首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a new seismic velocity model for the southern Apennines–Calabrian Arc border region with the aim to better define the crustal structures at the northern edge of the Ionian subduction zone. This sector also includes the Pollino Mts. area, where a seismic sequence of thousands of small to moderate earthquakes has been recorded between spring 2010 and 2013. In this sector a seismic gap was previously hypothesized by paleoseismological evidences associated with the lack of major earthquakes in historical catalogs.To perform the tomographic inversion we selected ca. 3600 earthquakes that have occurred in the last thirty years and recorded by permanent and temporary networks managed by INGV and Calabria University. Using for the first time the Local Tomography Software for passive tomography inversion (LOTOS hereinafter) to crustal analysis in southern Italy, we have computed the distribution of Vp, Vs, and the Vp/Vs ratio. The obtained velocity model, jointly evaluated with results of synthetic modeling, as well as with the hypocenter distribution and geological information, gives us new constraints on the geodynamical and structural knowledge of the study area.The comparison between the shallow tomography sections and surface geology shows good correlation between velocity patterns and the main geological features of the study area. In the upper crust a low-velocity anomaly of P- and S-waves is detectable beneath the Pollino Mts. area and seems to separate the Calabrian and southern Apennines domains, characterized by higher velocities. The distributions of high Vp/Vs ratio, representing strongly fractured rocks with likely high fluid content, clearly correlate with areas of significant seismicity.In the lower crust we detect a clear transition from high to low seismic velocities in correspondence with the Tyrrhenian coast of the study area, which may represent the transition from the thinner Tyrrhenian crust to the thicker one beneath Calabria. In this area, also characterized by a progressive detachment of a retreating lithospheric slab, the generation of a Subduction-Transform Edge Propagator (STEP) fault zone, that laterally decouples subducting lithosphere from non-subducting lithosphere in a scissor type of fashion, may have taken place. These conditions imply the existence of a kinematic decoupling which allows for differential movement between the Calabrian Arc and the southern Apennine chain. The low velocity anomaly separating the southern Apennines and the Calabrian Arc domain may be related to fluid upwelling occurring in correspondence with the northern edge of the Calabrian subducting slab.  相似文献   

2.
Crustal seismic tomography in the Calabrian Arc region, south Italy   总被引:1,自引:0,他引:1  
27,646 P- and 15,025 S-wave readings obtained from 2238 earthquakes and 84 artificial sources were used to perform tomographic inversion of P velocity and VP/VS ratio in the crust of Calabrian Arc by Thurber’s inversion algorithm. For this investigation a seismic database with more than twelve-thousand events was built, including all local earthquake data recorded between 1978 and 2001 at all stations of the national and local networks in south Italy. Spread Function computations and checkerboard and restore tests proved higher accuracy of velocity estimates in the upper 40 km beneath Calabrian Arc compared to previous investigations in the same area. The obtained three-dimensional velocity model furnished remarkable improvement of hypocenter locations of the global earthquake dataset (RMS reduction of 38% respect to 1D locations) and greater accuracy in the definition of microplates and tectonic units in the study region. Velocity domains evidenced by our tomography correspond to tectonic units locally identified with geological methods by previous investigators and allow us to better detail their shape and geometry at depth. In particular, at a depth of about 20 km beneath Calabria we detected the deep contact between the overthrusting Tyrrhenian crust and the subducting Ionian slab, improving the accuracy of the current subduction model of the Calabrian Arc region.  相似文献   

3.
Mediterranean island arcs and origin of high potash volcanoes   总被引:1,自引:0,他引:1  
Active volcanoes of the Mediterranean Sea are distributed along two arc structures: the Hellenic arc in the Aegean Sea and the Calabrian arc in the Tyrrhenian Sea. The active volcanoes in both arcs lie above earthquakes with focal depth greater than 100 km. The depth of these earthquakes increases generally northward reaching a maximum depth of about 200 km in the Aegean Sea and more than 300 km in the Tyrrhenian Sea.  相似文献   

