首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Sobradinho Lake lies in the S?o Francisco River Basin, in one of the most arid regions in Northeastern Brazil, within a land stretch categorized as the Lower-middle S?o Francisco, situated at about 40 km away from the municipality of Petrolina (09°23′S–40°30′W) in the state of Pernambuco. The dam, in its full capacity, consists of a lake of approximately 4,214 km2; 280 km in length, the width of which varies from 5 to 50 km. The dam storage capacity is that of 34.1 billion m3 of water. Being situated in a semi-arid region, the dam brought about significant development to local irrigated agriculture. The caatinga ecosystem has, for that matter, undergone considerable changes. Statistical analysis techniques applied to data collected before and after the filling of the lake, made it possible both to make an assessment of the impact of the dam construction on the region meteorology and to diagnose the variability of such an impact on environmental conditions. Results showed that the dam has brought about considerable changes to regional meteorology. The alterations were observed to be more significant as regards atmospheric humidity and wind speed.  相似文献   

2.
Cores of lake sediment to a depth of 334 m in the town of Tulelake, Siskiyou County, northern California, document the late Cenozoic paleolimnologic and paleoclimatic history of the northwestern edge of the Great Basin. The cores have been dated by radiometric, tephrochronologic and paleomagnetic analyses. Lacustrine diatoms are abundant throughout the record and document a nearly continuous paleolimnologic history of the Tule Lake basin for the last 3 Myr. During most of this time, this basin (Tule Lake) was a relatively deep, extensive lake. Except for a drier (and cooler?) interval recorded by Fragilaria species about 2.4 Ma, the Pliocene is characterized by a dominance of planktonic Aulacoseira solida implying a warm monomictic lake under a climatic regime of low seasonality. Much of the Pleistocene is dominated by Stephanodiscus and Fragilaria species suggesting a cooler, often drier, and highly variable climate. Benthic diatoms typical of alkaline-enriched saline waters commonly appear after 1.0 Ma, and tephrochronology indicates slow deposition and possible hiatuses between about 0.6 and 0.2 Ma. The chronology of even-numbered oxygen isotope stages approximately matches fluctuations in the abundance of Fragilaria since 800 ka indicating that glacial periods were expressed as drier environments at Tule Lake. Glacial and interglacial environments since 150 ka were distinct from, and more variable than, those occurring earlier. The last full glacial period was very dry, but shortly thereafter Tule Lake became a deep, cool lacustrine system indicating a substantial increase in precipitation. Aulacoseira ambigua characterized the latest glacial and Holocene record of Tule Lake. Its distribution indicates that warmer and wetter climates began about 15 ka in this part of the Great Basin. Diatom concentration fluctuates at 41 000 year intervals between 3.0 and 2.5 Ma and at approximately 100 000 year intervals after 1.0 Ma. In the late Pliocene and early Pleistocene, Aulacoseira solida percentages wax and wane in an approximately 400 000 year cycle. The possible response of Tule Lake diatom communities to orbitally-induced insolation cycles underscores the importance of this record for the study of late Cenozoic paleoclimate change.  相似文献   

3.
Lake expansion since the middle of the 1990s is one of the most outstanding environmental change events in the Tibetan Plateau (TP). This expansion has mainly occurred in the Inner TP, a vast endorheic basin with an area of about 708,000 km2 and containing about 780 lakes larger than 1 km2. The total lake area of the Inner TP has increased from 24,930 km2 in 1995 to 33,741 km2 in 2015. The variability of the lake area in the coming decades is crucial for infrastructure planning and ecology policy for this remote region. In this study, a lake mass balance model was developed to describe the lake area response to climate change. First, the model was used to inversely estimate the change in precipitation from the change in lake volume. The result shows that precipitation has increased by about 21?±?7% since the middle of the 1990s, as seen in GPCC global data set. Then, the lake size in the coming two decades was predicted by the model driven with either current climate or a projected future climate, showing the lake area would expand continuously, but at a lower rate than before. Both predictions yield a total lake area of 36150?±?500 km2 in 2025 and a rise of average lake level by about 6.6?±?0.3 m from 1995 to 2025. However, the two predictions become disparate in the second decade (2026–2035), as the future climate is more warming and wetting than the current climate. It is noted that the prediction of lake expansion is robust for the entire inner TP lake system but not always applicable to individual subregions or specific lakes due to their spatiotemporal heterogeneity.  相似文献   

