首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fourteen peridotite xenoliths collected in the Massif Central neogene volcanic province (France) have been analyzed for platinum-group elements (PGE), Au, Cu, S, and Se. Their total PGE contents range between 3 and 30 ppb and their PGE relative abundances from 0.01 to 0.001 × CI-chondrites, respectively. Positive correlations between total PGE contents and Se suggest that all of the PGE are hosted mainly in base metal sulfides (monosulfide solid solution [Mss], pentlandite, and Cu-rich sulfides [chalcopyrite/isocubanite]). Laser ablation microprobe-inductively coupled plasma mass spectrometry analyses support this conclusion while suggesting that, as observed in experiments on the Cu-Fe-Ni-S system, the Mss preferentially accommodate refractory PGEs (Os, Ir, Ru, and Rh) and Cu-rich sulfides concentrate Pd and Au. Poikiloblastic peridotites pervasively percolated by large silicate melt fractions at high temperature (1200°C) display the lowest Se (<2.3 ppb) and the lowest PGE contents (0.001 × CI-chondrites). In these rocks, the total PGE budget inherited from the primitive mantle was reduced by 80%, probably because intergranular sulfides were completely removed by the silicate melt. In contrast, protogranular peridotites metasomatized by small fractions of volatile-rich melts are enriched in Pt, Pd, and Au and display suprachondritic Pd/Ir ratios (1.9). The palladium-group PGE (PPGE) enrichment is consistent with precipitation of Cu-Ni-rich sulfides from the metasomatic melts. In spite of strong light rare earth element (LREE) enrichments (Ce/YbN < 10), the three harzburgites analyzed still display chondrite-normalized PGE patterns typical of partial melting residues, i.e., depleted in Pd and Pt relative to Ir and Ru. Likewise, coarse-granular lherzolites, a common rock type in Massif Central xenoliths, display Pd/Ir, Ru/Ir, Rh/Ir, and Pt/Ir within the 15% uncertainty range of chondritic meteorites. These rocks do not contradict the late-veneer hypothesis that ascribes the PGE budget of the Earth to a late-accreting chondritic component; however, speculations about this component from the Pd/Ir and Pt/Ir ratios of basalt-borne xenoliths may be premature.  相似文献   

2.
Summary The Jinchuan deposit is a platinum group element (PGE)-rich sulfide deposit in China. Drilling and surface sampling show that three categories of platinum group element (PGE) mineralization occur; type I formed at magmatic temperatures, type II occurs in hydrothermally altered zones of the intrusion, and type III in sheared dunite and lherzolite. All ore types were analyzed for Os, Ir, Ru, Rh, Pd, Pt and Au, as well as for Cu, Ni, Co and S. Type I ore has (Pt + Pd)/(Os + Ir + Ru + Rh) ratios of <7 and relatively flat chondrite-normalized noble metal patterns; the platinum group minerals (PGM) are dominated by sperrylite and moncheite associated with chalcopyrite, pyrrhotite and pentlandite. Type II has (Pt + Pd)/(Os + Ir + Ru + Rh) ratios from 40 to 330 and noble metal distribution patterns with a positive slope; the most common PGM are sperrylite and Pd bismuthotelluride phases concentrated mostly at the margins of base metal sulfides. Type III ores have the highest (Pt + Pd)/(Os + Ir + Ru + Rh) ratios from 240 to 710; the most abundant PGM are sperrylite and phases of the Pt–Pd–Te–Bi–As–Cl system. It is concluded that the Jinchuan deposit formed as a result of primary magmatic crystallization followed by hydrothermal remobilization, transport, and deposition of the PGE.  相似文献   

3.
The emission of platinum group elements (PGE) from automobile catalytic converters has led to enrichment of PGE in road dusts and roadside soils in urban areas that are well above the natural background levels. This paper evaluates the source of contamination of all the PGE and Au in road dusts and roadside soils in the Pearl River Delta region, including three major cities, Shenzhen, Guangzhou and Hong Kong, South China. Samples were digested using Carius tube and analyzed by isotope dilution ICP-MS; Os was separated by distillation and other PGE by Te-coprecipitation. All samples have elevated PGE concentrations above the background values of uncontaminated soils and contain higher Pt, Pd and Rh than other PGE. The maximum values are 181 ng/g Pt, 514 ng/g Pd, 53 ng/g Rh and 1345 ng/g Au. There are clear positive correlations between Pt and Pd, Pt and Rh, and Pd and Rh, indicating that the main emitted of PGE from automobile catalyst are Pt, Pd and Rh. High concentrations of Au were also found in road dust samples from Hong Kong and Shenzhen. Dust samples with higher Os contents have lower 187Os/188Os ratios. Samples from Hong Kong show relatively high Pt/Rh ratios. Positive correlations between Pt and Ru, and Pt and Ir were found in Shenzhen and Hong Kong, but only positive correlations between Pt and Ir were found in Guangzhou. These different characteristics reflect different automobile catalytic systems used in Hong Kong and mainland China.  相似文献   

