions.  相似文献   

5.
Transverse isotropy with a vertical axis of symmetry is a common form of anisotropy in sedimentary basins, and it has a significant influence on the seismic amplitude variation with offset. Although exact solutions and approximations of the PP-wave reflection coefficient for the transversely isotropic media with vertical axis of symmetry have been explicitly studied, it is difficult to apply these equations to amplitude inversion, because more than three parameters need to be estimated, and such an inverse problem is highly ill-posed. In this paper, we propose a seismic amplitude inversion method for the transversely isotropic media with a vertical axis of symmetry based on a modified approximation of the reflection coefficient. This new approximation consists of only three model parameters: attribute A, the impedance (vertical phase velocity multiplied by bulk density); attribute B, shear modulus proportional to an anellipticity parameter (Thomsen's parameter ε−δ); and attribute C, the approximate horizontal P-wave phase velocity, which can be well estimated by using a Bayesian-framework-based inversion method. Using numerical tests we show that the derived approximation has similar accuracy to the existing linear approximation and much higher accuracy than isotropic approximations, especially at large angles of incidence and for strong anisotropy. The new inversion method is validated by using both synthetic data and field seismic data. We show that the inverted attributes are robust for shale-gas reservoir characterization: the shale formation can be discriminated from surrounding formations by using the crossplot of the attributes A and C, and then the gas-bearing shale can be identified through the combination of the attributes A and B. We then propose a rock-physics-based method and a stepwise-inversion-based method to estimate the P-wave anisotropy parameter (Thomsen's parameter ε). The latter is more suitable when subsurface media are strongly heterogeneous. The stepwise inversion produces a stable and accurate Thomsen's parameter ε, which is proved by using both synthetic and field data.  相似文献   

6.
ABSTRACT

Evaporation is one of the most important components in the energy and water budgets of lakes and is a primary process of water loss from their surfaces. An artificial neural network (ANN) technique is used in this study to estimate daily evaporation from Lake Vegoritis in northern Greece and is compared with the classical empirical methods of Penman, Priestley-Taylor and the mass transfer method. Estimation of the evaporation over the lake is based on the energy budget method in combination with a mathematical model of water temperature distribution in the lake. Daily datasets of air temperature, relative humidity, wind velocity, sunshine hours and evaporation are used for training and testing of ANN models. Several input combinations and different ANN architectures are tested to detect the most suitable model for predicting lake evaporation. The best structure obtained for the ANN evaporation model is 4-4-1, with root mean square error (RMSE) from 0.69 to 1.35 mm d?1 and correlation coefficient from 0.79 to 0.92.
EDITOR M.C. Acreman

ASSOCIATE EDITOR not assigned  相似文献   

7.
Practical VTI approximations: a systematic anatomy   总被引:3,自引:0,他引:3  
Transverse isotropy (TI) with a vertical symmetry axis (VTI) often provides an appropriate earth model for prestack imaging of steep-dip reflection seismic data. Exact P-wave and SV-wave phase velocities in VTI media are described by complicated equations requiring four independent parameters. Estimating appropriate multiparameter earth models can be difficult and time-consuming, so it is often useful to replace the exact VTI equations with simpler approximations requiring fewer parameters. The accuracy limits of different previously published VTI approximations are not always clear, nor is it always obvious how these different approximations relate to each other. Here I present a systematic framework for deriving a variety of useful VTI approximations. I develop first a sequence of well-defined approximations to the exact P-wave and SV-wave phase velocities. In doing so, I show how the useful but physically questionable heuristic of setting shear velocities identically to zero can be replaced with a more precise and quantifiable approximation. The key here to deriving accurate approximations is to replace the stiffness a13 with an appropriate factorization in terms of velocity parameters. Two different specific parameter choices lead to the P-wave approximations of Alkhalifah (Geophysics 63 (1998) 623) and Schoenberg and de Hoop (Geophysics 65 (2000) 919), but there are actually an infinite number of reasonable parametrizations possible. Further approximations then lead to a variety of other useful phase velocity expressions, including those of Thomsen (Geophysics 51 (1986) 1954), Dellinger et al. (Journal of Seismic Exploration 2 (1993) 23), Harlan (Stanford Exploration Project Report 89 (1995) 145), and Stopin (Stopin, A., 2001. Comparison of v(θ) equations in TI medium. 9th International Workshop on Seismic Anisotropy). Each P-wave phase velocity approximation derived this way can be paired naturally with a corresponding SV-wave approximation. Each P-wave or SV-wave phase velocity approximation can then be converted into an equivalent dispersion relation in terms of horizontal and vertical slownesses. A simple heuristic substitution also allows each phase velocity approximation to be converted into an explicit group velocity approximation. From these, in turn, travel time or moveout approximations can also be derived. The group velocity and travel time approximations derived this way include ones previously used by Byun et al. (Geophysics 54 (1989) 1564), Dellinger et al. (Journal of Seismic Exploration 2 (1993) 23), Tsvankin and Thomsen (Geophysics 59 (1994) 1290), Harlan (89 (1995) 145), and Zhang and Uren (Zhang, F. and Uren, N., 2001. Approximate explicit ray velocity functions and travel times for P-waves in TI media. 71st Annual International Meeting, Society of Exploration Geophysicists, Expanded Abstracts, 106–109).  相似文献   

