首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The core of planetary nebula NGC 6302 is filled with high-excitation photoionized gas at low expansion velocities. It represents a unique astrophysical situation in which to search for hyperfine structure (HFS) in coronal emission lines from highly ionized species. HFS is otherwise blended by thermal or velocity broadening. Spectra containing  [Al  vi ] 3.66 μm 3P23P1  , obtained with Phoenix on Gemini South at resolving powers of up to 75 000, resolve the line into five hyperfine components separated by 20–60 km s−1 as a result of the coupling of the   I = 5/2  nuclear spin of 27Al with the total electronic angular momentum J . The isotope 26Al has a different nuclear spin of   I = 5  , and a different HFS, which allows us to place a 3σ upper limit on the 26Al/27Al abundance ratio of 1/33. We measure the HFS magnetic dipole coupling constants for [Al  vi ], and provide the first estimates of the electric quadrupole HFS coupling constants obtained through astronomical observations of an atomic transition.  相似文献   

2.
With the Hamilton echelle spectrograph at the Lick Observatory, emission-rich spectral lines of the planetary nebula NGC 6543 were secured in the wavelength range from 3550 to 10 100 Å. We chose two bright regions, ∼8 arcsec east and ∼13 arcsec north of the central star, the physical conditions and chemical abundances of which may differ as a result of the different physical characteristics involving the mass ejection of different epochs. By combining Hamilton echelle observations with archive UV data secured with the International Ultraviolet Explorer ( IUE ), we obtain improved diagnostics and chemical compositions for the two observed regions. The diagnostic diagram gives the average value of T e=8000∼8300 K, and the electron number density near N e∼5000 cm−3 for most ions, while some low-excitation lines indicate much higher temperatures, i.e. T e∼10 000 K. With the construction of a photoionization model, we try to fit the observed spectra in a self-consistent way: thus, for most elements, we employ the same chemical abundances in the nebular shell; and we adopt an improved Sobolev approximation model atmosphere for the hydrogen-deficient Wolf–Rayet type central star. Within the observational errors, the chemical abundances do not seem to show any positional variation except for helium. The chemical abundances of NGC 6543 appear to be the same as in average planetary nebulae. The progenitor star may have been an object of one solar mass, most of the heavier elements of which were less plentiful than in the Sun.  相似文献   

3.
We present high-resolution echelle and long-slit spectra and broad-band ( R , I ) images of the very young planetary nebula K 3-35. Several emission lines are identified, including the He  ii  4686 line and strong [N  ii ]6548, 6583 and [O  iii ]4959, 5007 emissions [ I ([N  ii ])/ I (H α )≃5.5, I ([O  iii ])/ I (H β )≃30]. A systemic velocity V LSR≃10±2 km s−1 for K 3-35 is obtained from the optical emission lines. Two different kinematic components are identified in the nebula. One of them is probably related to the elliptical envelope previously observed. The second component exhibits systematic changes of the radial velocity with position, and a relatively small velocity width. This component may be attributed to the precessing jet-like outflows previously identified. The R and I images and the deduced R − I colour map strongly support the existence of a dense, partially neutral disc-like region in the equatorial plane of the nebula, which probably represents an equatorial density enhancement in a previously ejected slow wind. Diagnostic diagrams for line intensity ratios in K 3-35 and collimated components of other planetary nebulae suggest that the emission spectrum of this kind of structure is a combination of radiative and shock excitation, in agreement with recent models of shocks in a strongly photoionized medium.  相似文献   

4.
The bipolar morphology of the planetary nebula (PN) K 3 − 35 observed in radio-continuum images was modelled with 3D hydrodynamic simulations with the adaptive grid code yguazú-a . We find that the observed morphology of this PN can be reproduced considering a precessing jet evolving in a dense AGB circumstellar medium, given by a mass-loss rate     and a terminal velocity   v w= 10 km s−1  . Synthetic thermal radio-continuum maps were generated from numerical results for several frequencies. Comparing the maps and the total fluxes obtained from the simulations with the observational results, we find that a model of precessing dense jets, where each jet injects material into the surrounding CSM at a rate     (equivalent to a density of 8 × 104 cm−3), a velocity of 1500 km s−1, a precession period of 100 yr and a semi-aperture precession angle of 20° agrees well with the observations.  相似文献   