4.
为了探讨富钴结壳的稀土和铂族元素是否有相似的形成机制,对西太平洋海山富钴结壳稀土和铂族元素进行了类比研究.结果表明:富钴结壳的∑REY范围为1 433.7×10-6~2 888.0×10-6,其中Ce占到近50%,北美页岩标准化后显示较平坦的稀土模式和显著的Ce正异常特征.根据稀土配分模式及已有的Nd同位素结果,富钴结壳具有亲陆壳属性.富钴结壳具有极高的Pt (115.5×10-9~1 132.0×10-9)、(Pt/Pd)N和 (Pt/Os)N值,Ir与Pt及Rh与Pt显示良好相关性.经球粒陨石标准化后显示较一致PGE (platinum-group elements) 配分模式,从Os到Pt逐渐富集,Pd元素强烈亏损.已有的Os同位素研究结果显示物源在地质历史时期从幔源属性向陆源属性变化,但富钴结壳PGE元素内部相对含量仍在一定程度上保持稳定.研究认为:富钴结壳对海水中的稀土清扫具有选择性,Ce的正异常恰恰是结壳对海水稀土中Ce的优先选择造成的,从而导致海水亏损Ce.然而海水中Ce的亏损并未改变新形成富钴结壳的稀土模式,原因是在海洋中存在适量的具有亏损Ce特征的磷酸盐等组分,理论上只需要氧化物类稀土与磷酸盐类稀土消耗的稀土与海水中的补给平衡即可.只是在相关过程中,海洋中氧化物类对稀土的选择更具有主动性,而磷酸盐类表现更多的继承关系.尽管Os同位素显示物源供给发生变化,然而富钴结壳PGE模式相对稳定.因此富钴结壳PGE模式同样可以用富钴结壳对PGE的选择性吸收解释,因富钴结壳优先选择Pt与Ir以及相对排斥Pd和Os,形成了现有独特的PGE模式.   相似文献   

5.
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used to measure distributions of the siderophile elements V, Fe, Co, Ni, Mo, Ru, Rh, Pd, W, Re, Os, Ir, Pt, and Au in Fremdlinge with a spatial resolution of 15 to 25 μm. A sulfide vein in a refractory inclusion in Allende (CV3-oxidized) is enriched in Rh, Ru, and Os with no detectable Pd, Re, Ir, or Pt, indicating that Rh, Ru, and Os were redistributed by sulfidation of the inclusion, causing fractionation of Re/Os and other siderophile element ratios in Allende CAIs. Fremdlinge in compact Type-A inclusions from Efremovka (CV3-reduced) exhibit subsolidus exsolution into kamacite and taenite and minimal secondary formation of V-magnetite and schreibersite. Siderophile element partitioning between taenite and kamacite is similar to that observed previously in iron meteorites, while preferential incorporation of the light PGEs (Ru, Rh, Pd) relative to Re, Os, Ir, and Pt by schreibersite was observed. Fremdling EM2 (CAI Ef2) has an outer rim of P-free metal that preserves the PGE signature of schreibersite, indicating that EM2 originally had a phosphide rim and lost P to the surrounding inclusion during secondary processing. Most Fremdlinge have chondrite-normalized refractory PGE patterns that are unfractionated, with PGE abundances derived from a small range of condensation temperatures, ∼1480 to 1468 K at Ptot = 10−3 bar. Some Fremdlinge from the same CAI exhibit sloping PGE abundance patterns and Re/Os ratios up to 2 × CI that likely represent mixing of grains that condensed at various temperatures.  相似文献   