4.
Hydraulic motion equations of the cohesive mudflow with variable discharge along the way, based on the energy principle and derived by theoretical means, are given. They can form the base for the discovery of algorithms of open hydrological problems in the field of dynamics of cohesive mudflows for both prismatic and non-prismatic channels.  相似文献   

5.
A cool period from about 11000 to 10 500 BP (11 to 10.5 ka) is recognized in pollen records from the southern Great Lakes area by the return of Picea and Abies dominance and by the persistence of herbs. The area of cooling appears centred on the Upper Great Lakes. A high-resolution record (ca. 9 mm/y) from a borehole in eastern Lake Erie reveals, in the same time interval, this pollen anomaly, isotope evidence of meltwater presence (a — 3 per mil shift in 18O and a +1.1 per mil shift in 13C), increased sand, and reduced detrital calcite content, all suggesting concurrent cooling of Lake Erie. The onset of cooling is mainly attributed to the effect of enhanced meltwater inflow on the relatively large upstream Main Lake Algonquin during the first eastward discharge of glacial Lake Agassiz. Termination of the cooling coincides with drainage of Lake Algonquin, and is attributed to loss of its cooling effectiveness associated with a substantial reduction in its surface area. It is hypothesized that the cold extra inflow effectively prolonged the seasonal presence of lake ice and the period of spring overturn in Lake Algonquin. The deep mixing would have greatly increased the thermal conductive capacity of this extensive lake, causing suppression of summer surface lakewater temperatures and reduction of onshore growing-degree days. Alternatively, a rapid flow of meltwater, buoyed on sediment-charged (denser) lakewater, may have kept the lake surface cold in summer. Other factors such as wind-shifted pollen deposition and possible effects from the Younger Dryas North Atlantic cooling could have contributed to the Great Lakes climatic reversal, but further studies are needed to resolve their relative significance.Contribution to Climo Locarno — Past and Present Climate Dynamics; Conference September 1990, Swiss Academy of Sciences — National Climate ProgramGeological Survey of Canada Contribution 58 890  相似文献   

6.
Presented are the dependences that allow judging as a rough approximation about the process of accumulation of the cohesive mud mass in mudflow areas till the complete formation of a mudflow in the erosion inset of the main riverbed of a mudflow type.  相似文献   

7.
Climate change has been driving terrestrial water storage variations in the high mountains of Asia in the recent decades. This study is based on Gravity Recovery and Climate Experiment (GRACE) data to analyse spatial and temporal variations in terrestrial water storage (TWS) across the Tibetan Plateau (TP) from April 2002 to December 2016. Regional averaged TWS anomaly has increased by 0.20 mm/month (p?<?0.01) during the 2002–2012 period, but decreased by ??0.68 mm/month (p?<?0.01) since 2012. The seasonal variations in TWS anomalies also showed a decreasing trend from May 2012 to December 2016. TWS variations in the TP also showed significant spatial differences, which were decreasing in southern TP but increasing in the Inner TP. And a declining trend was clearly evident in the seasonal variability of TWS anomalies in the south TP (about ??30 to ??55 mm/a), but increasing in the inner TP (about 10–35 mm/a). Meanwhile, this study links temperature/precipitation changes, glacial retreat and lake area expansion to explain the spatial differences in TWS. Results indicated that precipitation increases and lake area expansion drove increasing TWS in the Inner TP during the 2002–2016 period, but temperature increases and glacial retreat drove decreasing TWS in southern TP.  相似文献   

8.
The impact of future climate change on the glaciers in the Karakoram and Himalaya (KH) is investigated using CMIP5 multi-model temperature and precipitation projections, and a relationship between glacial accumulation-area ratio and mass balance developed for the region based on the last 30 to 40 years of observational data. We estimate that the current glacial mass balance (year 2000) for the entire KH region is -6.6?±?1 Gta?1, which decreases about sixfold to -35?±?2 Gta?1 by the 2080s under the high emission scenario of RCP8.5. However, under the low emission scenario of RCP2.6 the glacial mass loss only doubles to -12?±?2 Gta?1 by the 2080s. We also find that 10.6 and 27 % of the glaciers could face ‘eventual disappearance’ by the end of the century under RCP2.6 and RCP8.5 respectively, underscoring the threat to water resources under high emission scenarios.  相似文献   