5.
Redshifts of several galaxies thought to be associated with NGC 326 are determined. The results confirm the presence of a cluster and find a mean redshift of     and a line-of-sight velocity dispersion σ z =599 (+230,−110) km s−1. The velocity dispersion and previously measured X-ray gas temperature of kT ≃1.9 keV are consistent with the cluster σ z kT relation, and NGC 326 is seen to be a slowly moving member of the cluster.  相似文献   

6.
We present 13 CO J  = 1 − 0 line observations of the H  ii region complex W51B located in the high-velocity (HV) stream. These observations reveal a filamentary and clumpy structure in the molecular gas. The mean local standard of rest (LSR) velocity ∼ + 65 km s−1 of the molecular gas in this region is greater than the maximum velocities allowed by kinematic Galactic rotation curves. The size and mass of the molecular clouds are ∼ 48 × 17 pc2 and ∼ 2.4 × 105 M⊙ respectively. In a position–velocity diagram, molecular gas in the southern part comprises a redshifted ring structure with v LSR=+ 60 to +73 km s−1. The velocity gradient of this ring is ∼ 0.5 km s−1 pc−1, and the mass is ∼ 6.2 × 104 M⊙. If we assume that the ring is expanding with a uniform velocity, the expansion velocity, radius and kinetic energy are ∼ 7 km s−1, ∼ 13 pc and ∼ 3.0 × 10 49 erg respectively. The kinetic energy and mass spectrum of the ring could be explained by an expanding cylindrical cloud with a centrally condensed mass distribution. The locations of two compact H  ii regions, G49.0−0.3 and G48.9−0.3, coincide with the two molecular clumps in this ring. We discuss star formation, and the mechanism that produced the ring structure.  相似文献   

7.
We present 0.15-arcsec (25-pc) resolution MERLIN observations of neutral hydrogen absorption detected towards the nuclear region of the type 2 Seyfert galaxy NGC 5929. Absorption is detected only towards the north-eastern radio component with a column density of (6.5 ± 0.6) × 1021 cm−2. Based on comparison with an HST WFPC2 continuum image, we propose that the absorption is caused by a 1.5-arcsec structure of neutral gas and dust offset 0.3 arcsec south-east of the nucleus and running NE–SW. A separate cloud of dust is apparent 1.5 arcsec to the south-west of the nucleus in the HST image. A comparison of the centroid velocity (2358 ± 5 km s−1) and full width at half-maximum (43 ± 6 km s−1) of the absorbing gas with previous [O  III ] observations suggests that both the neutral and ionized gas are undergoing galactic rotation towards the observer in the north-east and away from the observer in the south-west. The main structure is consistent with an inclined ring of gas and dust encircling the active galactic nucleus (AGN); alternatively it may be a bar or inner spiral arm. We do not detect neutral hydrogen absorption or dust obscuration against the radio nucleus (column density < 3.1 × 1021 cm−2) expected by a torus of neutral gas and dust in unified models of AGNs for a type 2 Seyfert galaxy.  相似文献   

8.
We present time-series echelle spectra of the Paβ line of the T Tauri star SU Aur, observed over three consecutive nights. The line shows strong variability (∼10 per cent) over the velocity range 100–420 km s−1 in the red broad absorption component, and weaker variability (∼2 per cent) over the velocity range  −200–0 km s−1  in the blue wing. The variability in the velocity range  −200–0 km s−1  is correlated with that in  200–400 km s−1  , and the variability in these velocity ranges anticorrelates with that in  0–100 km s−1  . The mean spectrum from the second night shows the suggestion of a blueshifted absorption component at about  −150 km s−1  , similar to that found in the Hα and Hβ lines. We find the position of the subpeak in the red absorption component changes steadily with time, and its motion modulates at half the rotational period. We also find that the modulation of the line equivalent width is possibly associated with a half and a third of the rotational period, which is consistent with the surface Doppler images of SU Aur. Radiative transfer models of a rotationally modulated Paβ line, produced in the shock-heated magnetospheric accretion flow, are also presented. Models with a magnetic dipole offset reproduce the overall characteristics of the observed line variability, including the line equivalent width and the motion of the subpeak in the red absorption trough.  相似文献   