6.
Platinum-group element (PGE) geochemistry combined with elemental geochemistry and magnetite compositions are reported for the Mesoproterozoic Zhuqing Fe–Ti–V oxide ore-bearing mafic intrusions in the western Yangtze Block, SW China. All the Zhuqing gabbros display extremely low concentrations of chalcophile elements and PGEs. The oxide-rich gabbros contain relatively higher contents of Cr, Ni, Ir, Ru, Rh, and lower contents of Pt and Pd than the oxide-poor gabbros. The abundances of whole-rock concentrations of Ni, Ir, Ru, and Rh correlate well with V contents in the Zhuqing gabbros, implying that the distributions of these elements are controlled by magnetite. The fractionation between Ir–Ru–Rh and Pt–Pd in the Zhuqing gabbros is mainly attributed to fractional crystallization of chromite and magnetite, whereas Ru anomalies are mainly due to variable degrees of compatibility of PGE in magnetite. The order of relative incompatibility of PGEs is calculated to be Pd?<?Pt?<?Rh?<?Ir?<?Ru. The very low PGE contents and Cu/Zr ratios and high Cu/Pd ratios suggest initially S-saturated magma parents that were highly depleted in PGE, which mainly formed due to low degrees of partial melting leaving sulfides concentrating PGEs behind in the mantle. Moreover, the low MgO, Ni, Ir and Ru contents and high Cu/Ni and Pd/Ir ratios for the gabbros suggest a highly evolved parental magma. Fe–Ti oxides fractionally crystallized from the highly evolved magma and subsequently settled in the lower sections of the magma chamber, where they concentrated and formed Fe–Ti–V oxide ore layers at the base of the lower and upper cycles. Multiple episodes of magma replenishment in the magma chamber may have been involved in the formation of the Zhuqing intrusions.  相似文献   

7.
Eight ferromanganese crusts (Fe-Mn crusts) with igneous and sedimentary substrates collected at different water depths from the Afanasiy-Nikitin Seamount are studied for their bulk major, minor and rare earth element composition. The Mn/Fe ratios < 1.5 indicate the hydrogenetic accretion of the Fe-Mn hydroxides. These Fe-Mn crusts are enriched in Co (up to 0.9%, average ∼ 0.5%) and Ce. The Ce-content is the highest reported so far (up to 3763 ppm, average ∼ 2250 ppm) for global ocean seamount Fe-Mn crusts. In spite of general similarity in the range of major, minor, and strictly trivalent rare earth element composition, the dissimilarity between the present Fe-Mn crusts and the Pacific seamount Fe-Mn crusts in Co and Ce associations with major mineral phases indicates inter-oceanic heterogeneity and region-specific conditions responsible for their enrichment. The decrease in Ce-anomaly (from ∼ 8 to ∼ 1.5) with increasing water depth (from ∼ 1.7 km to ∼ 3.2 km) might suggest that the modern intermediate depth low oxygen layer was shifted and sustained at a deeper depth for a long period in the past.  相似文献   

8.
方解石作为木落稀土矿床常见的脉石矿物,其中的铂族元素(简称PGE)地球化学特征有可能记录了地质流体的性质。采用ICP-MS分析木落方解石中PGE的含量,并对铂族元素的分布、相关性、成因进行了探讨。木落方解石可以分为两类:I型方解石和Ⅱ型方解石。I型方解石中∑PGE(不含Os)0.62~1.33ng/g,具相对低的Pd/Pt、Pd/Rh、Pd/Ru、Pd/Ir比值,不太显著的Pt-Pd分配模式,为岩浆成因方解石,与成矿作用密切相关;Ⅱ型方解石中∑PGE(不含Os)1.85~2.97ng/g,具相对高的Pd/Pt、Pd/Rh、Pd/Ru、Pd/Ir比值和显著的Pt-Pd分配模式,为热液成因方解石,代表了成矿作用后的一期地质流体作用,与成矿关系不大,仅局部地区存在改造前次流体作用形成的稀土矿体。富CO2热液具有携带PGE的能力,并能够导致PGE的分异,与富CO2岩浆相比,富CO2热液对铂族元素具有一定程度的富集作用。  相似文献   

