首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
N. Hiotelis   《New Astronomy》2002,7(8):531-539
We present density profiles, that are solutions of the spherical Jeans equation, derived under the following two assumptions: (i) the coarse grained phase-density follows a power-law of radius, ρ/σ3r, and (ii) the velocity anisotropy parameter is given by the relation βa(r)=β1+2β2 (r/r*)/[1+(r/r*)2] where β1, β2 are parameters and r* equals twice the virial radius, rvir, of the system. These assumptions are well motivated by the results of N-body simulations. Density profiles have increasing logarithmic slopes γ, defined by γ=−d ln ρ/d ln r. The values of γ at r=10−2.5rvir, a distance where the systems could be resolved by large N-body simulations, lie in the range 1.0–1.6. These inner values of γ increase for increasing β1 and for increasing concentration of the system. On the other hand, slopes at r=rvir lie in the range 2.42–3.82. A model density profile that fits well the results at radial distances between 10−3rvir and rvir and connects kinematic and structural characteristics of spherical systems is described.  相似文献   

2.
Inspection of recent spectra presented by Sivjee (1983) show evidence of the 0–4 and 0–5 bands of the N2(c41Σu+a1Πg) Gaydon-Herman system. In conjunction with earlier spectra, it is now possible that this band system is a significant auroral component, with an intensity approx. 7% that of the N2 2P system. The absence in aurorae of the potentially far stronger N2(c41Σu+X1Πg) system is discussed. It is that the O2(A3Σu+X3Σg) band system is indiscernible in Sivjee's auroral spectra, under conditio the foreground nightglow is expected to be clearly visible. On the other hand, at least one relatively strong O2(A3Δua1Δg) band appears to be present in these spectra.  相似文献   

3.
A numerical analysis of cyclotron instabilities is carried out by computing the dispersion relation for a three component cold plasma-beam system. Rates of growth and damping for various values of the stream density are calculated from the dispersion relation. The rates of growth and damping increase monotonically as the number density of the proton stream increases. It is found that the frequencies at the rates of maximum growth and the damping decrease slightly to lower frequencies and a sharp peak at these frequencies becomes blunt. The minimum e-folding times of an ion cyclotron wave for (a) σs = 10−4, σi = 10−2 and (b) σs = 10−1, σi = 10−2 are about 3·84 and 0·16 sec respectively in the vicinity of the equatorial plane at 6 Re, where σs and σi are the ratios of the beam density Ns and the helium ion (H6+) density Ni to the total positive ions in the plasma-beam system.  相似文献   

4.
It is greatly expected that the relic neutrino background from past supernovae will be detected by Superkamiokande (SK) which is now under construction. We calculate the spectrum and the event rate at SK systematically by using the results of simulations of a supernova explosion and reasonable supernova rates. We also investigate the effect of a cosmological constant, Λ, on the spectrum, since some recent cosmological observations strongly suggest the existence of Λ. We find following results. (1) The spectrum has a peak at about 3 MeV, which is much lower than that of previous estimates (6–10 MeV). (2) The event rate at SK in the range from 10 MeV to 50 MeV, where the relic neutrinos from past supernovae are dominant, is about 25h502(RSN/0.1 yr−1)(nGh50−3/0.02 Mpc−3) events per year, where RSN is the supernova rate in a galaxy, nG is the number density of galaxies, and h50 = H0/(50 km/s Mpc), where H0 is the Hubble constant. (3) The event rate is almost insensitive to Λ. The flux increases in the low energy side (< 10 MeV) with increasing Λ, but decreases in the high energy side (> 10 MeV) in models in which the integrated number of supernovae in one galaxy is fixed.  相似文献   

5.
Correlation of cosmic-ray intensity (I) with the solar magnetic field expanded into the spherical surface harmonics, Bns(n 9), by Hoeksema and Scherrer has been studied using the following regression equation:
, where are subgroups of Bns classified in ascending order of n, and τi is the time lag of I behind correlation coefficient between the observed and simulated intensities (Iobs, Isml) in the period 1976–1985 is 0.87 and considerably better than that derived from any single index of solar activity. The lag time τ3 is greater than others, indicating that the higher order magnetic disturbances effective to the cosmic-ray modulation have a longer lifetime in space than the lower order disturbances. The rigidity spectrum of the cosmic-ray intensity variation responsible for AI due to the dipole moment is harder than those for others (A2,A3), indicating that the lowest order (i.e. largest scale) magnetic disturbances can modulate cosmic rays more effectively than the higher order disturbances. As another result of the present analysis, it has been found that the intensity depends also on the polarity of the polar magnetic field of the Sun; the residual (IobsIsml) of the simulation changes its sign from positive to negative with a time lag (0–5 Carrington rotation periods) behind the directional change of the solar magnetic dipole moment from northward to southward, and has a softer rigidity spectrum than AiS. The dependence is consistent with the result having been obtained in the previous period, 1936–1976, by one (K.N.) of the present authors. The polarity dependence can be found also in the 22-year variation of the time lags obtained every solar cycle in the period 1936–1985. The theoretical interpretation of these polarity dependences is discussed on the basis of the diffusion-convection-drift model.  相似文献   