8.
9.
We use linear stability analysis to approximate the axisymmetric to nonaxisymmetric transition in the differentially heated rotating annulus. We study an accurate mathematical model that uses the Navier–Stokes equations in the Boussinesq approximation. The steady axisymmetric solution satisfies a two-dimensional partial differential boundary value problem. It is not possible to compute the solution analytically, and thus, numerical methods are used. The eigenvalues are also given by a two-dimensional partial differential problem, and are approximated using the matrix eigenvalue problem that results from discretizing the linear part of the appropriate equations.

A comparison is made with experimental results. It is shown that the predictions using linear stability analysis accurately reproduce many of the experimental observations. Of particular interest is that the analysis predicts cusping of the axisymmetric to nonaxisymmetric transition curve at wave number transitions, and the wave number maximum along the lower part of the axisymmetric to nonaxisymmetric transition curve is accurately determined. The correspondence between theoretical and experimental results validates the numerical approximations as well as the application of linear stability analysis.

A linear stability analysis is also performed with the effects of centrifugal buoyancy neglected. Along the lower part of the transition curve, the results are significantly qualitatively and quantitatively different than when the centrifugal effects are considered. In particular, the results indicate that the centrifugal buoyancy is the cause of the observation of a wave number maximum along the transition curve, and is the cause of a change in concavity of the transition curve.  相似文献   

10.
目前对测氡仪闪烁室K值变化引起水氡测值变化的校正方法存在明显的不合理性。利用曲线拟合方法拟合12个闪烁室K值变化的曲线方程,结果显示K值按二次曲线模型变化。采用该方法对甘肃武山22号井水氡进行重新校正,与之前的校正结果相比,重新校正的曲线连贯性和稳定性更好,且更趋于合理。分别分析武山22号井水氡新校正曲线、原始测值曲线和去台阶处理曲线与地震的对应关系,结果显示新校正的水氡曲线不仅在大地震前异常具有重现性特征,且在同一地震前与震中一定范围内其他台站的水氡异常具有同步性特性。这进一步表明,根据K值的变化机理对水氡测值进行重新校正是非常必要的。  相似文献   

11.
Abstract

A new model of convection and mixing is presented. The fluid is envisioned as being composed of two buoyant interacting fluids, called thermals and anti-thermals. In the context of the Boussinesq approximation, pairs of governing equations are derived for thermals and anti-thermals. Each pair meets an Invariance Principle as a consequence of the reciprocity in the roles played by thermals and anti-thermals. Each pair is transformed into an average equation for which interaction terms cancel and another very simple equation linking the two fluid properties. An important parameter of the model is the fraction, f, of area occupied by thermals to the total area. A dynamic saturation equilibrium between thermals and antithermals is assumed. This implies a constant values of f throughout the system. The set of equations is written in terms of mean values and root-mean-square fluctuations, in keeping with equations of turbulence theories. The final set consists of four coupled non-linear differential equations. The model neglects dissipation and can be applied to any convective situations where molecular viscosity and diffusivity may be neglected. Applications of the model to mixed-layer deepening and penetrative convection are presented in subsequent papers.  相似文献   

12.
Abstract

Recent work pertaining to estimating error and accuracies in geomagnetic field modeling is reviewed from a unified viewpoint and illustrated with examples. The formulation of a finite dimensional approximation to the underlying infinite dimensional problem is developed. Central to the formulation is an inner product and norm in the solution space through which a priori information can be brought to bear on the problem. Such information is crucial to estimation of the effects of higher degree fields at the Core-Mantle boundary (CMB) because the behavior of higher degree fields is masked in our measurements by the presence of the field from the Earth's crust. Contributions to the errors in predicting geophysical quantities based on the approximate model are separated into three categories: (1) the usual error from the measurement noise; (2) the error from unmodeled fields, i.e. from sources in the crust, ionosphere, etc.; and (3) the error from truncating to a finite dimensioned solution and prediction space. The combination of the first two is termed low degree error while the third is referred to as truncation error.