4.
Nisyros island, a Quaternary volcanic center located at the SE of the Aegean Volcanic Arc, has been in the past characterized by periods of intense seismic activity accompanied sometimes by hydrothermal explosions, the last one being in 1887. The recent long lasting episode of unrest (1995–1998) in the area is the first instrumentally documented providing information on the behavior of the volcano. Evidence from seismicity and SAR interferometry suggests that the presently active part of the Kos–Nisyros volcano-tectonic complex is located at the NW coast of Nisyros island defining an area much smaller than the whole volcano-tectonic area. Seismicity patterns vary both temporally and spatially consistently with different rates of vertical ground deformation inferred from SAR interferometry. These observations help us to discuss the different elements controlling the behavior of the volcanic system such as: the existence, location and timing of magma chamber inflation, the occurrence of tensile failure at the boundaries of the chamber and the possibility of magmatic fluids being expelled to form a shallow magmatic intrusion, the seismic failure and migration of hypocenters indicating shallow magma transport.  相似文献   

5.
A detailed statistical analysis applied to the seismicity of Italy and surrounding areas allows us to identify some correlations between several statistical parameters and the thickness and the elastic parameters of the lithospheric part of the mantle, the lid. In particular, the intensity of the flow of seismic events, deprived of aftershocks, shows concentrations in relation to large gradients in the lithospheric thickness, due to abrupt variations of the lid thickness. When this variation is not very large the intensity of flow of seismic events is smaller than on the average, but in these areas (e.g., the Calabrian Arc) the strongest shocks tend to occur. The average depth of crustal shocks tends to be very shallow in relation to the thin and soft (low shear-wave velocities) lid. The positive influence, probably reflecting the thermal state in the lithosphere, is very large in relation to the thin and soft lid and where strong gradients in lid thickness are observed, and is small in relation to thick and hard lid (high shear-wave velocities). From the observed correlation between seismicity properties and lid characteristics, it may be concluded that aseismic slip below the Moho might be a key seismogenetic process.  相似文献   

6.
We investigate mainshock slip distribution and aftershock activity of the 8 January 2013 M w?=?5.7 Lemnos earthquake, north Aegean Sea. We analyse the seismic waveforms to better understand the spatio-temporal characteristics of earthquake rupture within the seismogenic layer of the crust. Peak slip values range from 50 to 64 cm and mean slip values range from 10 to 12 cm. The slip patches of the event extend over an area of dimensions 16?×?16 km2. We also relocate aftershock catalog locations to image seismic fault dimensions and test earthquake transfer models. The relocated events allowed us to identify the active faults in this area of the north Aegean Sea by locating two, NE–SW linear patterns of aftershocks. The aftershock distribution of the mainshock event clearly reveals a NE–SW striking fault about 40 km offshore Lemnos Island that extends from 2 km up to a depth of 14 km. After the mainshock most of the seismic activity migrated to the east and to the north of the hypocenter due to (a) rupture directivity towards the NE and (b) Coulomb stress transfer. A stress inversion analysis based on 14 focal mechanisms of aftershocks showed that the maximum horizontal stress is compressional at N84°E. The static stress transfer analysis for all post-1943 major events in the North Aegean shows no evidence for triggering of the 2013 event. We suggest that the 2013 event occurred due to tectonic loading of the North Aegean crust.  相似文献   

7.
We model the macroseismic damage distribution of four important intermediate-depth earthquakes of the southern Aegean Sea subduction zone, namely the destructive 1926 M?=?7.7 Rhodes and 1935 M?=?6.9 Crete earthquakes, the unique 1956 M?=?6.9 Amorgos aftershock (recently proposed to be triggered by a shallow event), and the more recent 2002 M?=?5.9 Milos earthquake, which all exhibit spatially anomalous macroseismic patterns. Macroseismic data for these events are collected from published macroseismic databases and compared with the spatial distribution of seismic motions obtained from stochastic simulation, converted to macroseismic intensity (Modified Mercalli scale, IMM). For this conversion, we present an updated correlation between macroseismic intensities and peak measures of seismic motions (PGA and PGV) for the intermediate-depth earthquakes of the southern Aegean Sea. Input model parameters for the simulations, such as fault dimensions, stress parameters, and attenuation parameters (e.g. back-arc/along anelastic attenuation) are adopted from previous work performed in the area. Site-effects on the observed seismic motions are approximated using generic transfer functions proposed for the broader Aegean Sea area on the basis of VS30 values from topographic slope proxies. The results are in very good agreement with the observed anomalous damage patterns, for which the largest intensities are often observed at distances >?100 km from the earthquake epicenters. We also consider two additional “prediction” but realistic intermediate-depth earthquake scenarios, and model their macroseismic distributions, to assess their expected damage impact in the broader southern Aegean area. The results suggest that intermediate-depth events, especially north of central Crete, have a prominent effect on a wide area of the outer Hellenic arc, with a very important impact on modern urban centers along northern Crete coasts (e.g. city of Heraklion), in excellent agreement with the available historical information.  相似文献   

