首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Paleomagnetic analyses of samples collected from a 500 m thick Jurassic section in the Pontides reveal the presence of two components of remanent magnetization: an unstable, low-temperature component which is removed during thermal demagnetization through 220°C and a dominant component which displays consistent directions through 650°. Curie point and IRM studies indicate that goethite is responsible for the low-temperature component whereas both magnetite and hematite contribute to the more stable component. The pole position determined from the stable magnetization is located at 18.8°N, 91.8°E (α95=7.7°, N=134) indicating that the section has undergone more than 90° clockwise rotation since the Late Jurassic. Ancillary geologic evidence, particularly the orientation of Jurassic facies belts is also consistent with a 90° clockwise rotation in this region of northwest Anatolia. The pole suggests that the section may also have migrated slightly northward. Although the age of these movements is currently unknow, it is proposed that they are principally related to the closure of the Neo-Tethys during the Late Cretaceous/Early Tertiary. Some of the rotation may be related to the right lateral movement along the North Anatolian Transform Fault which was initiated in the Miocene.  相似文献   

2.
We have carried out paleomagnetic studies of the Upper Vendian sedimentary rocks from the Bashkirian Meganticlinorium (Southern Ural). The rocks were sampled at three localities spread over more than 100 km. Totally, more than 300 samples were collected from about 40 sampling sites. Stepwise thermal demagnetization up to 700°C revealed a stable component of magnetization of either polarity in 25 sites. The fold test and the reversal test for this component are positive, which is usually regarded as a sound argument in favor of the primary origin of magnetization. However, the Basu paleomagnetic pole (longitude 187.3°E, latitude 1.1°N) is located near the Late Ordovician-Early Silurian segment of the apparent polar wander path for Baltica, which might indicate a Paleozoic remagnetization of Vendian rocks. In this work we analyze different interpretations of the obtained results and evaluate the reliability of the Late Riphean and Vendian paleomagnetic data for Baltica.  相似文献   

3.
A Paleocene granodiorite pluton on Jamaica has been subject to extensive weathering caused by the tropical marine environment of the island. The natural remanence of 29 samples obtained from relatively fresh rock in two localities was found to consist of two components with overlapping coercivity ranges. Alternating field treatment proved ineffective for removing the secondary component without destroying the primary one. Thermal demagnetization of samples from the two localities was more effective and yielded paleomagnetic poles at 14.7°N, 11.6°W and 58.9°N, 15.9°E respectively. These pole positions are different from those available from contemporaneous North American rocks and from poles derived from Jamaican Cretaceous and Upper Miocene rocks. Mineralogical studies showed that the granodiorite has undergone an extensive maghemitization superposed on earlier class 2 deuteric oxidation and related to the weathering process. Some of the titanomaghemite has, however, been converted to titanohematite. Hence although the secondary remanence carried by the former was removable by thermal treatment at 500°C, its part carried by the latter could not be removed without simultaneously destroying the primary remanence carried by the residual titanomagnetite. The observed paleopole positions do not, therefore, represent the true Paleocene geomagnetic field, but suggest that the direction of magnetization of the pluton has been approximately equatorial and was probably acquired in a reversed geomagnetic field. This could be interpreted as having been caused by the behavior of the geomagnetic field during a polarity transition, but a more favorable interpretation appears to be a large anticlockwise tectonic rotation of the islands since the Paleocene.  相似文献   

4.
Two components of magnetization have been observed in fourty-four samples (five sites) of the anorthosites in the Arden Pluton. One component, withD = 325°,I = ?75°,k = 32, α95 = 13.6°, was isolated in many samples by progressive alternating field demagnetization and in the remainder of the collection by the use of intersecting great circles of remagnetization. The corresponding pole is located at 16°N, 303°E,dp = 22.7°,dm = 24.9°. Assuming the age of the last metamorphism (Taconic, ca. 440 Ma) of the Cambrian Arden Pluton to be the age of the magnetization, this pole deviates significantly from coeval poles thus far obtained from the North American craton. The preferred explanation for this deviation is that the Arden Pluton and the surrounding Piedmont rocks belonged to a different Early Paleozoic plate on the south or east side of the Iapetus Ocean, most likely the African (Gondwana) plate, and that it was transferred to the North American plate during a subsequent continental collision.  相似文献   

