首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
北京地区PM10污染的气象特征   总被引:79,自引:3,他引:79       下载免费PDF全文
选用北京城郊5个代表站2000年可吸人颗粒物PM10逐时浓度监测资料,较为系统地统计分析了北京地区主要空气污染物一PM10的时空分布特征,其中包括PM10平均浓度和各等级出现频率的逐月变化、采暖期和非采暖期平均浓度的逐时变化.揭示了各代表站PM10污染年、日变化趋势、采暖期和非采暖期日变化之间的差异,并分析了PM10浓度与地面常规气象要素的相关性.  相似文献   

2.
邯郸市可吸入颗粒物的污染现状及相关气象条件分析   总被引:2,自引:1,他引:2  
利用邯郸市区4个代表站2006年逐时可吸入颗粒物PM10浓度监测资料和邯郸市观测站地面气象要素的逐时观测资料,分析了邯郸市主要空气污染物--PM10的时空分布特征,结果表明:PM10平均浓度采暖期明显大于非采暖期;日变化规律为上午浓度最高,夜间次之,下午浓度最低,采暖期为双峰双谷型,非采暖期为一峰一谷型;弱风、低温和潮湿的气象条件有利于可吸入颗粒物的积累,增加PM10浓度.  相似文献   

3.
利用2008年7~9月北京污染监测资料、气象观测资料、韩国气象厅天气图资料及NCEP再分析资料,分析了2008年奥运会期间北京地区空气动力学当量直径小于等于10μm颗粒物(PM10)污染特征及其成因,统计了利于和不利于污染物扩散的天气形势,研究了北京发生PM10污染的典型天气形势和气象条件。结果表明:1)奥运会期间北京共有8天出现PM10污染,包括一次持续污染过程,奥运会赛时和残奥会赛时未出现污染过程,这主要与北京8、9月降水偏多有关;2)不利于污染扩散的天气形势(如风速较小、偏南风、高温高湿、近地层出现持续逆温)出现频率较高,但并未造成特征性的PM10污染,这可能与奥运会期间的污染控制措施有关;3)PM10污染过程多与台风系统或热带低压的北上,从而阻滞了华北地区天气系统的南下东移相关联。  相似文献   

4.
利用2013-2016年惠州市5个环保国控站的PM质量浓度和国家基本气象观测站的气象要素观测数据及NCEP/NCAR日平均再分析资料,统计分析了惠州市大气颗粒物质量浓度变化特征及其与气象条件的关系。结果表明:2013-2016年惠州市大气颗粒物质量浓度、污染日数和超标日数均呈明显下降趋势,2016年PM10年平均质量浓度已接近年平均质量浓度限值一级标准,PM2.5年平均质量浓度达到年平均质量浓度限值二级标准。大气颗粒物质量浓度冬季的最高、秋季的次之,非汛期的(10月次年3月)显著高于汛期的(4-9月)。PM2.5污染日均出现在非汛期,尤其是冬季的1和12月,大多出现在晴朗干燥的东北风天气下。分析惠州市20132016年间两次长时间大气颗粒物污染过程发现,这两次大气颗粒物污染过程出现在冷空气减弱、冷高压东移出海后或下一波冷空气来临前,但随着南下冷空气的到来,北风加大或带来明显降水,空气质量明显好转。  相似文献   

5.
对2004—2011年的PM10浓度资料进行统计分析发现:呼和浩特市PM10污染最严重的是冬季,主要是由于燃煤采暖造成污染源增加以及大气扩散能力较弱;其次是春季,主要是由大风引发的沙尘天气所造成的。  相似文献   

6.
文章针对大同市2006—2009年、榆社县2006—2008年PM10质量浓度数据,使用趋势分析、后向轨迹模拟不同高度的PM10的传输路径,可以看出:PM10浓度的日变化特征为"两高三低";PM10浓度日际变化不明显,只在典型日PM10浓度值明显增大;PM10浓度月变化特征为1、5、12月浓度高,春季5月份由于为沙尘期浓度高。PM10浓度季节变化规律与采暖期和非采暖期变化相符合,即采暖期的冬春季浓度高、非采暖期的夏秋季浓度低;从2006—2009年间,两站PM10质量浓度基本呈逐年下降趋势。不同气象要素与PM10浓度的相关性,按相关系数绝对值从大到小排列依次为:露点温度、气温、降水量、相对湿度。其中露点温度和PM10浓度呈显著负相关性,气温与PM10浓度呈较弱负相关性。  相似文献   