8.
The Pollino Range is the southernmost segment of the Southern Apennines at the boundary with the Calabrian Arc. While several strong earthquakes (magnitude 6.5–7.0) have occurred in nearby regions, the Pollino area has no known historical record of seismic events of magnitude > 5. We carried out an aerial photograph interpretation and a field survey of the Pollino fault (the major Quaternary normal fault of the area) in order to characterize geologically the seismic potential of this structure. We dug two sets of trenches across fault scarps within the apecies of latest Pleistocene to Holocene alluvial fans at the Masseria Quercia Marina (MQM) and Grotta Carbone (GC) sites, in the central segment of the southern Pollino Range front. At both sites we identified two surface faulting events affecting the alluvial fan deposits and two overlying colluvial units of historical age. The penultimate event produced a vertical offset of 80–90 cm at GC and 50–60 cm at MQM; while the last event produced a vertical offset of 40–50 cm at GC and few centimeters of offset at MQM. Detailed geomorphological field observations suggest that the two historical earthquakes reactivated the entire length of the Masseria Marzano-Civita segment of the Pollino fault (rupture length about 18 km). For events in this range of rupture length and vertical displacement, comparison with surface faulting earthquakes in the Apennines (and abroad) indicates a magnitude of 6.5–7.0. Therefore, the maximum potential earthquake and the seismic hazard of the Pollino area are significantly larger than that suggested by the available historical seismic catalogue.  相似文献   

9.
An M8.3 earthquake struck the southwestern part of the Hellenic Arc, near the Island of Crete, in AD 365, generating a tsunami that affected almost the entire eastern Mediterranean region. Taking into account that the time history of seismicity in this region is fairly complete for such earthquakes in the historical catalog, which can be dated as back as the 5th century B.C., there is no indication that this segment of plate boundary has been fully ruptured again. The seismic hazard associated with this part of the Hellenic Arc necessitates the evaluation of the rupture characteristics of this great event. The constraint of the faulting geometry was initially achieved by using information from seismicity, and the focal mechanisms of earthquakes that occurred during the instrumental period. A rupture model for this great earthquake is constructed by assuming an elastic medium and calculating the theoretical surface displacements for various fault models that are matched with the observed surface deformation gleaned from historical reports. The resulted fault model concerns thrust faulting with a rupture length of 160 km and a seismic moment of 5.7 × 1028 dyn·cm, an average slip of 8.9 m and a corresponding moment magnitude equal to 8.4, in excellent agreement with the macroseismic estimation. The absence of such events recurrence is an indication of the lack of complete seismic coupling that is common in subduction zones, which is in accordance with the back arc spreading of the Aegean microplate and with previous results showing low coupling for extensional strain of the upper plate.  相似文献   

10.
We applied the maximum likelihood method produced by Kijko and Sellevoll (Bull Seismol Soc Am 79:645–654, 1989; Bull Seismol Soc Am 82:120–134, 1992) to study the spatial distributions of seismicity and earthquake hazard parameters for the different regions in western Anatolia (WA). Since the historical earthquake data are very important for examining regional earthquake hazard parameters, a procedure that allows the use of either historical or instrumental data, or even a combination of the two has been applied in this study. By using this method, we estimated the earthquake hazard parameters, which include the maximum regional magnitude $ \hat{M}_{\max } , $ the activity rate of seismic events and the well-known $ \hat{b} $ value, which is the slope of the frequency-magnitude Gutenberg-Richter relationship. The whole examined area is divided into 15 different seismic regions based on their tectonic and seismotectonic regimes. The probabilities, return periods of earthquakes with a magnitude M?≥?m and the relative earthquake hazard level (defined as the index K) are also evaluated for each seismic region. Each of the computed earthquake hazard parameters is mapped on the different seismic regions to represent regional variation of these parameters. Furthermore, the investigated regions are classified into different seismic hazard level groups considering the K index. According to these maps and the classification of seismic hazard, the most seismically active regions in WA are 1, 8, 10 and 12 related to the Alia?a Fault and the Büyük Menderes Graben, Aegean Arc and Aegean Islands.  相似文献   

