首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
北半球夏季遥相关的年际振荡及其与ENSO循环的可能联系   总被引:2,自引:2,他引:0  
利用43年夏季500hPa高度场资料刻划了北半球夏季东亚太平洋型遥相关和积雪强迫型遥相关的强度.分析结果揭示了它们准4年周期振荡间的位相关系,并推测了在该时间尺度上与ENSO循环的可能联系.  相似文献   

2.
北半球夏季500hPa候平均高度场的遥相关和环流特征   总被引:6,自引:0,他引:6       下载免费PDF全文
杨秋明 《大气科学》1993,17(2):148-154
本文用10年(1980—1989)夏季北半球500hPa候平均高度场资料进行遥相关分析,得到东亚太平洋型(EAP)和西欧型(WE)两种遥相关型及西亚-太平洋-大西洋振荡,并对高度场进行主成分分析(PCA),讨论了环流的时空分布特征.  相似文献   

3.
We assess the ability of the Predictive Ocean Atmosphere Model for Australia (POAMA) to simulate and predict weekly rainfall associated with the MJO using a 27-year hindcast dataset. After an initial 2-week atmospheric adjustment, the POAMA model is shown to simulate well, both in pattern and in intensity, the weekly-mean rainfall variation associated with the evolution of the MJO over the tropical Indo-Pacific. The simulation is most realistic in December?CFebruary (austral summer) and least realistic in March?CMay (austral autumn). Regionally, the most problematic area is the Maritime Continent, which is a common problem area in other models. Coupled with our previous demonstration of the ability of POAMA to predict the evolution of the large-scale structure of the MJO for up to about 3?weeks, this ability to simulate the regional rainfall evolution associated with the MJO translates to enhanced predictability of rainfall regionally throughout much of the tropical Indo-Pacific when the MJO is present in the initial conditions during October?CMarch. We also demonstrate enhanced prediction skill of rainfall at up to 3?weeks lead time over the north-east Pacific and north Atlantic, which are areas of pronounced teleconnections excited by the MJO-modulation of tropical Indo-Pacific rainfall. Failure to simulate and predict the modulation of rainfall in such places as the Maritime Continent and tropical Australia by the MJO indicates, however, there is still much room for improvement of the prediction of the MJO and its teleconnections.  相似文献   

4.
Northeast China(NEC) is China’s national grain production base, and the local precipitation is vital for agriculture during the springtime. Therefore, understanding the dynamic origins of the NEC spring rainfall(NECSR) variability is of socioeconomic importance. This study reveals an interdecadal change in the atmospheric teleconnections associated with the NECSR during a recent 60-year period(1961–2020). Before the mid-1980s, NECSR had been related to a Rossby wave train that is coupled with ex...  相似文献   

5.
用50年 (1951~2000年) 观测资料, 分成1951~1976年和1977~2000年两个时段, 研究了江淮地区夏季 (6~8月) 雨量与北半球500 hPa季平均环流时滞遥相关的年代际变化, 同时提出了遥相关不稳定指数, 讨论了遥相关不稳定性的空间分布和季节变化。结果表明, 这两个时段遥相关的空间分布存在显著差异, 且前一时期时滞遥相关强度明显强于后一时期, 特别是江淮地区夏季雨量与前期冬季西太平洋型 (WP) 的相关仅在1976年以前显著, 1977年以后迅速减弱消失, 而对于后一时期, 与春季欧亚遥相关型 (EU) 的相关明显加强。另外, 后一时期江淮地区夏季雨量与夏季EAP波列的相关明显强于前一时期。它反映了太平洋年代际振荡 (PDO) 对东亚季风降水和环流年际相关的影响, 这种遥相关的不稳定性与年代际和年际时间尺度振荡之间的相互作用有密切联系。  相似文献   