9.
We present high-resolution spectroscopy of a sample of 24 solar-type stars in the young (15–40 Myr), open cluster NGC 2547. We use our spectra to confirm cluster membership in 23 of these stars, to determine projected equatorial velocities and chromospheric activity, and to search for the presence of accretion discs. We find examples of both fast ( v e sin  i >50 km s−1) and slow ( v e sin  i <10 km s−1) rotators, but no evidence for active accretion in any of the sample. The distribution of projected rotation velocities is indistinguishable from the slightly older IC 2391 and IC 2602 clusters, implying similar initial angular momentum distributions and circumstellar disc lifetimes. The presence of very slow rotators indicates either that long (10–40 Myr) disc lifetimes or internal differential rotation are needed, or that NGC 2547 (and IC 2391/2602) were born with more slowly rotating stars than are presently seen in even younger clusters and associations. The solar-type stars in NGC 2547 follow a similar rotation–activity relationship to that seen in older clusters. X-ray activity increases until a saturation level is reached for v e sin  i >15–20 km s−1. We are unable to explain why this saturation level, of log( L x L bol)≃−3.3, is a factor of 2 lower than in other clusters, but rule out anomalously slow rotation rates or uncertainties in X-ray flux calculations.  相似文献   

10.
We have studied the chemistry of the molecular gas in evolved planetary nebulae. Three pseudo-time-dependent gas-phase models have been constructed for dense (104–105 cm−3) and cool ( T ∼15 K) clumpy envelopes of the evolved nebulae NGC 6781, M4-9 and NGC 7293. The three nebulae are modelled as carbon-rich stars evolved from the asymptotic giant branch to the late planetary nebula phase. The clumpy neutral envelopes are subjected to ultraviolet radiation from the central star and X-rays that enhance the rate of ionization in the clumps. With the ionization rate enhanced by four orders of magnitude over that of the ISM, we find that resultant abundances of the species HCN, HNC, HC3N and SiC2 are in good agreement with observations, while those of CN, HCO+, CS and SiO are in rough agreement. The results indicate that molecular species such as CH, CH2, CH2+ , HCl, OH and H2O are anticipated to be highly abundant in these objects.  相似文献   

11.
An inspection of a GHRS/ HST spectrum of the symbiotic star RR Telescopii reveals the presence of the [Al  ii ] 3s21S – 3s3p 3P2 line at a vacuum wavelength of 2661.06±0.08 Å, 8.89±0.08 Å away from the Al  ii ] 3s21S – 3s3p 3P1 intercombination transition at 2669.95 Å, in good agreement with the theoretical prediction of Δ λ =8.80 Å. We also find that the Al  ii ] line profile is asymmetric, showing a strong low-density component with a weak high-density wing, redshifted by 30 km s−1, in agreement with the findings of Schild & Schmid, which were based on optical observations. Our measurement of the emission-line ratio R I (2661.06 Å)/ I (2669.95 Å)=0.027±0.003 implies log  N e=5.8±0.2, in good agreement with the densities found from other ions, such as Si  iii . These results provide strong evidence that we have detected the [Al  ii ] line, the first time (to our knowledge) that this feature has been reliably identified in an astrophysical or laboratory spectrum.  相似文献   

12.
We use accurate absolute proper motions and Two-Micron All-Sky Survey   Ks   -band apparent magnitudes for 364 Galactic RR Lyrae variables to determine the kinematical parameters of the Galactic RR Lyrae population and constrain the zero-point of the   Ks   -band period–luminosity relation for these stars via statistical parallax. We find the mean velocities of the halo- and thick-disc RR Lyrae populations in the solar neighbourhood to be  [ U 0(Halo), V 0(Halo), W 0(Halo)]= (−12 ± 10, −217 ± 9, −6 ± 6) km s−1  and  [ U 0(Disc), V 0(Disc), W 0(Disc)]= (−15 ± 7, −44 ± 7, −25 ± 5) km s−1  , respectively, and the corresponding components of the velocity-dispersion ellipsoids,  [σ VR (Halo), σ V θ(Halo), σ W (Halo)]= (167 ± 9, 86 ± 6, 78 ± 5) km s−1  and  [σ VR (Disc), σ V θ(Disc), σ W (Disc)]= (55 ± 7, 44 ± 6, 30 ± 4) km s−1  , respectively. The fraction of thick-disc stars is estimated at  0.25 ± 0.03  . The corrected infrared period–luminosity relation is     , implying a Large Magellanic Cloud (LMC) distance modulus of  18.27 ± 0.08  and a solar Galactocentric distance of  7.58 ± 0.40 kpc  . Our results suggest no or slightly prograde rotation for the population of halo RR Lyraes in the Milky Way.  相似文献   