11.
《Journal of Geodynamics》2008,45(3-5):173-185
The island of Crete is located in the forearc of the Hellenic subduction zone, where the African lithospheric plate is subducting beneath the Eurasian one. The depth of the plate contact as well as the internal structure of the Aegean plate in the area of Crete have been a matter of debate. In this study, seismic constrains obtained by wide-angle seismic, receiver function and surface wave studies are discussed and compared to a 3D density model of the region.The interface between the Aegean continental lithosphere and the African one is located at a depth of about 50 km below Crete. According to seismic studies, the Aegean lithosphere in the area of Crete is characterised by strong lateral, arc–parallel heterogeneity. An about 30 km thick Aegean crust is found in central Crete with a density of about 2850 kg/m3 for the lower Aegean continental crust and a density of about 3300 kg/m3 for the mantle wedge between the Aegean crust and the African lithosphere. For the deeper crust in the area of western Crete two alternative models have been proposed by seismic studies. One with an about 35 km thick crust and another one with crustal velocities down to the plate contact. A grid search is performed to test the consistency of these models with gravimetric constraints. For western Crete a model with a thick lower Aegean crust and a density of about 2950 kg/m3 is favoured. The inferred density of the lower Aegean crust in the area of Crete correlates well with S-wave velocities obtained by surface wave studies.Based on the 3D density model, the weight of the Aegean lithosphere is estimated along an E–W oriented profile in the area of Crete. Low weights are found for the region of western Crete.  相似文献   

12.
The island of Crete is located in the forearc of the Hellenic subduction zone, where the African lithospheric plate is subducting beneath the Eurasian one. The depth of the plate contact as well as the internal structure of the Aegean plate in the area of Crete have been a matter of debate. In this study, seismic constrains obtained by wide-angle seismic, receiver function and surface wave studies are discussed and compared to a 3D density model of the region.The interface between the Aegean continental lithosphere and the African one is located at a depth of about 50 km below Crete. According to seismic studies, the Aegean lithosphere in the area of Crete is characterised by strong lateral, arc–parallel heterogeneity. An about 30 km thick Aegean crust is found in central Crete with a density of about 2850 kg/m3 for the lower Aegean continental crust and a density of about 3300 kg/m3 for the mantle wedge between the Aegean crust and the African lithosphere. For the deeper crust in the area of western Crete two alternative models have been proposed by seismic studies. One with an about 35 km thick crust and another one with crustal velocities down to the plate contact. A grid search is performed to test the consistency of these models with gravimetric constraints. For western Crete a model with a thick lower Aegean crust and a density of about 2950 kg/m3 is favoured. The inferred density of the lower Aegean crust in the area of Crete correlates well with S-wave velocities obtained by surface wave studies.Based on the 3D density model, the weight of the Aegean lithosphere is estimated along an E–W oriented profile in the area of Crete. Low weights are found for the region of western Crete.  相似文献   

13.
A fairly detailed structural model of the lithosphere-asthenosphere system (thickness, S- and P-wave velocities of the crust and of the uppermost mantle layers) has been defined in the Calabrian Arc region (Southern Tyrrhenian Sea, Calabria and the northwestern part of the Ionian Sea) in Southern Italy using seismic data from literature as a priori constraints of the nonlinear inversion of surface-wave data. The main features identified by this study are: (1) A very shallow (less then 10 km deep) crust-mantle transition in the Southern Tyrrhenian Sea and a very low vs just below a very thin lid, in correspondence of the submarine volcanic bodies Magnaghi, Marsili and Vavilov, while the vs in the lid is quite high in the area that separates Marsili from Magnaghi-Vavilov; (2) a shallow and very low vs layer in the uppermost mantle in the areas of the Aeolian Islands, Vesuvius, Phlegraean Fields and Ischia, which represents their shallow-mantle magma source; (3) a thickened continental crust and lithospheric doubling in Calabria; (4) a crust about 25-km thick and a mantle velocity profile versus depth consistent with the presence of a continental rifted lithosphere, now thermally relaxed, in the investigated part of the Ionian Sea; (5) the subduction towards northwest of the Ionian lithosphere below the Southern Tyrrhenian Sea; (6) the subduction of the Adriatic/Ionian lithosphere underneath the Vesuvius and Phlegraean Fields.  相似文献   