9.
Summary The Almatti dam is the major engineering feature in the development of water resources in the Upper Krishna river forming a storage reservoir of 6425 million m3 at spillway crest level. In this paper, the design storm rainfalls for different return periods and also the Probable Maximum Precipitation (PMP) for the catchment above Almatti dam have been estimated to review the adequacy of the flood spillway design for the dam. The design storm rainfalls of various return periods have been computed from a statistical analysis of point and areal time series of annual maximum rainfall. In evaluating the PMP, the maximum observed rainfall obtained by Depth Duration method were maximized as the orography of the Western Ghats plays profound influence over the catchment. It was found that (area 35925 km2) the highest areal rainfalls over the catchment were 14.0 cm, 21.5 cm and 24.6 cm in 1, 2 and 3-day durations, respectively. These are scaled up by a factor of 1.23 to obtain the PMP rainfalls. The areal PMP estimates for the upper Krishna River (UKR) catchment above Almatti dam have been found to be 18.0 cm, 27.0 cm and 31.0 cm, respectively.With 6 Figures  相似文献   

10.
Glacier hazards threaten societies in mountain regions worldwide. Glacial lake outburst floods (GLOFs) pose risks to exposed and vulnerable populations and can be linked in part to long-term post-Little Ice Age climate change because precariously dammed glacial lakes sometimes formed as glaciers generally retreated after the mid-1800s. This paper provides an interdisciplinary and historical analysis of 40?years of glacier hazard management on Mount Hualcán, at glacial Lake 513, and in the city of Carhuaz in Peru’s Cordillera Blanca mountain range. The case study examines attempted hazard zoning, glacial lake evolution and monitoring, and emergency engineering projects to drain Lake 513. It also analyzes the 11 April 2010 Hualcán rock-ice avalanche that triggered a Lake 513 GLOF; we offer both a scientific assessment of the possible role of temperature on slope stability and a GIS spatial analysis of human impacts. Qualitative historical analysis of glacier hazard management since 1970 allows us to identify and explain why certain actions and policies to reduce risk were implemented or omitted. We extrapolate these case-specific variables to generate a broader socio-environmental framework identifying factors that can facilitate or impede disaster risk reduction and climate change adaptation. Facilitating factors are technical capacity, disaster events with visible hazards, institutional support, committed individuals, and international involvement. Impediments include divergent risk perceptions, imposed government policies, institutional instability, knowledge disparities, and invisible hazards. This framework emerges from an empirical analysis of a coupled social-ecological system and offers a holistic approach for integrating disaster risk reduction and climate change adaptation.  相似文献   

11.
The estimation of the energy balance of a lake from simple weather data   总被引:1,自引:0,他引:1  
The energy balance of a lake with an area of approximately 46000 ha and a depth of 3 m has been estimated from simple weather data measured along the perimeter of the lake. These measurements are dry-bulb temperature and relative humidity, both at 1.5-m height, windspeed at 3-m height and sunshine duration. The estimated energy balance values were compared with the values computed from the measurements at the station situated at the centre of the lake. At this station, net radiation, water temperature, dry-bulb and wet-bulb temperature at a height of 2 m were measured. It is possible to estimate the daily evaporation from the lake with an error of 0.6 mm day–1, if the location of measurement is downwind from the lake.  相似文献   

12.
西藏普莫雍错位于喜马拉雅山脉印度季风雨影区,主要由冰川融水补给。根据湖泊的等深线分布和主要补给河流的入湖路径,对采自普莫雍错1~62 m水深范围的表层沉积物介形类和相关水环境参数进行了分析。结果表明,普莫雍错表层沉积物中含有7属9种介形类,其分布主要受湖泊水深、pH值、温度和光合有效辐射等环境因子的影响。介形类与水环境因子的降维对应分析、典型对应分析结果显示,水深是影响表层沉积物介形类分布的最重要的环境因子,用偏最小二乘法加权平均回归与校正模型建立的介形类-水深转换函数具有较高的精度与可靠性。利用此转换函数模型和一个72 cm长重力湖芯的介形类属种分析结果,定量重建了湖泊水深波动历史。湖面波动与湖芯的总有机碳、总无机碳、粒度等代用指标比较结果表明,普莫雍错6.0 kaBP以来的环境变化具有6.0~4.3 kaBP的温凉浅湖面期、4.3~2.0 kaBP温暖的湖面波动期及2.0 kaBP以来温暖的湖面扩张期。  相似文献   