9.
We have analysed 18 samples of komatiite from five consecutivelava flows of the Komati Formation at Spinifex Creek, BarbertonMountain Land. Our samples include massive komatiite, varioustypes of spinifex-textured komatiite, and flow-top breccias.The rocks have low platinum-group element (PGE) contents andPd/Ir ratios relative to komatiites from elsewhere, at 0·45–2ppb Os, 1–1·4 ppb Ir, <1–5 ppb Ru, 0·33–0·79ppb Rh, 1·7–6 ppb Pt, 1·6–6·1ppb Pd, and Pd/Ir 3·3. Pt/Pd ratios are c. 1·1.Platinum-group elements are depleted relative to Cu (Cu/Pd =15 300). They display a tendency to increase in the less magnesiansamples, suggesting that the magmas were S-undersaturated uponeruption and that all PGE were incompatible with respect tocrystallizing olivine. Komatiites from the Westonaria Formationof the Ventersdorp Supergroup and the Roodekrans Complex nearJohannesburg have broadly similar PGE patterns and concentrationsto the Komati rocks, suggesting that the PGE contents of SouthAfrican ultrabasic magmas are controlled by similar processesduring partial mantle melting and low-P magmatic crystallization.Most workers believe that the Barberton komatiites formed byrelatively moderate-degree batch melting of the mantle at highpressure. Based on the concentration of Zr in the Komati samples,we estimate that the degree of partial melting was between 26and 33%. We suggest that the low PGE contents and Pd/Ir ratiosof all analysed South African komatiites are the result of sulphideshaving been retained in the mantle source during partial melting.The difference in Pd/Ir between our samples and Al-undepletedkomatiites from elsewhere further suggests that the PGE arefractionated during progressive partial melting of the mantle.Thus, our data are in agreement with other recent studies showingthat the PGE are hosted by different phases in the mantle, withPd being concentrated by interstitial Cu-rich sulphide, andthe IPGE (Os, Ir, Ru) and Rh resting in monosulphide solid solutionincluded within silicates. Pt is possibly controlled by a discreterefractory phase, as Pt/Pd ratios of most komatiites worldwideare sub-chondritic. KEY WORDS: platinum-group elements; komatiites; Barberton; mantle melting; South Africa  相似文献   

10.
来自蛇绿岩地幔的硫(砷)化物矿物组合   总被引:1,自引:0,他引:1  
近来在西藏雅鲁藏布江蛇绿岩带的罗布莎蛇绿岩块的地幔豆荚状铬铁矿中发现一个包括金刚石、柯石英、自然元素、合金、氧化物以及硫(砷)化物组成的地幔矿物群。该矿物群的硫(砷)化物具有特殊化学成分并呈包裹体分布在贱金属(BM)和铂族元素(PGE)或它们的合金中,大量化学成分分析得知它们主要由下列元素组成:S、As、Te、Fe、Ni、Co、Cu、Pt、Pd、Ru、Rh、Os、Ir、Mn和Ti。根据化学成分可辨别出约30种硫(砷)化物矿物:FeS、NiS、(Ni,Fe)S、Fe3S2、Ni3S2、(Ru,Os,Ir)S2、Rh7As3、Rh5Ni(Cu)As4、Pd4Rh3As3、Pd8As2、Pd3TeAs、Pd7Te3、RuAs、PtAs2、Ni4Rh3As3、Rh(As,S)2、(Rh,Ir)(As,S)2、Ir(As,S)2、MnS、Ti7S3、Ti7N3、Rh3.5Se3.5CuS2、RhS、Ir2S3、(Ir,Cu)2、S3(Co,Ni,Fe)2(As,S)3、(Ir,Pt)(As,S)2、Ru3(As,S)7以及(BM)x(PGE)yS10-(x y)等,其中包括已定名和未定名的矿物。由于矿物粒度小(<25μm),缺乏X射线分析资料,有待进一步研究。  相似文献   

11.
Platinum group elements (PGE) enrichment occurs in Zn–Cu and Ni-rich ophiolities in a number of geological settings. Platinum group elements (PGE) mineralization in Pyroxenite from the Faryab ophiolities of Zagros belt in south Iran was studied. The ophiolite rocks represent blocks of Tethyan oceanic crust that were emplaced on the continental margin during the late Cretaceous period. Much of lower ophiolitic section is composed of homogeneous harzburgite, while upper sections harzburgite interlayer with dunite and pyroxenite are included. This study focused on pyroxenite that includes most of sulfide mineralization in Faryab. More than 500 samples were investigated from polished thin sections; that cover all area of Faryab. The sulfide phases include pyrrhotite, pentlandite, millerite, violarite, smythite, and heazlewoodite. The results show that in almost all the samples Os is below the 2 ppb detection limit, Platinum values vary from <5 to 91 ppb and the light PGE (Ru, Rh, and Pd) relative to the heavy PGE (Os, Ir, and Pt) are more concentrated. Calculation showed that in pyroxenites Pd–Pt is occurring with orthopyroxenite and Rh–Os is occurring in clinopyroxenite. Ni/Pd ratios in Faryab vary between 7 and 356 and Pd/Ir ratio is 0.1–27. This indicates that in Faryab area partial melt of mantle occurred. Pd/Rh ratio in Faryab is 0.1–11, and Pd/Pt varies between 0.2 and 1.5. Pd/Ir ratio in Faryab decreases and shows that PGE in Faryab occurred.  相似文献   