5.
Two techniques, namely alternating-field demagnetization and thermal demagnetization, are widely being used for determining the stability of magnetization of a rock specimen. Recently a faster and simpler technique known as low-field hysteresis loop and memory-phenomenon test has been developed for determining the stability of magnetization directions of igneous rocks. In this paper the results of this new technique, after applying it to about 1000 specimens obtained from 250 oriented rock samples collected from 42 sites of Deccan Trap basalts from Mount Girnar (21°30′N; 70°30′E) and Mount Pavagarh (22°30′N; 73°30′E), India, are presented.The agreement between the mean natural remanent magnetization directions determined by this procedure and those computed after alternating-field demagnetization has been found to be very good. All the specimens from Mount Girnar and 94% of Mount Pavagarh specimens showed a stable line without any memory in a field ≈ 10 Oe. This indicates that the rocks from these two localities are highly stable and are most suitable ones for the determination of a precise palaeomagnetic direction.  相似文献   

6.
Palaeomagnetic investigation of basic intrusives in the Proterozoic Mount Isa Province yields three groups of directions of stable components of NRM after magnetic cleaning in fields up to 50 mT (1 mT= 10 Oe). The youngest group (IA) includes results from the Lakeview Dolerite, and yields a palaeomagnetic pole at 12°S, 124°E (A95 = 11°). The second group (IB) has a palaeomagnetic pole 53°S, 102°E (A95 = 11°). The third group (IC) is derived from the Lunch Creek Gabbro and contains normal and reversed polarities of magnetization with a palaeomagnetic pole at 63°S, 201°E (A95 = 9°). Some samples from the gabbro have anomalously low intensities of remanent magnetization in obscure directions attributed to the relative enhancement of the non-dipole component of the palaeomagnetic field during polarity reversal. The present attitude of the igneous lamination is probably of primary, not tectonic origin.  相似文献   

7.
Paleomagnetic measurements have been carried out on six samples of Early Triassic age and five samples of Middle Triassic age from East Greenland. The mean stable remanent magnetization directions obtained after alternating-field demagnetization tests give the virtual geomagnetic pole positions as: (1) 49°N, 158°E for the Middle Triassic and (2) 34° 30′N, 176°W for the Early Triassic. The Greenland Triassic paleomagnetic results have been compared with those for Europe and North America. It is inferred from this comparison that these preliminary results for Greenland do not conform with the requirements of a reconstruction based on a geometrical fit of the three landmasses.  相似文献   

8.
Some 50 oriented samples (120 specimens) have been collected on eight sites of volcanic rocks from the Lower Devonian Dalhousie Group of northern New Brunswick and Devonian andesitic to basic dykes from central New Brunswick. Univectorial and occasional multivectorial components were extracted from the various samples. Results after AF and thermal demagnetization compare relatively well. In the volcanics and tuffs, two components of magnetization have been isolated: A (D = 33°, I = ?58°, α95 = 7.3°, K = 236) for four sites and B (D = 66°, I = +53°) for three sites. The grouping of component A is improved after tilt correction but the fold test is not significantly positive at the 95% confidence level. Component A is interpreted as being primary while component B is unresolved and appears to be the resultant magnetization of a Late Paleozoic and a recent component. The pole position obtained for tilt corrected component A is 268°E, 1°S, dp = 6.5°, dm = 8.8°. The paleolatitude calculated for component A is 39°S. The paleopole of in situ component A is located close to those of the Early-Middle Devonian formations from Quebec, New Brunswick and New England states while the paleopole of tilt-corrected component A is similar to Lower Devonian poles of rock units from the Canadian Arctic Archipelago. If component A is primary (as we believe it to be), then the western half of the northern Appalachians had already docked onto the North American Craton by Early Devonian time. Alternatively, if component A is secondary the same conclusion applies but the juxtaposition took place in Middle Devonian time.  相似文献   