7.
沈阳冬夏季可吸入颗粒物浓度及尺度谱分布特征   总被引:15,自引:0,他引:15       下载免费PDF全文
利用沈阳大气成分监测站颗粒物监测仪 (Grimm 180) 连续测得的夏季 (2006年8月)、冬季 (2006年12月和2007年1月) 可吸入颗粒物的数浓度和质量浓度数据, 分析了沈阳市可吸入颗粒物浓度日变化、谱分布及污染特征, 在此基础上结合沈阳市常规气象资料, 分析了气象要素和颗粒物污染之间的关系。结果表明:沈阳市冬、夏季部分时段可吸入颗粒物浓度存在明显的日变化和日际变化; 谱分布较好地符合Junge分布; 沈阳冬季PM10超标日数占冬季观测总天数的77%, PM2.5超标日数 (按美国EPA日均标准) 占冬季观测总天数的87%, PM10平均数浓度为6668.7个/cm3, 平均质量浓度达252.8μg/m3, 分别是夏季的3.0和2.4倍; 冬、夏季PM2.5/PM10平均质量分数分别为0.647和0.603, PM2.5占可吸入颗粒物总数量的99%以上; 浓度变化在很大程度上受到各种气象要素的影响, 与温度、风速负相关, 与湿度正相关, 降雨、降雪过程使得颗粒物浓度明显降低, 近地层逆温和雾是颗粒物增多的一个重要因素。颗粒物污染对城市能见度影响较大。  相似文献   

8.
根据2000-2008年冬季逐日08时高空500 hPa、地面天气图和官方网站发布的乌鲁木齐市逐日大气污染指数API值,分析了全市大气污染概况及季节分布、月际变化特征,研究了环流形势对全市空气质量的影响。结果表明:影响乌鲁木齐市的环流形势分为高空7型和地面5型,分析各型环流形势与冬季严重污染日相关性;最易引发冬季严重污染的环流形势是高空脊中型、地面低压型,其次为脊前型或空档型、地面高压后型。  相似文献   

9.
北京2004年一次强沙尘暴过程的辐射特征研究   总被引:5,自引:1,他引:5  
利用2004年3月27~29 日北京沙尘暴期间观测的辐射、气象以及气溶胶质量浓度的资料,分析了该过程的地面辐射、气象要素以及气溶胶与辐射相互作用的变化特征.结果表明,沙尘暴期间紫外辐射的衰减与可见光辐射强度衰减规律不一致.紫外衰减主要受到细粒子浓度影响,同时紫外辐射占总辐射的比重与气溶胶中细粒子含量成负相关;而可见光辐射强度衰减与总辐射衰减同步.辐射变化和气溶胶质量浓度观测结果均表明,此次沙尘暴过程分为3个阶段,即,细粒子累积期、外地沙尘输入期和清除期.在沙尘暴期间地面一直维持一个低压、干冷的状态;当过程结束后,气压急剧增高,并在一段时间内处于高压控制之下.  相似文献   

10.
利用2009—2011年春节期间大同市可吸入颗粒物(PM10)的质量浓度和气象资料,分析烟花爆竹燃放对空气质量的影响。结果表明:集中燃放时,如果有降雪,降雪对PM10的上升具有明显的抑制作用;无降雪时,风速仍是影响PM10的主要因素。除夕11:00—13:00、23:00—01:00,元宵节18:00—21:00,为PM10受烟花爆竹燃放影响最大的时段,其间PM10很高。集中燃放后,如果风速较大,PM10升高后很快降低,没有污染较小,而风速较小时,PM10升高较明显,对空气污染较严重。风速与PM10质量浓度为负相关关系,相关系数偏小。  相似文献   

11.
利用2006年8月-2007年10月辽宁中部沈阳、鞍山、抚顺和本溪4城市可吸入颗粒物PM10、PM2.5、PM1及同步气象因子的监测资料,分析了可吸入颗粒物分布特征、污染水平及其与气象因子的关系。结果表明:受区域天气系统的影响,4城市PM10和PM2.5的日平均浓度变化趋势基本一致,具有区域分布特征;PM10超标率冬季为最高;PM2.5日平均浓度占PM10比例夏季和冬季最大;PM10、PM2.5和PM1之间有很好的相关性;PM10与风速、温度呈负相关,PM2.5和PM1与能见度、风速、温度呈负相关,与相对湿度成正相关。  相似文献   

12.
郑州市区PM10污染状况及相关气象条件分析   总被引:1,自引:0,他引:1  
利用郑州市区 2003年空气质量日报和同期气象观测资料,分析了郑州市区PM10 ( >10μm可吸入颗粒物)污染状况及相关气象条件变化特征,结果表明:郑州市区PM10污染全年各月均以 2级为主,占总样本数的77. 5%;其次是 3级污染,占 15. 1%, 1级只占 7. 4%。1 ~7月份 3级污染逐渐减少, 8 ~11月份 1级天气占一定比例。全年 3级污染日依自然季节变化逐渐减少。出现≥3级污染日时,空气相对湿度为 61% ~70%的占 3级污染日的 1 /3;日均风速≤2. 0m/s的日数占 3级污染日的 78%。  相似文献   