12.
The distribution of platinum group elements (PGEs) in massive sulfides and hematite–magnetite±pyrite assemblages from the recently discovered basalt-hosted Turtle Pits hydrothermal field and in massive sulfides from the ultramafic-hosted Logatchev vent field both on the Mid-Atlantic Ridge was studied and compared to that from selected ancient volcanic-hosted massive sulfide (VHMS) deposits. Cu-rich samples from black smoker chimneys of both vent fields are enriched in Pd and Rh (Pd up to 227 ppb and Rh up to 149 ppb) when compared to hematite–magnetite-rich samples from Turtle Pits (Pd up to 10 ppb, Rh up to 1.9 ppb). A significant positive correlation was established between Cu and Rh in sulfide samples from Turtle Pits. PGE chondrite-normalized patterns (with a positive Rh anomaly and Pd and Au enrichment), Pd/Pt and Pd/Au ratios close to global MORB, and high values of Pd/Ir and Pt/Ir ratios indicate mafic source rock and seawater involvement in the hydrothermal system at Turtle Pits. Similarly shaped PGE chondrite-normalized patterns and high values of Pd/Pt and Pd/Ir ratios in Cu-rich sulfides at Logatchev likely reflect a similar mechanism of PGE enrichment but with involvement of ultramafic source rocks.  相似文献   

13.
Highly siderophile element concentrations (HSE: Re and platinum-group elements (PGE)) are presented for gabbros, gabbroic eclogites and basaltic eclogites from the high-pressure Zermatt-Saas ophiolite terrain, Switzerland. Rhenium and PGE (Os, Ir, Ru, Rh, Pt, Pd) abundances in gabbro- and eclogite-hosted sulphides, and Re-Os isotopes and elemental concentrations in silicate phases are also reported. This work, therefore, provides whole rock and mineral-scale insights into the PGE budget of gabbroic oceanic crust and the effects of subduction metamorphism on gabbroic and basaltic crust.Chondrite-normalised PGE patterns for the gabbros are similar to published mid-ocean ridge basalts (MORB), but show less inter-element fractionation. Mean Pt and Pd contents of 360 and 530 pg/g, respectively, are broadly comparable to MORB, but gabbros have somewhat higher abundances of Os, Ir and Ru (mean: 64, 57 and 108 pg/g). Transformation to eclogite has not significantly changed the concentrations of the PGE, except Pd which is severely depleted in gabbroic eclogites relative to gabbros (∼75% loss). In contrast, basaltic eclogites display significant depletion of Pt (?60%), Pd (>85%) and Re (50-60%) compared with published MORB, while Os, Ir and Ru abundances are broadly comparable. Thus, these data suggest that only Pt, Pd and Re, and not Os, Ir and Ru, may be significantly fluxed into the mantle wedge from mafic oceanic crust. Re-Os model ages for gabbroic and gabbroic eclogite minerals are close to age estimates for igneous crystallisation and high-pressure metamorphism, respectively, hence the HSE budgets can be related to both igneous and metamorphic behaviour. The gabbroic budget of Os, Ir, Ru and Pd (but not Pt) is dominated by sulphide, which typically hosts >90% of the Os, whereas silicates account for most of the Re (with up to 75% in plagioclase alone). Sulphides in gabbroic eclogites tend to host a smaller proportion of the total Os (10-90%) while silicates are important hosts, probably reflecting Os inheritance from precursor phases. Garnet contains very high Re concentrations and may account for >50% of Re in some samples. The depletion of Pd in gabbroic eclogites appears linked, at least in part, to the loss of Ni-rich sulphide.Both basaltic and gabbroic oceanic crust have elevated Pt/Os ratios, but Pt/Re ratios are not sufficiently high to generate the coupled 186Os-187Os enrichments observed in some mantle melts, even without Pt loss from basaltic crust. However, the apparent mobility of Pt and Re in slab fluids provides an alternative mechanism for the generation of Pt- and Re-rich mantle material, recently proposed as a potential source of 187Os-186Os enrichment.  相似文献   