9.
Remanent coercivity spectra derived from IRM acquisition curves and thermal demagnetization of the IRM indicate that magnetite, haematite and minor amounts of goethite determine the magnetic properties of the Pliensbachian limestones at Bakonycsernye. These limestones have been sampled at approximately 7-cm intervals along a 10-m stratigraphic section which covers the whole Pliensbachian stage (Lower Jurassic) without any recognizable break in sedimentation. The primary natural remanent magnetization (NRM) is carried by detrital particles of magnetite and haematite, but it is seriously overprinted by a normal magnetization which originates from secondary haematite with a wide range of blocking temperatures. This haematite is believed to have formed diagenetically during one of the Mesozoic periods of normal polarity. However, the reversal pattern obtained after NRM thermal demagnetization at temperatures ≥450°C is thought to be characteristic of the Pliensbachian stage.  相似文献   

10.
Relative directions of magnetization have been measured within individual pillow basalts collected from the Atlantic Ocean and Caribbean Sea. The angle between the magnetic directions was determined and is referred to as the directional difference. Although one pillow contained a directional difference of 44°, the remaining ten pillows had differences less than 14°. The maximum orientation and measurement error was 7°. Dispersion on the scale found in these fine-grained pillow basalts would not appreciably affect the magnetic anomaly pattern on the sea floor. We detected no reversals of magnetization despite the sometimes large and variable low-temperature oxidation. Comparison of directions within homogeneous segments of the pillow, viscous remanent magnetization (VRM) acquisition experiments, and alternating field (AF) demagnetization indicate a large portion of the dispersion was due to the acquisition of a viscous component in the larger grained, less oxidized portion of the pillows. Evidence from one variably weathered pillow suggests that extreme low-temperature oxidation may lead to the acquisition of a secondary component with high coercivities (20–80 mT). We could not determine whether this was a chemical remanent magnetization (CRM) or a VRM acquired by single domain grains near the superparamagnetic threshold. Hysteresis properties confirmed by microscopic examination indicated that the magnetic grain size in all the pillows was at least as small as pseudo-single domain.  相似文献   

11.
Three components of magnetization have been observed in ninety-six samples (twelve sites) of amygdaloidal basalts and “sedimentary greenstones” of the Unicoi Formation in the Blue Ridge Province of northeast Tennessee and southwest Virginia. These components could be isolated by alternating field as well as thermal demagnetization. One component, with a direction close to that of the present-day geomagnetic field is ascribed to recent viscous remanent magnetizations; another component, with intermediate blocking temperatures and coercivities, gives a mean direction of D = 132°, I = +43°,α95 = 9° for N = 10 sites before correction for tilt of the strata. This direction and the corresponding pole position are close to Ordovician/Silurian data from the North American craton and we infer this magnetization to be due to a thermal(?) remagnetization during or after the Taconic orogeny. This magnetization is of post-folding origin, which indicates that the Blue Ridge in our area was structurally affected by the Taconic deformation. The third component, with the highest blocking temperatures and coercivities, appears to reside in hematite. Its mean direction, D = 276°, I = ?17°,α95 = 13.8° for N = 6 sites (after tilt correction) corresponds to a pole close to Latest Precambrian and Cambrian poles for North America. The fold test is inconclusive for this magnetization at the 95% confidence level because of the near-coincidence of the strike and the declinations. We infer this direction to be due to early high-temperature oxidation of the basalts, and argue that its magnetization may have survived the later thermal events because of its intrinsic high blocking temperatures. A detailed examination of the paleomagnetic directions from this study reveals that the Blue Ridge in this area may have undergone a small counterclockwise rotation of about 15°.  相似文献   