6.
This study investigates the El Niño Southern Oscillation (ENSO) teleconnections to tropical Indian Ocean (TIO) and their relationship with the Indian summer monsoon in the coupled general circulation model climate forecast system (CFS). The model shows good skill in simulating the impact of El Niño over the Indian Oceanic rim during its decay phase (the summer following peak phase of El Niño). Summer surface circulation patterns during the developing phase of El Niño are more influenced by local Sea Surface Temperature (SST) anomalies in the model unlike in observations. Eastern TIO cooling similar to that of Indian Ocean Dipole (IOD) is a dominant model feature in summer. This anomalous SST pattern therefore is attributed to the tendency of the model to simulate more frequent IOD events. On the other hand, in the model baroclinic response to the diabatic heating anomalies induced by the El Niño related warm SSTs is weak, resulting in reduced zonal extension of the Rossby wave response. This is mostly due to weak eastern Pacific summer time SST anomalies in the model during the developing phase of El Niño as compared to observations. Both eastern TIO cooling and weak SST warming in El Niño region combined together undermine the ENSO teleconnections to the TIO and south Asia regions. The model is able to capture the spatial patterns of SST, circulation and precipitation well during the decay phase of El Niño over the Indo-western Pacific including the typical spring asymmetric mode and summer basin-wide warming in TIO. The model simulated El Niño decay one or two seasons later, resulting long persistent warm SST and circulation anomalies mainly over the southwest TIO. In response to the late decay of El Niño, Ekman pumping shows two maxima over the southern TIO. In conjunction with this unrealistic Ekman pumping, westward propagating Rossby waves display two peaks, which play key role in the long-persistence of the TIO warming in the model (for more than a season after summer). This study strongly supports the need of simulating the correct onset and decay phases of El Niño/La Niña for capturing the realistic ENSO teleconnections. These results have strong implications for the forecasting of Indian summer monsoon as this model is currently being adopted as an operational model in India.  相似文献   

7.
In the paper the 5°×10°latitude-longitude grid point data of daily 500 hPa geopotential height over the NorthernHemisphere(NH)in summer(June—August)during 1980s are used.The base point(20°N,120°E)is selected to calcu-late point correlation between the base point and other grid points.We find that the summer heat source anomaly of thetropical western Pacific causes anomaly of summer general circulation over NH and teleconnection of general circula-tion similar to PNA pattern forms from East Asia to North America.The teleconnections show great interannualchanges.  相似文献   

8.
山东各区夏季降水的多步预测试验   总被引:8,自引:0,他引:8  
在对山东夏季降水进行分区的基础上,用相当分析的方法分析了各区降水与前期、同期大气环流特征量及海温的遥相关关系,结果表明:山东夏季降水与大气环流特征量及海温相关性显著。在此基础上筛选因子,利用多维均生函数建模方案,对2000年前各区及全省夏季降水趋势进行预测。  相似文献   

9.
The main goal of this study is to determine the oceanic regions corresponding to variability in African rainfall and seasonal differences in the atmospheric teleconnections. Canonical correlation analysis (CCA) has been applied in order to extract the dominant patterns of linear covariability. An ensemble of six simulations with the global atmospheric general circulation model ECHAM4, forced with observed sea surface temperatures (SSTs) and sea ice boundary variability, is used in order to focus on the SST-related part of African rainfall variability. Our main finding is that the boreal summer rainfall (June–September mean) over Africa is more affected by SST changes than in boreal winter (December–March mean). In winter, there is a highly significant link between tropical African rainfall and Indian Ocean and eastern tropical Pacific SST anomalies, which is closely related to El Niño-Southern Oscillation (ENSO). However, long-term changes are found to be associated with SST changes in the Indian and tropical Atlantic Oceans, thus, showing that the tropical Atlantic plays a critical role in determining the position of the intertropical convergence zone (ITCZ). Since ENSO is less in summer, the tropical Pacific and the Indian Oceans are less important for African rainfall. The African summer monsoon is strongly influenced by SST variations in the Gulf of Guinea, with a response of opposite sign over the Sahelian zone and the Guinean coast region. SST changes in the subtropical and extratropical oceans mostly take place on decadal time scales and are responsible for low-frequency rainfall fluctuations over West Africa. The modelled teleconnections are highly consistent with the observations. The agreement for most of the teleconnection patterns is remarkable and suggests that the modelled rainfall anomalies serve as suitable predictors for the observed changes.  相似文献   

10.
This study presents the first consolidation of palaeoclimate proxy records from multiple archives to develop statistical rainfall reconstructions for southern Africa covering the last two centuries. State-of-the-art ensemble reconstructions reveal multi-decadal rainfall variability in the summer and winter rainfall zones. A decrease in precipitation amount over time is identified in the summer rainfall zone. No significant change in precipitation amount occurred in the winter rainfall zone, but rainfall variability has increased over time. Generally synchronous rainfall fluctuations between the two zones are identified on decadal scales, with common wet (dry) periods reconstructed around 1890 (1930). A strong relationship between seasonal rainfall and sea surface temperatures (SSTs) in the surrounding oceans is confirmed. Coherence among decadal-scale fluctuations of southern African rainfall, regional SST, SSTs in the Pacific Ocean and rainfall in south-eastern Australia suggest SST-rainfall teleconnections across the southern hemisphere. Temporal breakdowns of the SST-rainfall relationship in the southern African regions and the connection between the two rainfall zones are observed, for example during the 1950s. Our results confirm the complex interplay between large-scale teleconnections, regional SSTs and local effects in modulating multi-decadal southern African rainfall variability over long timescales.  相似文献   