14.
—Methods and the results of estimating the anomalies characterising the density inhomo geneities in the European-Mediterranean upper mantle are described. These anomalies were obtained by subtracting the gravity effect of a crustal density model derived from seismic velocities from the observed gravity field averaging over an area of 1°× 1°. The 3-D density model of the study region comprises two regional layers of varying thickness with lateral variation of average density the sedimentary cover and the crystalline crust. The average densities for model layers were evaluated by using a velocity/density conversion function and taking into account sediment consolidation with depth. Clear correlation between residual gravity anomalies and both velocity heterogeneities and thermal regime data of the upper mantle has been revealed. An agreement of positive anomalies over the Alps, the Adriatic plate and the Calabrian Arc with high velocity domains in the upper mantle and reduced temperatures at the subcrustal layer are caused by lithospheric "roots" and thickened lithosphere below these structures. Gravity residual lows, revealed over the Western Mediterranean Basin and Pannonian Basin, are in correspondence with both low velocities and high temperatures in the upper mantle. These anomalies are the result of the presence of asthenosphere in shallow near-Moho depths below these basins.  相似文献   

15.
The subsidence rates of the Aegean margins during the Middle-Upper Pleistocene were evaluated based on new and historical seismic profiling data. High-resolution seismic profiling (AirGun, Sparker and 3.5 kHz) have shown that (at least) four major oblique prograding sequences can be traced below the Aegean marginal slopes at increasing subbottom depths. These palaeo-shelf break glacial delta sediments have been developed during successive low sea-level stands (LST prograding sequences), suggesting continuous and gradual subsidence of the Aegean margins during the last 400 ka. Subsidence rates of the Aegean margins were calculated from the vertical displacement of successive topset-to-foreset transitions (palaeo-shelf break) of the LST prograding sediment sequences.The estimated subsidence rates that were calculated in the active boundaries of the Aegean microplate (North Aegean margins, Gulfs of Patras and Corinth) are high and range from 0.7 to 1.88 m ka?1, while the lowest values (0.34–0.60 m ka?1) are related to the low tectonic and seismic activity margins like the margin of Cyclades plateau. Lower subsidence rates (0.34–0.90 m ka?1) were estimated for the period 146–18 ka BP (oxygen isotopic stages 6–2) and higher (1.46–1.88 m ka?1) for the period from 425 to 250 ka BP (oxygen isotopic stages 12/10–8). A decrease of about 50% of the subduction rates in the Aegean margins was observed during the last 400 ka.During the isotopic stages 8, 10, 11 and 12, almost the 50–60% of the present Aegean Sea was land with extensive drainage systems and delta plains and large lakes in the central and North Aegean. Marine transgression in the North Aegean was rather occurred during the isotopic 9 interglacial period. The estimated palaeomorphology should imply fan delta development and sediment failures in the steep escarpments of the North Aegean margins and high sedimentation rates and turbidite sediment accumulation in the basins. It is deduced that the Black Sea was isolated from the Mediterranean during the Pleistocene prior oxygen isotopic stage 5.  相似文献   

16.
Francesca  Liberi  Lauro  Morten  Eugenio  Piluso 《Island Arc》2006,15(1):26-43
Abstract Slices of oceanic lithosphere belonging to the neo‐Tethys realm crop out discontinuously in the northern Calabrian Arc, Southern Apennines. They consist of high‐pressure–low‐temperature metamorphic ophiolitic sequences formed from metaultramafics, metabasites and alternating metapelites, metarenites, marbles and calcschist. Ophiolites occupy an intermediate position in the northern Calabrian Arc nappe pile, situated between overlying Hercynian continental crust and the underlying Apenninic limestone units. In the literature, these ophiolitic sequences are subdivided into several tectonometamorphic units. Geochemical characteristics indicate that metabasites were derived from subalkaline basalts with tholeiitic affinity (transitional mid‐oceanic ridge basalt type), and a harzburgitic‐lherzolitic protolith is suggested for the serpentinites. The pressure–temperature‐deformation paths of the metabasites from different outcrops display similar features: (i) the prograde segment follows a typical Alpine geothermal gradient up to a metamorphic climax at 350°C and 0.9 GPa and crystallization of the high‐pressure mineral assemblage occurs along a pervasive foliation developed during a compressive tectonic event; and (ii) the retrogression path can be subdivided in two segments, the first is characterized by nearly isothermal decompression to approximately 400°C and 0.3 GPa and the second follows a cooling trajectory. During low‐pressure conditions, a second deformation event produces millimetric to decametric scale asymmetric folds that describe west‐verging major structures. The third deformation event is characterized by brittle extensional structures. The tectonometamorphic evolution of the ophiolitic sequences from the different outcrops is similar. Both thermobarometric modeling and tectonic history indicate that the studied rocks underwent Alpine subduction and exhumation processes as tectonic slices inside a west‐verging accretionary wedge. The subduction of oceanic lithosphere was towards the present east; therefore, the Hercynian continental crust, overthrusted on the ophiolitic accretionary wedge after the neo‐Tethys closure, was part of the African paleomargin or a continental microplate between Africa and Europe.  相似文献   