13.
基于激光雷达探测设备、风廓线雷达、探空以及常规地面探测设备,研究了乌鲁木齐2017年3月5—12日一次重污染过程气溶胶光学特性的垂直分布特征及重污染成因。结果表明:此次重污染过程中7—10日PM2.5日平均值分别为176、215.5、215.9μg/m3和176.3μg/m3,最高时刻达到364μg/m3;激光雷达探测结果表明污染物主要集中在600 m以下,且午后—傍晚阶段的消光系数是夜间的7倍左右;污染物的退偏振很小,结合探空湿度廓线得到混合层内相对湿度基本80%,说明气溶胶颗粒主要为水凝物的球形粒子。由风廓线雷达结果得到乌鲁木齐站附近500 m高度以下水平风速普遍低于2 m/s;从北到南地面5个加密气象站的小风频率依次为99%、100%、81%、48%和67%。在市中心高新区附近受城市建筑物的阻挡,整个污染过程中平均风速仅为0.66 m/s;靠近峡口的乌拉泊风速最大,平均风速达到2.3 m/s,重污染阶段7—9日的平均边界层高度为433 m,低的边界层高度和低风速是造成此次污染的主要原因。  相似文献   

14.
利用乌鲁木齐市2011~2012年08时、20时L波段(1型)雷达探测的高空资料建立了乌鲁木齐大气边界层气象要素数据库,分析了乌鲁木齐边界层内气温、风向、风速和相对湿度的垂直分布及其时间变化特征。结果表明:边界层内温度廓线的日变化和季节变化比较显著,各月均有逆温出现,且08时较20时更易出现逆温,冬季08时逆温层厚度较厚且强度最大。边界层内夏、冬两季风速随高度变化波动较大,春、秋两季变化较小。近地层春、夏、秋三季08时盛行西南偏南风,冬季盛行偏东风和西南风;20时春季盛行东北风,夏秋盛行偏北风和西北风,冬季则盛行东风和东北偏东风。08时、20时风向均随高度的增加呈明显的向右偏转趋势,且日风向的变化具有明显的“山谷风”特点。08、20时的相对湿度冬季最大,夏季最小,且随高度增加,春、夏两季08、20时相对湿度的变化较大。  相似文献   

15.
对济南市空气污染物PM10中度以上污染日的地面、高空气象条件做统计分析,得出:沙尘造成的PM10中度以上污染主要与蒙古气旋和强冷空气活动有关,表现为风力大,相对湿度小,气温和气压变化明显等特征;非沙尘造成的PM10中度以上污染主要是天气形势稳定、污染物不断累积的结果,出现时间有相对连续性,表现为风力较小、相对湿度大、气温和气压变化不明显的特点。从地面气压场上可分为弱气压场、弱倒槽或倒槽型、均压场型三种形势。此分析为济南市中度以上污染日的预报提供了帮助,并可及时采取措施,控制或减少污染物的排放量。  相似文献   

16.
利用乌鲁木齐气象站的激光雨滴谱仪观测数据,分析2018年3月17—18日和12月1日的两次暴雪天气的滴谱特征。结果表明:(1)两次过程的雪滴谱表现为单峰分布,粒子浓度峰值均在低谱段,雪滴谱宽度分别为0.42~4.63 mm和0.55~6.78 mm。(2)个例1中降雪云偏向于层状云类型,降雪主要由较小尺寸的霰或者凇附的冰相粒子组成,个例2中的降雪云偏向积层混合云类型,降雪主要以尺寸较大的干雪花为主。(3)两次降雪过程中的Dm和lg NW的拟合经验关系式呈现出明显的负相关。(4)拟合的本地化Z-R关系式分别为Z=171.7R2.22和Z=518.7R2.27,两次降雪过程的雷达反射率因子平均值分别为20 dBZ和25 dBZ。  相似文献   

17.
利用2010年9-11月鞍山大气成分监测站CE-318太阳光度计观测资料,依据气溶胶光学厚度测量原理,计算得到2010年鞍山秋季大气气溶胶光学厚度、波长指数等大气光学特性数据,通过统计分析,给出鞍山秋季气溶胶光学特性分布特征。结果表明:随着测量AOD波段的降低,AOD值逐渐增大,9月的AOD平均值最大,10月AOD平均值次之,11月AOD平均值最小。从频率分布看,2010年9月 AOD日均值集中分布在0.4-0.6之间,10月和11月AOD日均值集中分布在0.0-0.4之间,表明10-11月大气较为清洁|波长指数日均值的频率分布说明鞍山秋季大气污染物以细粒子为主。500 nm 的AOD值与波长指数成对数关系,两者在9、10月和11月的相关系数分别为0.5145、0.8412和0.2715;9月AOD与PM10、PM2.5、PM1.0质量浓度为较小负相关,10月和11月AOD与PM10、PM2.5、PM1.0质量浓度成正相关,且10、11月AOD与气溶胶细粒子相关性较为显著。AOD值与能见度在趋势上呈较小的负相关性,可能是由于高层气溶胶粒子对气溶胶光学厚度产生了主要影响。  相似文献   

18.
针对辽宁省污灌区污染现状,分析了沈抚和张士2个重点污灌区的环境风险。结果表明:长期污灌造成土壤、农作物和地下水的严重污染,沈抚灌区人群患病率明显高于对照区,且有逐年增高趋势,其中以肝肿大为主要疾病。张士灌区尿镉水平明显高于对照组,引起人群肾功能损伤。鉴于污灌区环境污染的复杂性与长期性,提出未来加快开展人体健康损害风险评估和区域健康风险研究重点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号