The error analysis problem consists of “characterizing” the difference δz = z—z, where z is some quantity depending on the magnetic field and z is the estimate of z resulting from our model. Two approaches are discussed. The method of Confidence Set Inference (CSI) seeks to find an upper bound for |z—?|. Statistical methods, i.e. Bayesian or Stochastic Estimation, seek to estimate Ez2 ), where E is the expectation value. Estimation of both the truncation error and low degree error is discussed for both approaches. Expressions are found for an upper bound for |δz| and for Ez2 ). Of particular interest is the computation of the radial field, B., at the CMB for which error estimates are made as examples of the methods. Estimated accuracies of the Gauss coefficients are given for the various methods. In general, the lowest error estimates result when the greatest amount of a priori information is available and, indeed, the estimates for truncation error are completely dependent upon the nature of the a priori information assumed. For the most conservative approach, the error in computing point values of Br at the CMB is unbounded and one must be content with, e.g., averages over some large area. The various assumptions about a priori information are reviewed. Work is needed to extend and develop this information. In particular, information regarding the truncated fields is needed to determine if the pessimistic bounds presently available are realistic or if there is a real physical basis for lower error estimates. Characterization of crustal fields for degree greater than 50 is needed as is more rigorous characterization of the external fields.  相似文献   

13.
Motivated by consideration of the solar tachocline, we derive, via an asymptotic procedure, a new set of equations incorporating velocity shear and magnetic buoyancy into the Boussinesq approximation. We demonstrate, by increasing the magnetic field scale height, how these equations are linked to the magneto-Boussinesq equations of Spiegel and Weiss (Magnetic buoyancy and the Boussinesq approximation. Geophys. Astrophys. Fluid Dyn. 1982, 22, 219–234).  相似文献   

14.
Higher-order approximation techniques for estimating stochastic parameter of the non-homogeneous Poisson (NHP) model are presented. The NHP model is characterized by a two-parameter cumulative probability distribution function (CDF) of sediment displacement. Those two parameters are the temporal and spatial intensity functions, physically representing the inverse of the average rest period and step length of sediment particles, respectively. Difficulty of estimating the parameters has, however, restricted the applications of the NHP model. The approximation techniques are proposed to address such problem. The basic idea of the method is to approximate a model involving stochastic parameters by Taylor series expansion. The expansion preserves certain higher-order terms of interest. Using the experimental (laboratory or field) data, one can determine the model parameters through a system of equations that are simplified by the approximation technique. The parameters so determined are used to predict the cumulative distribution of sediment displacement. The second-order approximation leads to a significant reduction of the CDF error (of the order of 47%) compared to the first-order approximation. Error analysis is performed to evaluate the accuracy of the first- and second-order approximations with respect to the experimental data. The higher-order approximations provide better estimations of the sediment transport and deposition that are critical factors for such environment as spawning gravel-bed.  相似文献   

15.
Higher-order approximation techniques for estimating stochastic parameter of the non-homogeneous Poisson (NHP) model are presented. The NHP model is characterized by a two-parameter cumulative probability distribution function (CDF) of sediment displacement. Those two parameters are the temporal and spatial intensity functions, physically representing the inverse of the average rest period and step length of sediment particles, respectively. Difficulty of estimating the parameters has, however, restricted the applications of the NHP model. The approximation techniques are proposed to address such problem. The basic idea of the method is to approximate a model involving stochastic parameters by Taylor series expansion. The expansion preserves certain higher-order terms of interest. Using the experimental (laboratory or field) data, one can determine the model parameters through a system of equations that are simplified by the approximation technique. The parameters so determined are used to predict the cumulative distribution of sediment displacement. The second-order approximation leads to a significant reduction of the CDF error (of the order of 47%) compared to the first-order approximation. Error analysis is performed to evaluate the accuracy of the first- and second-order approximations with respect to the experimental data. The higher-order approximations provide better estimations of the sediment transport and deposition that are critical factors for such environment as spawning gravel-bed.  相似文献   