12.
A total of 120 samples from 12 sites were collected from two flanks of a fold. Stepwise thermal demagnetization has successfully revealed characteristic magnetization components from the rocks in each case. A well-defined component determined from red fine-grained sandstone is clustered in the northeasterly direction with shallow upward inclination (D = 29.3°,I= -19.2°,k = 283.7, α95 = 7.3°. tilt-corrected). The pole position (39.5°N, 247.3°E,dp = 4.0°,dm = 7.6°) derived from this component is close to the Permian pole for the Yangtze Block, indicating that the red fine-grained sandstone has been overprinted. The red mudstone reveals two characteristic components Component A with lower unblocking temperature, characterized by northerly declination and moderate to steep inclination corresponds to a pole position overlay with the present North Pole. Component B (D = 129.1°,I=-23.6°,k = 44.6, α95 = 7.8°, tilt-corrected) with higher unblocking temperature, passes fold test, and yields a pole position (39.5°S, 185.l°E,dp = 4.4°,dm = 8.3°) different from the other poles for the Yangtze Block. It is therefore suggested that component B was probably a primary magnetization and the Yangtze Block was situated at low latitudes in the Southern Hemisphere in the Middle Cambrian.  相似文献   

13.
Thermal remanent magnetization (TRM) and anhysteretic remanent magnetization (ARM) components were imposed on natural rock samples. The artificial laboratory components had different directions and the blocking temperature and/or coercivity spectra were overlapping. Two methods, principal component analysis (PCA) by Kirschvink and analytical modelling of demagnetization data (by Stupavsky and Symons, S&S) were used to resolve these components. The PCA technique calculated lines fitted to the demagnetization path with ASD = 10° (angular standard deviation), and the S&S method used four types of intensity decay curves for calculated components.

Both methods (PCA and S&S) resolved perfectly the one-component case. The two- or three-component case results strongly depended on spectra overlapping, and on the angles between component directions and magnetic minerals in samples. Principal component analysis gave more reliable results for separated spectra of TRM and thermally cleaned samples, whereas the S&S technique was more efficient for the case of strong spectra overlapping of ARM components and the alternative current field (AF) demagnetization method. Remarkable anisotropy of RM was observed which influences the results for the haematite-bearing samples.  相似文献   


14.
Thermal and alternating-current demagnetization combined with ore microscopy and measurements of the temperature dependence of saturation magnetization have been carried out on some Mesozoic, probably Cretaceous, basaltic lavas from two areas (Seidfjell and Sørlifjell) at Spitsbergen. The experimental studies suggest that the Seidfjell locality has undergone extensive oxidations, which resulted in remagnetization. The estimated palaeomagnetic pole for this area is 77°N 107°E, which suggests a remagnetization, probably some time in the Late Tertiary. On the other hand the experimental data from the Sørlifjell locality suggest that the magnetization is primarily of deuteric origin. The mean palaeomagnetic pole position for this latter formation is at 75°N 235°E, which is significantly different from previously published European Mesozoic data. However, closing the Neo-Arctic basin by rotating Spitsbergen towards the Lomonosov Ridge, makes the suggested Cretaceous pole coincide with poles of similar age from North-America. This suggests that the estimated pole from Sørlifjell is a good approximation for a Late Mesozoic palaeomagnetic pole for Europe and it also confirms that the process of continental separation in the Arctic has taken place in Tertiary time.  相似文献   

15.
用热退磁辅以交变退磁方法对采自塔里木盆地阿克苏地区四石厂剖面47个采样点518块标本进行了逐步磁清洗和测试。由本征剩磁方向统计得到塔里木地台晚古生代的古地磁极位置(晚泥盆世φ=10.5°S、λ=151.2°E;晚石炭世φ=52.2°N、λ=179.5°E;早二叠世φ=56.5°N,λ=190.1°E)。古地磁结果表明:塔里木地台在晚古生代是北方大陆的块体之一。从晚石炭世至早二叠世塔里木地台已和北方的哈萨克斯坦板块、西伯利亚地台、俄罗斯地台等连成一片,并且从中生代以来它们之间的相对位置没有发生过大规模的变动  相似文献   