11.
我国月—季降水分布在空间上存在类似于大气环流遥相关的空间遥相关型。本文基于中国近57年夏季降水资料研究了我国夏季降水空间遥相关型的主要空间模态特征及其年代际变化,评估并改进了BCC_CSM模式、ECMWF_SYSTEM4模式以及NCEP_CFSV2模式对中国夏季降水的预测能力。研究结果显示,中国夏季降水实况中存在华北—长江下游、华东—中国中北部、华南—长江流域、西南—东北中部等4类显著的空间遥相关型。动力模式可以预测大尺度的降水分布,而对于不同区域之间降水遥相关这种雨带细节特征的预测能力则较为薄弱,存在着较多虚假相关。为改善模式降水预测技巧,以实况中的降水遥相关型作为约束条件构建了修正方案,以此来修正模式中的降水遥相关型分布。结果显示,经过修正能够有效地改善模式对东北中部、长江下游的预测能力,4年的回报检验结果显示,模式预测的平均距平一致率从47%提高为58%;平均均方根误差从153 mm减小为120 mm;平均趋势异常综合检验(PS)评分从64提高为73。  相似文献   

12.
East Asian summer climate is strongly affected by extratropical circulation disturbances.In this study,impacts of four atmospheric teleconnections over Eurasia on East Asian summer rainfall are investigated using National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data and Climatic Research Unit (CRU) land precipitation data during 1979-2009.The four teleconnections include the Scandinavian (SCA),the Polar/Eurasian (PEU),the East Atlantic/Western Russian (EAWR),and the circumglobal teleconnection (CGT).Moreover,the related changes of lower-tropospheric circulation are explored,specifically,the low pressure over northern East Asia (NEAL) and the subtropical high over the western North Pacific (WNPSH).The results presented are in the positive phase.The PEU and SCA induce significant negative anomalies in North China rainfall (NCR),while the CGT induces significant positive anomalies.In the past three decades,the PEU and SCA explain more than 20% of the variance in NCR,twice that explained by the CGT,suggesting a more important role of the former two teleconnections in NCR variation than the latter one.Meanwhile,the PEU and SCA reduce rainfall in Northeast China and South Korea,respectively,and the CGT enhances rainfall in Japan.The rainfall responses are attributed to the SCA-induced northward shift of the NEAL,and PEU-induced northward shift and weakening of the NEAL,respectively.For the CGT,the dipole pattern of rainfall anomalies between North China and Japan is affected by both westward extension of the NEAL and northwestward expansion of the WNPSH.In addition,the EAWR leads to an increase of sporadic rainfall in South China as a result of the eastward retreat of the WNPSH.  相似文献   

13.
The impact of ENSO periodicity on North Pacific SST variability   总被引:1,自引:0,他引:1  
The periodicity of ENSO in nature varies. Here we examine how changes in the frequency of ENSO impacts remote teleconnections in the North Pacific. The numerical experiments presented here are designed to simulate perfectly periodic ENSO in the tropical Pacific, and to enable the air–sea interaction in other regions (i.e., the North Pacific) via a simple mixed layer ocean model. The temporal evolution and spatial structure of the North Pacific SST teleconnection patterns are relatively insensitive to the frequency of ENSO, but the amplitude of the variability is sensitive. Specifically, the 2-year period ENSO experiment (P2) shows weak event-by-event consistency in the ENSO response mature pattern. This is because there is not enough time to damp the previously forced ENSO teleconnections (i.e., 1 year earlier). The 4-year period ENSO experiment (P4) has 1 year damping time before a successive ENSO event matures, so the structure of the response pattern is stably repeated. However, the event-by-event variance of anomaly magnitude, specifically responding to El Niño, is still larger than that in the 6-year ENSO experiment (P6), which has 2-year damping time between consecutive ENSO events. In addition, we tested whether the variability due to tropical remote forcing is linearly independent of the extratropical local variability. Statistical tests indicate that tropical remote forcing can constructively or destructively interfere with local variability in the North Pacific. Lastly, there is a non-linear rectification of the ENSO events that can be detected in the climatology.  相似文献   