6.
On the basis of radial velocity and Hipparcos proper motion data, we have analyzed the galactic kinematics of classical Cepheids. Using the 3-D Ogorodnikov-Milne model we have determined the rotational velocity of the Galaxy to be V0 = 240.5 ± 10.2 km/s, on assuming a glactocentric distance of the Sun of R0 = 8.5 kpc. The results clearly indicate a contracting motion in the solar neighbourhood of (∂Vθ∂θ)/R = −2.60 ± 1.07 km s−1 kpc−1, along the direction of galactic rotation. Possible reason for this motion is discussed. The solar motion found here is S = 18.78 ± 0.86 km/s in the direction l = 54.4° ± 2.9° and b = +26.6° ± 2.6°.  相似文献   

7.
The evolution of the cosmic ray primary composition in the energy range 106–107 GeV (i.e. the “knee” region) is studied by means of the e.m. and muon data of the Extensive Air Shower EAS-TOP array (Campo Imperatore, National Gran Sasso Laboratories). The measurement is performed through: (a) the correlated muon number (Nμ) and shower size (Ne) spectra, and (b) the evolution of the average muon numbers and their distributions as a function of the shower size. From analysis (a) the dominance of helium primaries at the knee, and therefore the possibility that the knee itself is due to a break in their energy spectrum (at EkHe=(3.5±0.3)×106 GeV) are deduced. Concerning analysis (b), the measurement accuracies allow the classification in terms of three mass groups: light (p,He), intermediate (CNO), and heavy (Fe). At primary energies E0≈106 GeV the results are consistent with the extrapolations of the data from direct experiments. In the knee region the obtained evolution of the energy spectra leads to: (i) an average steep spectrum of the light mass group (γp,He>3.1), (ii) a spectrum of the intermediate mass group harder than the one of the light component (γCNO2.75, possibly bending at EkCNO≈(6–7)×106 GeV), (iii) a constant slope for the spectrum of the heavy primaries (γFe2.3–2.7) consistent with the direct measurements. In the investigated energy range, the average primary mass increases from lnA=1.6–1.9 at E01.5×106 GeV to lnA=2.8–3.1 at E01.5×107 GeV. The result supports the standard acceleration and propagation models of galactic cosmic rays that predict rigidity dependent cut-offs for the primary spectra of the different nuclei. The uncertainties connected to the hadronic interaction model (QGSJET in CORSIKA) used for the interpretation are discussed.  相似文献   

8.
We analysed the emission spectra of solar prominences using the complete linearization method [5] and found simultaneously the optical depth at the line centre τ0, the doppler width of the line ΔλD and the damping width a. The results show 1) that the complete linearization method has a larger radius of convergence, 2) that we must consider the variation of the source function with depth, when determining τ0, and 3) that the calculated values of the damping constant for the H, Hβ of hydrogen and H and K lines of Calcium are all much greater than the theoretical values from doppler broadening and radiation damping, showing that other mechanisms besides these two also contribute to the broadening of prominence lines.  相似文献   

9.
A conductive ionosphere and a totally non-conductive layer of the atmosphere close to the surface of the planet form a quasispherical concentric resonator. This provides in principle for the possibility of the existence of global resonances of an electromagnetic field generated by thunderstorm activity or by hydromagnetic waves excited in an upper ionosphere and transformed into ordinary electromagnetic waves while penetrating the resonator. We have obtained an estimate of resonance frequencies of a Martian resonator: ƒ1 13–14 Hz,ƒ2 24–26 Hz, ƒ3 35–38 Hz, etc. for two essentially different models of electron density distribution in the low ionosphere of Mars. The corresponding estimated quality values are low: Qn 2–4. A relatively wide range of the quality variation depending on a model of averaged altitudinal electron density distribution in the low ionosphere of Mars yields the criterion for an adequate model.  相似文献   