16.
A paleomagnetic study was made of the granitic rock farsundite, exposed in southern Norway. An objective was to test the contemporaneity of this body with the neighbouring Egersund anorthosite of presumed age about 900 m.y. Two of the nine sites sampled were rejected, as the magnetization was dominantly unstable. At the seven other sites, this unstable component was either absent or it could be equally well removed by AF or thermal demagnetization: after AF treatment, all samples from these sites were left with a very stable remanence, directed steeply upwards. This magnetization was probably acquired at the time of either emplacement or recrystallization of the farsundite. A magnetic test for anisotropy indicated that the stable remanence is misaligned with the ancient Earth's field direction by about 3°, apparently due to layering of the rock fabric. After correction for this anisotropy, the mean direction from the seven sites is D = 341°, I = 82.2°, k = 142, α = 5.0°, corresponding to a paleomagnetic north pole at 43.3°S, 166.0°W, dp = 9.3°, dm = 9.7°, which lies on Spall's European polar wandering curve. The farsundite pole is not significantly different from a pole position based on the Egersund anorthosite, which supports the supposition that the two rock formations are cogenetic.  相似文献   

17.
Since the 1990s, a large number of paleomagneticstudies have been carried out in the North China block(NCB) and Tarim block[1-8], and more and more geo-physicists recently believe that the last collision andconvergence between Siberia and the Mongolia-NorthChina plate happened in the Late Jurassic, which wascontributed to a paleomagnetic study on these areas byZhao and his colleagues[2]. However, we lack paleo-magnetic results obtained directly from the orogenicbelt between Siberia and th…  相似文献   

18.
The Wackerfield Dyke is exposed in northern England and its field relationships suggest it could be related to the Eocene Mull Dyke Swarm. Wackerfield Dyke specimens taken from below the zone of surface weathering have a natural remanent magnetization that is extremely stable to thermal and alternating field demagnetization. Stability is expected because the Fe-Ti oxides are highly oxidized. The stable magnetization is identical with a primary remanence that can be isolated from certain samples of the Whin Sill of northern England, and gives a mean pole at 175°E, 22°N (dp = 2°, dm = 3°). An Upper Carboniferous age for the Wackerfield Dyke is confirmed by a K-Ar whole rock age of 303 my.  相似文献   

19.
An intensive paleomagnetic investigation has been conducted on the Middle Triassic Leikoupo Formation on the Wangcang section (32.14°N, 103. 17°E). The results indicate the magnetic minerals are dominant by multidomain magnetite or maghemite, and the characteristic remnant magnetization revealed by stepwise thermal/alternating field demagnetization is close to the present-day geomagnetic direction of the sampling site. This suggests that dolomitization/thermal viscous magnetization is responsible for the remagnetization of this kind of rocks.  相似文献   

20.
蛇绿岩中枕状玄武岩的古地磁学研究可为古海洋的恢复与演化提供定量化依据.黑龙江省饶河地区中侏罗世枕状玄武岩的岩石学、岩石磁学研究表明,该岩石具备水下喷出特点,发育辉长结构,载磁矿物为磁铁矿.17个采点181块样品的热退磁实验表明,中侏罗世枕状玄武岩记录了高温分量和中温分量,前者为熔岩喷发记录的原生剩磁方向,平均方向D/I=59.4°/46.3°,α95=6.8°,对应的极位置为40.3°N,224.6°E,A95=7°;后者可能为晚侏罗世—早白垩世岩浆热事件的叠加,平均方向D/I=55.4°/60.6°,α95=3.9°,对应的极位置为50.8°N,210.6°E,A95=5.2°.综合考虑区域地质背景,将这一结果与邻区同时代的古地磁数据对比,推测在中侏罗世之前,在饶河杂岩与佳木斯地体之间存在一定规模的海域,与现今日本海相似;早白垩世时期,该海域封闭,饶河杂岩与华北、西伯利亚板块在动力学上已成为整体.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号