14.
Coupled Model Inter-comparison Project Phase 5 (CMIP5) model outputs of the South and East Asian summer monsoon variability and their tele-connections are investigated using historical simulations (1861-2005) and future projections under the RCP4.5 scenario (2006-2100). Detailed analyses are performed using nine models having better representation of the recent monsoon teleconnections for the interactive Asian monsoon sub-systems. However, these models underestimate rainfall mainly over South Asia and Korea-Japan sector, the regions of heavy rainfall, along with a bias in location of rainfall maxima. Indeed, the simulation biases, underestimations of monsoon variability and teleconnections suggest further improvements for better representation of Asian monsoon in the climate models. Interestingly, the performance of Australian Community Climate and Earth System Simulator version 1.0 (ACCESS1.0) in simulating the annual cycle, spatial pattern of rainfall and multi-decadal variations of summer monsoon rainfall over South and East Asia appears to more realistic. In spite of large spread among the CMIP5 models, historical simulations as well as future projections of summer monsoon rainfall indicate multi-decadal variability. These rainfall variations, displaying certain epochs of more rainfall over South Asia than over East Asia and vice versa, suggest an oscillatory behaviour. Teleconnections between South and East Asian monsoon rainfall also exhibit a multi-decadal variation with alternate epochs of strengthening and weakening relationship. Furthermore, large-scale circulation features such as South Asian monsoon trough and north Pacific subtropical high depict zonal oscillatory behaviour with east-west-east shifts. Periods with eastward or westward extension of the Mascarene High, intensification and expansion of the upper tropospheric South Asian High are also projected by the CMIP5 models.  相似文献   

15.
Uncertainty in climate change projections: the role of internal variability   总被引:5,自引:7,他引:5  
Uncertainty in future climate change presents a key challenge for adaptation planning. In this study, uncertainty arising from internal climate variability is investigated using a new 40-member ensemble conducted with the National Center for Atmospheric Research Community Climate System Model Version 3 (CCSM3) under the SRES A1B greenhouse gas and ozone recovery forcing scenarios during 2000–2060. The contribution of intrinsic atmospheric variability to the total uncertainty is further examined using a 10,000-year control integration of the atmospheric model component of CCSM3 under fixed boundary conditions. The global climate response is characterized in terms of air temperature, precipitation, and sea level pressure during winter and summer. The dominant source of uncertainty in the simulated climate response at middle and high latitudes is internal atmospheric variability associated with the annular modes of circulation variability. Coupled ocean-atmosphere variability plays a dominant role in the tropics, with attendant effects at higher latitudes via atmospheric teleconnections. Uncertainties in the forced response are generally larger for sea level pressure than precipitation, and smallest for air temperature. Accordingly, forced changes in air temperature can be detected earlier and with fewer ensemble members than those in atmospheric circulation and precipitation. Implications of the results for detection and attribution of observed climate change and for multi-model climate assessments are discussed. Internal variability is estimated to account for at least half of the inter-model spread in projected climate trends during 2005–2060 in the CMIP3 multi-model ensemble.  相似文献   

16.
徐群 《气象科学》2000,21(3):302-308
本文总结了作者近40年在季度天气趋势预报研究与实践的历程和主要进展。六十年代提出并利用中高纬和低纬前期大气环流特征与夏季江淮流域旱涝趋势的隔季遥联制作预报,80年代补进一步考虑外在因子影响改进为“前期物理成因综合相似法”:1968~87这20年长江中下游夏季旱涝趋势预报取得较好成绩。随后的预报实践表明,因全球气候异常增长,预报难度有所增大。1995年开始建立一种短期气候系统多变因子的物理一统计预报  相似文献   

17.
从Rossby波能量频散理论到准定常行星波动力学研究的发展   总被引:3,自引:0,他引:3  
本文是为纪念叶笃正院士诞辰百周年和他对大气动力学发展的重大贡献而撰写的.叶先生在20世纪40年代所提出的罗斯贝波能量频散理论不仅至今仍广泛应用于天气预报,而且开创了准定常行星波动力学的研究.在罗斯贝波频散理论的启迪和引领下,行星波动力学和大气环流异常遥相关的研究取得重要进展.特别是关于准定常行星波在二维和三维球面大气的传播特征以及北半球夏季大气环流异常的EAP(East Asia-Pacific)型和"丝绸之路(Silk Road)"型遥相关及其机理已做出系统的研究,本文简要地回顾这些研究.并且,本文还回顾了在叶先生所提出罗斯贝波能量频散理论的引领下,近年来我们关于东亚冬、夏季风和我国气候灾害的年际和年代际变化的内动力学机理研究所取得的进展.  相似文献   