13.
Three east Antarctic ice cores (Dome B, EPICA-Dome C and Komsomolskaia) give evidence for a uniform dust input to the polar plateau during the last glacial maximum (LGM)/Holocene transition (20 to 10 kyr BP) and the 87Sr/86Sr versus 143Nd/144Nd isotopic signature of the mineral particles highlights a common provenance from southern South America at that time. However, the size distribution of dust from the three ice cores highlights important differences within the east Antarctic during the LGM and shows clearly opposite regional trends during the climatic transition. Between Dome B and Dome C the timing of these changes is also different. A geographical diversity also arises from the different phasing of the short-term (multi-secular scale) dust size oscillations that are superposed at all sites on the main trends of glacial to interglacial changes. We hypothesize the dust grading is controlled by size fractionation inresponse to its atmospheric pathway, either in terms of horizontal trajectory or in altitude of transport. Such mechanism is supported also by the dust size changes observed during a volcanic event recorded in Vostok ice. Ice core dust size data suggest preferential upper air subsidence over the EDC-KMS region and easier penetration of relatively lower air masses to the DB area during the LGM. At the end of the last glacial period and during the climatic transition the region of relatively higher subsidence progressively moved southward. The scenario proposed, supported also by the LGM/Holocene regional changes of snow accumulation, likely operates even at sub-millennial time scale.  相似文献   

14.
Data concerning carbon cycle variations on the earth's surface during the past 200,000 years are reviewed.The variations of the surface temperature (T) and concentration of carbon dioxide (CO2) in the atmosphere of Antarctica are compared to those of the isotopic ratios of oxygen 18O/16O (δ18O) and of carbon 13C/12C (°13C) of waters in the deep oceans for the two last glacial cycles. This comparison shows that the decrease of the atmospheric CO2 concentration is accompanied by a carbon transferase from the continental biosphere to the oceanic deep waters. At the glacial maximum this transfer is estimated to be about 500 GtC (1 GtC = 1015g of carbon) equivalent to 25% of the carbon storage of the biosphere. It occurs mainly in the high latitudes of the Southern Hemisphere by incorporation of CO2 into particulate matter during photosynthesis. It is shown that the mean oceanic productivity does not increase with a supplementary supply of ions such as phosphate (PO43−) or nitrate (NO3) but that the intensity of the thermohaline circulation is certainly reduced. As the warming up of the oceans and the melting of the ice-sheet begin carbon transfer takes place to restore the continental biosphere.Another carbon transfer of a much more important intensity is also at work in the sea shore environment. Its intensity could be sufficient to renew the entire carbon of the continental biospheric, atmospheric and oceanic reservoirs in a length of time comparable to a glacial cycle. This fact shows the importance of studying the deposition of carbon in oceanic zones which are uncovered with drops in sea level. At the present time data on the coastal environment in relation to the global carbon cycle are very scarce and warrants more research in this area.  相似文献   

15.
In past 50 years, the air temperature fluctuation was raising trend in Tarim River Basin. The annual mean temperature has increased by 0.3℃ in the whole Tarim River Basin, and by 0.6℃ in the mountain areas. With global warming, the frequency of unstable and extreme climatic events increased, glaciers retreating accelerated and snow meltwater increased have resulted in the more frequency of snow-ice disasters such as glacier debrisflow and glacier flash flood etc. Since 1980s, in the process of intense climate warming, glaciers melting intensified, ice temperature rose and glaciers flows accelerated, and lead to more glacial lakes and extending water storage capacity and stronger glacial lake outburst floods occurrence. It is proposed that the monitoring and evaluating of the impact of climate change on water resources and floods should be enhanced.  相似文献   