16.
Errors in the kinematic wave and diffusion wave approximation for time-independent (or steady-state) cases of channel flow with infiltration were derived for three types of boundary conditions: zero flow at the upstream end, and critical flow depth and zero depth gradient at the downstream end. The diffusion wave approximation was found to be in excellent agreement with the dynamic wave approximation, with errors of less than 1·4% for KF20≥7·5, and up to 14% for KF20≤0·75 for the upstream boundary condition of zero discharge and finite depth, where K is the kinematic wave number and F0 is the Froude number. The kinematic wave approximation was reasonably accurate except at the channel boundaries and for small values of KF20 (≤1). The accuracy of these approximations was significantly influenced by the downstream boundary, both in terms of the magnitude of the error and the segment of the channel reach for which these approximations would be applicable. © 1998 John Wiley & Sons, Ltd.  相似文献   

17.
Errors in the kinematic wave and diffusion wave approximation for time-independent (or steady-state) cases of channel flow with momentum exchange included were derived for three types of boundary conditions: zero flow at the upstream end, and critical flow depth and zero depth gradient at the downstream end. The diffusion wave approximation was found to be in excellent agreement with the dynamic wave approximation, with errors of less than 1% for KF20≥7·5 and up to 12% for KF20≤0·75 for the upstream boundary condition of zero discharge and finite depth, where K is the kinematic wave number and F0 is the Froude number. The kinematic wave approximation was reasonably accurate except at the channel boundaries and for small values of KF20 (≤1). The accuracy of these approximations was significantly influenced by the downstream boundary condition both in terms of the error magnitude and the segment of the channel reach for which these approximations would be applicable. © 1997 by John Wiley & Sons, Ltd.  相似文献   

18.
Tidal flow forecasting using reduced rank square root filters   总被引:1,自引:0,他引:1  
The Kalman filter algorithm can be used for many data assimilation problems. For large systems, that arise from discretizing partial differential equations, the standard algorithm has huge computational and storage requirements. This makes direct use infeasible for many applications. In addition numerical difficulties may arise if due to finite precision computations or approximations of the error covariance the requirement that the error covariance should be positive semi-definite is violated. In this paper an approximation to the Kalman filter algorithm is suggested that solves these problems for many applications. The algorithm is based on a reduced rank approximation of the error covariance using a square root factorization. The use of the factorization ensures that the error covariance matrix remains positive semi-definite at all times, while the smaller rank reduces the number of computations and storage requirements. The number of computations and storage required depend on the problem at hand, but will typically be orders of magnitude smaller than for the full Kalman filter without significant loss of accuracy. The algorithm is applied to a model based on a linearized version of the two-dimensional shallow water equations for the prediction of tides and storm surges. For non-linear models the reduced rank square root algorithm can be extended in a similar way as the extended Kalman filter approach. Moreover, by introducing a finite difference approximation to the Reduced Rank Square Root algorithm it is possible to prevent the use of a tangent linear model for the propagation of the error covariance, which poses a large implementational effort in case an extended kalman filter is used.  相似文献   

19.
Backus and Crampin derived analytical equations for estimating approximate phase-velocity variations in symmetry planes in weakly anisotropic media, where the coefficients of the equations are linear combinations of the elastic constants. We examine the application of similar equations to group-velocity variations in off-symmetry planes, where the coefficients of the equations are derived numerically. We estimate the accuracy of these equations over a range of anisotropic materials with transverse isotropy with both vertical and horizontal symmetry axes, and with combinations of transverse isotropy yielding orthorhombic symmetry. These modified equations are good approximations for up to 17% shear-wave anisotropy for propagations in symmetry planes for all waves in all symmetry systems examined, but are valid only for lower shear-wave anisotropy (up to 11%) in off-symmetry planes. We also obtain analytical moveout equations for the reflection of qP-, qSH-, and qSV- waves from a single interface for off-symmetry planes in anisotropic symmetry. The moveout equation consists of two terms: a hyperbolic moveout and a residual moveout, where the residual moveout is proportional to the degree of anisotropy and the spread length of the acquisition geometry. Numerical moveout curves are computed for a range of anisotropic materials to verify the analytical moveout equations.  相似文献   

20.
Abstract

Formation of electric current sheets in the corona is thought to play an important role in solar flares, prominences and coronal heating. It is therefore of great interest to identify magnetic field geometries whose evolution leads to variations in B over small length-scales. This paper considers a uniform field B 0[zcirc], line-tied to rigid plates z = ±l, which are then subject to in-plane displacements modeling the effect of photospheric motion. The force-free field equations are formulated in terms of field-line displacements, and when the imposed plate motion is a linear function of position, these reduce to a 4 × 4 system of nonlinear, second-order ordinary differential equations. Simple analytic solutions are derived for the cases of plate rotation and shear, which both tend to form singularities in certain parameter limits. In the case of plate shear there are two solution branches—a simple example of non-uniqueness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号