18.
El-Niño/Southern Oscillation (ENSO) variability and its relationship with precipitation in the tropics and subtropics are analysed using the ARPEGE-OPA ocean-atmosphere coupled model. Three 150-year simulations are considered, differing by greenhouse gases (GHG) and aerosols concentrations. The first one has constant (1950 level) concentrations, and the two others follow observed values till 1999, then the SRES B2 scenario until 2099. The model is able to reproduce most present-day features characteristic of ENSO in the Pacific. It also displays ENSO as the leading mode of sea-surface temperature (SST) variability, with spatial patterns and explained variance both quite similar to the observation. A detailed analysis of its teleconnections with rainfall variability is carried out on a seasonal basis. Patterns for the last part of the twentieth century compare favourably with the observation, with the notable exception of parts of the Atlantic sector. The overall strong rainfall response arises from the strong interannual variability of simulated ENSO, and also suggests an ability to simulate atmospheric dynamics in a realistic way. In the future climate, the model does not exhibit major changes in the ENSO/rainfall teleconnections. However, on a regional basis, there is some evidence of strengthening (e.g., in parts of Southern Africa) and weakening (e.g., East Africa) in the course of the twenty-first century. In most cases, decadal swings in the correlations suggest that these alterations may partly reflect natural changes in the teleconnections with ENSO, long-term correlation trends (possibly GHG-induced) being comparatively weaker.  相似文献   

19.
 An ensemble of twenty-three 14-year experiments conducted with the ECHAM-4 GCM has been examined to test the model's capability to simulate the principal modes of interannual variability. The integrations were performed under specified monthly SST between 1979–1993. The analysis was focused on the Southern Hemisphere (SH) extratropics. Empirical orthogonal functions analysis (EOF) using seasonal anomaly fields has been performed to isolate the principal modes that dominate the southern extratropical variability at the interannual time scale. Leading patterns of 500 hPa geopotential height (z500) have been compared with those estimated from the ECMWF re-analysis dataset. The model is able to adequately reproduce the spatial pattern of the annular mode, but it represents the temporal variations of the oscillation less satisfactorily. The model simulation of the Pacific South American (PSA) pattern is better, both in the shape of the pattern and in the temporal evolution. To verify if the capability of the model to adequately simulate the temporal oscillation of the propagating patterns is related to the increased influence of the tropical external forcing, covarying SST-atmospheric modes have been identified by singular value decomposition (SVD). In winter (July-August-September, JAS) the tropical SST variability is highly correlated with the ENSO mode. In summer (January-February-March, JFM) the strength of the teleconnections is related to strong westerly anomalies, disrupted by a meridional out of phase relation near to South America. The large size of the ensemble was exploited by comparing the time-varying model spread and degrees of freedom of the simulated extratropical circulation. Results show that when the extratropical circulation has a few degrees of freedom, the reproducibility is relatively low and the ensemble is governed by a fairly robust zonally symmetric structure of dispersion. Received: 9 May 2000 / Accepted: 30 January 2001  相似文献   

20.
We investigate the large-scale forcing and teleconnections between atmospheric circulation (sea level pressure, SLP), sea surface temperatures (SSTs), precipitation and heat wave events over western Europe using a new dataset of 54 daily maximum temperature time series. Forty four of these time series have been homogenised at the daily timescale to ensure that the presence of inhomogeneities has been minimised. The daily data have been used to create a seasonal index of the number of heat waves. Using canonical correlation analysis (CCA), heat waves over western Europe are shown to be related to anomalous high pressure over Scandinavia and central western Europe. Other forcing factors such as Atlantic SSTs and European precipitation, the later as a proxy for soil moisture, a known factor in strengthening land–atmosphere feedback processes, are also important. The strength of the relationship between summer SLP anomalies and heat waves is improved (from 35%) to account for around 46% of its variability when summer Atlantic and Mediterranean SSTs and summer European precipitation anomalies are included as predictors. This indicates that these predictors are not completely collinear rather that they each have some contribution to accounting for summer heat wave variability. However, the simplicity and scale of the statistical analysis masks this complex interaction between variables. There is some useful predictive skill of summer heat waves using multiple lagged predictors. A CCA using preceding winter North Atlantic SSTs and preceding January to May Mediterranean total precipitation results in significant hindcast (1972–2003) Spearman rank correlation skill scores up to 0.55 with an average skill score over the domain equal to 0.28 ± 0.28. In agreement with previous studies focused on mean summer temperature, there appears to be some predictability of heat wave events on the decadal scale from the Atlantic Multidecadal Oscillation (AMO), although the long-term global mean temperature is also well related to western European heat waves. Combining these results with the observed positive trends in summer continental European SLP, North Atlantic SSTs and indications of a decline in European summer precipitation then possibly these long-term changes are also related to increased heat wave occurrence and it is important that the physical processes controlling these changes be more fully understood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号