17.
One of the most prominent tectonic features of the Eastern Mediterranean region is the Hellenic volcanic arc in the Southern Aegean Sea, with the Santorini Island being one of the most active volcanic centers. Recent seismic studies show that the main seismic activity of the Santorini volcanic center is strongly associated with the volcanic processes, as well as with the seismo-tectonic regime of the broader Southern Aegean Sea area. The main cluster of local seismicity is located near the northeastern edge of the Santorini Island, beneath the Coloumbo Reef, which is a submarine volcanic seamount of the Santorini Island volcanic system.  相似文献   

18.
Subduction plays a fundamental role in plate tectonics and when interrupted it may trigger a series of geodynamic and sedimentary responses. Synchronous structural modifications recorded across the entire eastern Mediterranean region are dated to a relatively short period — early-to-mid Pleistocene. These deformations are documented within plates (e.g., Arabian, Sinai and African plates), along plate boundaries (e.g., Dead Sea and North Anatolian faults and Cyprus Arc), and in the Mediterranean basin. During the same period the northward subduction of the Sinai plate was interrupted when the Eratosthenes Seamount–Cyprus Arc collision initiated. Subduction–collision processes of the eastern Mediterranean serve as a unique modern analogue for similar settings worldwide. Understanding their association with accompanying neo-tectonic processes is therefore predominantly important. By fostering a detailed and comprehensive approach this research provides a coherent tectonic picture for the eastern Mediterranean early-to-mid Pleistocene tectonic transition in order to explore its triggering mechanisms. Since the Neogene convergence across the eastern Mediterranean was accompanied by Eurasian indentation by Arabia northward motion, westwards Anatolia escape and southwards Aegean propagation. This semi counterclockwise plate motion was temporarily interrupted by the incipient Seamount–Arc collision which is suggested here as a trigger of the early-to-mid Pleistocene tectonic transition.  相似文献   

19.
The active geodynamic setting of the Northern Apennines is characterised by extension in the axial zone of the chain, and by a more complex tectonic behaviour in the frontal part of the belt. In the latter sector, moderate seismicity occurs, displaying compressional, strike-slip and extensional focal plane solutions with variably oriented P and T axes. For this area, a review of available geological and geophysical data has been integrated by the analysis of seismic reflection lines calibrated with deep well logs. This study confirms that, as already suggested by some previous workers, thrusting and related folding in the study area ceased in Early Pleistocene times. This feature is in contrast with the hypothesis of active thrusting related to a subducting lithospheric slab beneath the chain—an issue which is largely debated based on available geophysical information. Our analysis shows that the Northern Apennines are characterised by an active tectonic setting which is similar to that of the central and southern portions of the belt. These areas all display a Late Quaternary inactivity of the thrust front. NE–SW oriented extension (perpendicular to the strike of the orogen) is well established in their axial zones, whereas a less homogeneous stress field characterises their external sectors and the adjacent foreland. Within this framework, the seismotectonic behaviour of the Northern Apennines—and probably of the whole Italian peninsula between the Po Plain and the Southern Apennines (north of the Calabrian Arc)—may be interpreted as essentially controlled by two main processes. The first of them involves tectonic uplift, possibly related with slab detachment and associated unbending of the foreland plate. The second process consists of a present-day northwestward motion of the Adria block with respect to stable Europe.  相似文献   

20.
A method to analyze self-affinities is introduced and applied to the large scale fold geometries of Quaternary and Tertiary sediments or geographical topographies in the inner belt of the Northeast Honshu Arc, Japan. Based on this analysis, their geometries are self-affine and can be differently scaled in different directions. We recognize a crossover from local to global altitude (vertical) variation of the geometries of folds and topographies. The characteristic length for the crossover of topographies (landforms) is about 25 km and is related to the half wavelength of the crustal buckling folds or possible maximum magnitude of inland earthquakes in the Northeast Honshu Arc. Moreover, self-affinity of the folds and topographies can be connected with the b-value in Gutenberg-Richter℉s law. We obtain two average Hurst exponents obtained from the self-affinities of folds in the Northeast Honshu Arc. This indicates that there are two possible seismic modes for the smaller and larger ranges in the focal regions in the Northeast Honshu Arc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号