16.
The mechanisms involved in the glacial inception are still poorly constrained due to a lack of high resolution and cross-dated climate records at various locations. Using air isotopic measurements in the recently drilled NorthGRIP ice core, we show that no evidence exists for stratigraphic disturbance of the climate record of the last glacial inception (∼123–100 kyears BP) encompassing Dansgaard–Oeschger events (DO) 25, 24 and 23, even if we lack sufficient resolution to completely rule out disturbance over DO 25. We quantify the rapid surface temperature variability over DO 23 and 24 with associated warmings of 10±2.5 and 16±2.5°C, amplitudes which mimic those observed in full glacial conditions. We use records of δ18O of O2 to propose a common timescale for the NorthGRIP and the Antarctic Vostok ice cores, with a maximum uncertainty of 2,500 years, and to examine the interhemispheric sequence of events over this period. After a synchronous North–South temperature decrease, the onset of rapid events is triggered in the North through DO 25. As for later events, DO 24 and 23 have a clear Antarctic counterpart which does not seem to be the case for the very first abrupt warming (DO 25). This information, when added to intermediate levels of CO2 and to the absence of clear ice rafting associated with DO 25, highlights the uniqueness of this first event, while DO 24 and 23 appear similar to typical full glacial DO events.  相似文献   

17.
Annually laminated sediments (glacial varves) from Lake Silvaplauna, a High Alpine proglacial lake in the Central Swiss Alps, were compared with glacier monitoring data and instrumental climate data from 1864 to 1990. Long-term and short-term responses to climatic change as well as anthropogenic influence can be traced separately in the varve succession. Economic development in the lake catchment has resulted in higher autochthonous production in recent years. Autochthonous components contribute around 10% to the total amount of sediment accumulated annually since 1960 but their contribution is negligible before this date. Decadal-scale varve thickness trends correlate with glacier size-variations. A stepwise, running multiple regression analysis demonstrates that interannual changes in varve thickness are strongly correlated with changes in mean summer temperatures, but cannot be sufficiently explained without considering summer precipitation and the number of days with snow per year. The wide range of observed correlation coefficients reveals the sensitivity of the archive to temporal variability of the climatic forcing factors and makes the development of transfer functions ambiguous.  相似文献   

18.
The Warming of Lake Tahoe   总被引:1,自引:0,他引:1  
Summary We investigated the effects of climate variability on the thermal structure of Lake Tahoe, California-Nevada, 1970–2002, and with principal components analysis and step-wise multiple regression, related the volume-weighed average lake temperature to trends in climate. We then used a 1-dimensional hydrodynamic model to show that the observed trends in the climatic forcing variables can reasonably explain the observed changes in the lake. Between 1970 and 2002, the volume-weighted mean temperature of the lake increased at an average rate of 0.015 C yr−1. Trends in the climatic drivers include 1) upward trends in maximum and minimum daily air temperature at Tahoe City; and 2) a slight upward trend in downward long-wave radiation. Changes in the thermal structure of the lake include 1) a long-term warming trend, with the highest rates near the surface and at 400 m; 2) an increase in the resistance of the lake to mixing and stratification, as measured by the Schmidt Stability and Birge Work; 3) a trend toward decreasing depth of the October thermocline. The long-term changes in the thermal structure of Lake Tahoe may interact with and exacerbate the well-documented trends in the lake's clarity and primary productivity.  相似文献   

19.
A two-dimensional prognostic numerical model has been used to study a lake breeze event reported by Keen and Lyons (1978). Model predictions showed fair to good agreement with the observations. For the mature lake breeze, the model predicted inflow at the coast within about 1.5 m s–1 of the observed value, lake breeze depth within 50–90 m of the observed, and inland penetration within about 6 km of the observed. The top of the thermal internal boundary layer (TIBL) was associated with a minimum in the predicted turbulent kinetic energy profile. This may be of consequence for attempts to evaluate pollutant dispersion using numerical models.Predicted lake breeze characteristics showed little sensitivity to temperature of the water surface, except when the water surface temperature was increased to a value exceeding the inland maximum temperature. The most sensitive lake breeze characteristic was the TIBL, which grew more slowly with inland distance and persisted for a greater distance inland as the lake surface became colder.  相似文献   

20.
A criterion ratio is proposed which allows to estimate the possibility of origination of avalanche-like motion of a mudflow with hyperconcentration of debris in a certain mudflow-bearing watercourse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号