10.
In this paper the question is examined of how the v.l.f. radio-waves are guided along the magnetic field. Energy passes through the magnetic field under two sets of conditions. Corresponding to the “nose-whistlers” explained by Helliwell, the first one occurs when the wave-normal itself is in the direction of the magnetic field. This does not happen in the second case when the remarkable property is also shown that all frequencies are propagated at the same velocity V0 = cƒH/2ƒ0H gyrofrequency, ƒ0 frequency of the plasma). Considerations of energy point out that, if such a propagation is not easily observable in the case of an isotropic emission, it is not the same thing for an emission produced by erenkov effect, which is able to produce all energy by this mode of propagation, provided the particle's velocity has a low fixed value (˜ 10,000 km/sec in the exosphere). All frequencies being emitted at the same time and following the same path wtih the same velocity, we can explain the broadband noise observed during the reception of whistlers. The required velocity of particles is exactly the velocity V0. This coincidence is explained in an appendix, and extended to other anisotropic media.  相似文献   

11.
The odd zonal harmonics in the Earth's gravitational potential are determined by analysing the changes in the eccentricities of six satellites having orbital inclinations spaced as uniformly as possible between 28° and 96°. The most satisfactory representation of the potential is found to be in terms of four coefficients, and their values are, in the usual notation: 106J3 = −2.56, 106J5 = −0.15, 106J7 = −0.44, 106J9 = 0.12. The resulting potential is compared with that obtained by other authors. Three and five-coefficient solutions are also presented.  相似文献   

12.
If neutrinos have mass, we give reasons for a possible pattern of three (squaed) mass eigenvalues: m12 (2.8−5.8) (eV)2, m22 0.01 (eV)2, m32 (1.5−1) × 10−4 (eV)2. The flavor states νμ and νe are mixtures of the eigenstates with m2 and m3 with a significant mixing, corresponding to an effective mixing angle of about 0.45. The ντ is nearly the state with m1; the other two effective mixing angles are about an order of magnitude smaller than 0.45. There is a marked similarity to mixing in the quark sector.  相似文献   

13.
When the local solar zenith angle, χL, is < 105° the 6300 A line is much stronger than expected on the basis of F region ionic recombination alone. Between 95 and 105° the additional intensity is quantitatively explained by production of O(1D) from photolysis of O2 in the Schumann-Runge continuum, (λλ 1300–1750 A) using current values for solar flux, atmospheric composition and quenching of O(1D) by N2. The Schumann-Runge (SR) component exhibits a large seasonal variation with a maximum in summer. We interpret this variation as implying a seasonal change in thermospheric O2 abundance; the change seems largely to reflect a variation in O2 density at the base of the diffusive regime although some contribution may come from changes in thermospheric temperature structure. Large changes in the SR component exist from day to day and with a 27 day period following a major magnetic storm. The photodissociation source becomes inadequate when xl < 95°; at 90° more than half of the intensity comes from still another source which we identify as local photoelectron excitation of O atoms.  相似文献   

14.
In this paper, we study the galactic distribution and luminosity function of OH/IR maser sources. All the selected OH/IR sources have optical or infrared identification. Most of them are associated with late-type (>M5) Mira variables. Their derived density distribution shows a steep peak at a galactocentric distance of r0-7.5 kpc and decreases rapidly at smaller and larger R0. The FWHM of the distribution curve is 2.1 kpc. This is similar to the galactic distribution of Mira variables investigated by Glass et al.

We also derive the luminosity function of the identified OH/IR maser sources from their distances, their detection probabilities, and their corrected OH radio peak flux densities. The luminosity function ρ(L) varies as LOH−1.79. This is similar to that of unidentified maser sources. The range of luminosity of identified OH/IR sources is approximately from 0.16 Jy · kpc2 to 1000 Jy · kpc2. It is quite different from that of unidentified OH sources.