14.
Contents of platinum group elements (PGE—Os, Ir, Ru, Rh, Pt, and Pd) and rhenium in basalts of different geochemical types from the ophiolite complex of the Kamchatsky Mys Peninsula have been determined by the isotope dilution-mass spectrometry method. The total contents of PGE in different basalts are commensurate (1.4-3.6 ppb), but the element ratios vary considerably. A specific feature of the rocks is the low degree of PGE fractionation (Pd/Ir = 0.9-6.6, Pt/Pd = 1.0-7.3), which makes them similar to the Hawaiian tholeiitic basalts and picrites. The most fractionated PGE pattern is observed for alkali basalt (Pd/Ir = 6.6), and the least fractionated one, for E-MORB (Pd/Ir = 1.7). The similarity of the PGE patterns of basalts of different geochemical types suggests their similar mantle sources. We propose a model explaining the geochemical features of the basalts of the Kamchatsky Mys ophiolite complex by an impurity of the Earth’s core material in the plume source. The Ir/Pd-Ru/Pd and Pd/10-Ir-Ru discrimination diagrams can be used to identify enriched (plume) basalts based on their PGE content.  相似文献   

15.
为探讨贵州下寒武统黑色岩系中铂族元素物质来源及钼-镍、钒多金属形成的沉积环境与成矿作用,在钼-镍、钒多金属层及其顶底页岩、底部硅质岩中采集样品测试分析。通过对样品中金、铂族元素含量(质量分数)及其地球化学特征值研究,结果表明:黑色岩系中金及铂族元素含量显示协同变化特征;Pd富集,Ru、Ir亏损明显,Pt、Rh、Os基本持平或略有变化;样品的原始地幔标准值标准化模式配分曲线从Os、Ru、Rh、Ir、Pt到Pd大致呈“W”型,配分曲线略呈左倾,总体上呈现w(Pd)>w(Pt)>w(Os)>w(Rh)>w(Ru)>w(Ir)的变化关系;黑色岩系铂族元素来源与正常海水及海底热水喷流作用关系密切,地外来源可能性极小;黑色岩系钼-镍、钒多金属层中铂族元素的富集存在单独成矿作用或成矿作用的叠加,而且在钒多金属层内局部存在分层或条带分异。  相似文献   

16.
The behaviour of PGE in a rainforest ecosystem were investigated in four lateritic profiles (Nkamouna, Napene, West and East Mada) developed on serpentinites in the Kongo–Nkamouna massif (Lomié region, South-East Cameroon). In serpentinites, the total PGE content attains 22 ppb whilst it ranges between 26 and 200 ppb in the weathering blanket. Amongst the analyzed elements (platinum, iridium, ruthenium, rhodium, palladium), platinum and ruthenium contents are high in the saprolite zone and in the hardened materials of some weathering profiles (40–66 ppb for platinum, 50–71 ppb for ruthenium). Apart from the hardened materials, the total PGE content decreases from the coarse saprolite towards the clayey surface soil. The Fe2O3-PGE diagram indicates a relatively similar behaviour in these iron-rich samples. The Pt–Ir, Pt–Pd, Pt–Ru, Pt–Rh diagrams portray positive correlations between platinum and other PGE. This fact is supported by the positive correlation noticed between IPGE and PPGE. The Pt/Ir, Pt/Pd, Pt/Ru and Pt/Rh values indicate that iridium, palladium, ruthenium and rhodium are more mobile than platinum. These data confirm the mobility of PGE in laterites and the positive correlation reveals that PGE might be accommodated in the interfaces of iron oxides. The mass balance assessment shows that PGE are strongly leached from the Kongo–Nkamouna weathering blanket except in the coarse saprolite of the Nkamouna profile.  相似文献   