Finally, we discuss some differences and relations between identified and unidentified OH/IR maser sources.  相似文献   


15.
The surface temperature of a rotating, charged body is found separately under the Kerr-Newman metric and the vector graviton metric. Particular reference is made to pulsars. It is found that, 1) under the Kerr-Newman metric, the surface temperature rises from the poles to the equator, when the radius R of the body is greater than a certain critical value, rn. When R= rn, the surface temperature is uniform. When R < rn, the above gradient is reversed. For pulsars, the equatorial temperature is some 3 × 104 K higher than the polar temperature. 2) Under the Vector graviton field metric, a similar temperature differential exists, but it is much smaller in size.  相似文献   

16.
In this paper we analyse the observational data obtained by the Chinese-made PZT in the two periods 1979 Feb – 1980 May and 1981 Dec – 1983 March. The internal accuracy of single star is found to be mu = ±13.0 ms, mφ = ±0. “144 for the first period, and mu = ±14.6 ms, mφ = ±0.” 152 for the second. Correction of star position is found by the chain method. The systematic error caused by the sealed window of the evacuated chamber and the temperature effect of the plate scale are investigated. Monthly means of time and latitude are given.  相似文献   

17.
《Astroparticle Physics》2002,17(4):1083-475
Using data from the HEGRA air shower array, taken in the period from April 1998 to March 2000, upper limits on the ratio Iγ/ICR of the diffuse photon flux Iγ to the hadronic cosmic ray flux ICR are determined for the energy region 20–100 TeV. The analysis uses a gamma–hadron discrimination which is based on differences in the development of photon- and hadron-induced air showers after the shower maximum. A method which is sensitive only to the non-isotropic component of the diffuse photon flux yields an upper limit of Iγ/ICR (at 54 TeV) <2.0×10−3 (at the 90% confidence level) for a sky region near the inner galaxy (20°< galactic longitude <60° and |galactic latitude |<5°). A method which is sensitive to both the isotropic and the non-isotropic component yields global upper limits of Iγ/ICR (at 31 TeV) <1.2×10−2 and Iγ/ICR (at 53 TeV) <1.4×10−2 (at the 90% confidence level).  相似文献   

18.
Using extensive N-body simulations we estimate redshift space power spectra of clusters of galaxies for different cosmological models (SCDM, TCDM, CHDM, ΛCDM, OCDM, BSI, τCDM) and compare the results with observational data for Abell–ACO clusters. Our mock samples of galaxy clusters have the same geometry and selection functions as the observational sample which contains 417 clusters of galaxies in a double cone of galactic latitude |b|>30° up to a depth of 240 h−1 Mpc. The power spectrum has been estimated for wave numbers k in the range 0.03k0.2 h Mpc−1. For k>kmax0.05 h Mpc−1 the power spectrum of the Abell–ACO clusters has a power-law shape, P(k)∝kn, with n≈−1.9, while it changes sharply to a positive slope at k<kmax. By comparison with the mock catalogues SCDM, TCDM (n=0.9), and also OCDM with Ω0=0.35 are rejected. Better agreement with observation can be found for the ΛCDM model with Ω0=0.35 and h=0.7 and the CHDM model with two degenerate neutrinos and ΩHDM=0.2 as well as for a CDM model with broken scale invariance (BSI) and the τCDM model. As for the peak in the Abell–ACO cluster power spectrum, we find that it does not represent a very unusual finding within the set of mock samples extracted from our simulations.  相似文献   

19.
A precise knowledge of the angular resolution of scintillator arrays used to observe extended air showers (EAS) is of key importance in the search for VHE/UHE γ point sources. Four independent methods have been used to determine the mean resolution for which a value of ΔΘ63 of 0.8°(1.0°) at a proton threshold of 50 (40) TeV has been found for the HEGRA EAS-array.  相似文献   

20.
The MSX infrared dark cloud G79.2+0.38 has been observed over a 11′×′ region simultaneously in the J=1-0 rotational transition lines of the 12CO and its isotopic molecules 13CO and 18CO. The dense molecular cores defined by the C18O line are found to be associated with the two high-extinction patches shown in the MSX A-band image. The two dense cores have the column density N (H2) (5 – 12) × 1022 cm−2 and the mean number density n (3 ± 1) × 104 cm−3. Their sizes are 1.7 and 1.2 pc in 13CO(1-0) line, 1.2 and 0.6 pc in C18O(1-0) line, respectively. The masses of these cloud cores are estimated to be in the range from 2 × 102 to 2 × 103 M. The profile of radial mean density of the cloud core can be described by the exponential function ¯n(p) p−0.34±0.02. Compared with the cases of typical optical dark clouds, the abundances of the CO isotopic molecules 13CO and C18O in this MSX infrared dark cloud appear to be depleted by a factor of 4–11, but at present there is no evidence for any obvious variation of the relative abundance ratio X13/18 between 13CO and C18O with the column density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号