17.
Platinum group elements (PGE: Os, Ir, Ru, Rh, Pt, Pd) are important geochemical and cosmochemical tracers. Depending on physical and chemical behaviour the PGEs are divided into two subgroups: IPGE (Ir, Os, Ru) and PPGE (Pd, Pt, Rh). Platinum group elements show strong siderophile and chalcophile affinity. Base metal sulfides control the PGE budget of the Earth’s mantle. Mantle xenoliths contain two types of sulfide populations: (1) enclosed within silicate minerals, and (2) interstitial to the silicate minerals. In terms of PGE characters the included variety shows IPGE enriched patterns — similar to the melt-depleted mantle harzburgite, whereas the interstitial variety shows PPGE enriched patterns — resembling the fractionated PGE patterns of the basalt. These PGE characters of the mantle sulfides have been interpreted to be representative of multi-stages melting process of the mantle that helped to shape the chemical evolution of the Earth.  相似文献   

18.
A method was developed for the determination of platinum‐group elements (PGE) in geological samples by isotope dilution‐inductively coupled plasma‐mass spectrometry combined with sulfide fire assay preconcentration. Samples were fused and PGE analytes were concentrated in sulfide buttons. The buttons were dissolved using HCl leaving PGE analytes in insoluble residues, which were digested in HNO3 and simultaneously processed for the distillation of Os. The remaining solutions were further prepared for the purification of Ru, Rh, Pd, Ir and Pt using a tandem assembly of cation and Ln resin columns. The eluents were directly analysed by membrane desolvation‐ICP‐MS. Ruthenium, Pd, Os, Ir and Pt were determined by isotope dilution, whereas Rh was determined by conventional reference material calibration combined with 193Ir as the internal standard element. The method was validated using a series of PGE reference materials, and the measurement data were consistent with the recommended and the literature values. The measurement precision was better than 10% RSD. The procedural blanks were 0.121 ng for Ru, 0.204 for Rh, 0.960 ng for Pd, 0.111 ng for Os, 0.045 ng for Ir and 0.661 ng for Pt, and the limits of detection (3s) were 0.011 ng g?1 for Ru, 0.008 ng g?1 for Rh, 0.045 ng g?1 for Pd, 0.009 ng g?1 for Os, 0.006 ng g?1 for Ir and 0.016 ng g?1 for Pt when a test portion mass of 10 g was used. This indicates that the proposed method can be used for the determination of trace amounts of PGE in geological samples.  相似文献   

19.
赵宏樵  赵建如 《现代地质》2007,21(4):654-658
对太平洋CL、CM海山调查时获取9个富钴结壳样品,采用化学处理及ICP-MS法进行分析。对贵金属元素含量分布特征、富集因子、标准化模式以及来源进行探讨和研究。结果表明:海山结壳中贵金属元素Ag、Au、Ru、Rh、Pd、Pt等的平均含量分别为: 1.05×10-6、2.3×10-6、15.6×10-9、22.3×10-9、2.39×10-9和432×10-9。与结核、洋壳及陆地矿石的Pd/(Pt+Pd)、Pt/(Pt+Pd)和Pd/Pt等贵金属元素的比值相比,大洋富钴结壳的 Pd/(Pt+Pd) 比值最低,为0.006;其次是结核,为0.06;洋壳为0.08;陆地矿石的Pd/(Pt+Pd)比值较大,为0.35~0.65。结壳的Pt/(Pt+Pd)比值最高,为0.99;其次是结核,为0.95;洋壳为0.93;陆地矿石的Pt/(Pt+Pd)比值相对较低,为0.33~0.65。统计分析显示了不同区域、不同环境中贵金属元素的特征参数变化,并且说明富钴结壳中富铂、金、钌、铑,而贫钯。贵金属元素标准化显示,海山富钴结壳均存在着Pt、Au正异常和Pd的负异常,其中Au异常幅度与结核的Au异常一致。  相似文献   

20.
采用镍锍火试金法结合ICP-MS分析了12个北大别白垩纪镁铁-超镁铁岩样品的Ir,Ru,Rh,Pt和Pd的含量,结果显示铂族元素(PGE)的含量较低,原始地幔标准化后的PGE分布模式呈正斜率型,PPGE相对原始地幔略微亏损,而IPGE强烈亏损,Pd/Ir值远高于相应的地幔比值。这些镁铁-超镁铁岩中PGE的强烈分异是地幔低程度的部分熔融过程中,PPGE主要受硫化物控制,而Ir则存在于非硫化物相如尖晶石,可能还有合金之中造成的。同时,铂族元素的分布特征表明这些镁铁-超镁铁岩是岩浆结晶分异的产物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号