13.
A detailed dynamical analysis of the nearby rich Norma cluster (ACO 3627) is presented. From radial velocities of 296 cluster members, we find a mean velocity of 4871 ± 54 km s−1 and a velocity dispersion of 925 km s−1. The mean velocity of the E/S0 population (4979 ± 85 km s−1) is offset with respect to that of the S/Irr population (4812 ± 70 km s−1) by  Δ v = 164 km s−1  in the cluster rest frame. This offset increases towards the core of the cluster. The E/S0 population is free of any detectable substructure and appears relaxed. Its shape is clearly elongated with a position angle that is aligned along the dominant large-scale structures in this region, the so-called Norma wall. The central cD galaxy has a very large peculiar velocity of 561 km s−1 which is most probably related to an ongoing merger at the core of the cluster. The spiral/irregular galaxies reveal a large amount of substructure; two dynamically distinct subgroups within the overall spiral population have been identified, located along the Norma wall elongation. The dynamical mass of the Norma cluster within its Abell radius is  1–1.1 × 1015  h −173 M  . One of the cluster members, the spiral galaxy WKK 6176 which recently was observed to have a 70 kpc X-ray tail, reveals numerous striking low-brightness filaments pointing away from the cluster centre suggesting strong interaction with the intracluster medium.  相似文献   

14.
We present ROSAT [High Resolution Imager (HRI) and Position Sensitive Proportional Counter (PSPC)] and ASCA observations of the two luminous ( L x ∼ 1041−42 erg s−1) star-forming galaxies NGC 3310 and 3690. The HRI shows clearly that the sources are extended with the X-ray emission in NGC 3690 coming from at least three regions. The combined 0.1–10 keV spectrum of NGC 3310 can be described by two components, a Raymond–Smith plasma with temperature kT  = 0.81+0.09−0.12 keV and a hard power law, Γ = 1.44−0.20−0.11 (or alternatively a harder Raymond–Smith plasma with kT  ∼ 15 keV), while there is no substantial excess absorption above the Galactic column value. The soft component emission is probably a super wind while the nature of the hard emission is more uncertain with the likely origins being X-ray binaries, inverse Compton scattering of infrared photons, an active galactic nucleus or a very hot gas component (∼108 K). The spectrum of NGC 3690 is similar, with kT  = 0.83+0.02−0.04 keV and Γ = 1.56+0.11−0.11. We also employ more complicated models such as a multi-temperature thermal plasma, a non-equilibrium ionization code or the addition of a third softer component, which improve the fit but not at a statistically significant level (2σ). These results are similar to recent results on the archetypal star-forming galaxies M82 and NGC 253.  相似文献   

15.
We have studied the velocity field of the blue compact dwarf galaxy Mrk 86 (NGC 2537) using data provided by 14 long-slit optical spectra obtained in 10 different orientations and positions. This kinematical information is complemented with narrow-band ([O  iii ]5007 Å and H α ) and broad-band ( B , V , Gunn r and K ) imaging. The analysis of the galaxy global velocity field suggests that the ionized gas could be distributed in a rotating inclined disc, with projected central angular velocity of Ω=34 km s−1 kpc−1. The comparison between the stellar, H  i and modelled dark matter density profile indicates that the total mass within its optical radius is dominated by the stellar component. Peculiarities observed in its velocity field can be explained by irregularities in the ionized gas distribution or local motions induced by star formation.
Kinematical evidences for two expanding bubbles, Mrk 86–B and Mrk 86–C, are given. They show expanding velocities of 34 and 17 km s−1, H α luminosities of 3×1038 and 1.7×1039 erg s−1, and physical radii of 374 and 120 pc, respectively. The change in the [S  ii ]/H α , [N  ii ]/H α , [O  ii ]/[O  iii ] and [O  iii ]/H β line ratios with the distance to the bubble precursor suggests a diminution in the ionization parameter and, in the case of Mrk 86–B, an enhancement of the shock-excited gas emission. The optical–near-infrared colours of the bubble precursors are characteristic of low‐metallicity star‐forming regions (∼0.2 Z) with burst strengths of about 1 per cent in mass.  相似文献   

16.
We present [N  ii ] and H α images and high-resolution long-slit spectra of the planetary nebula IC 4846, which reveal, for the first time, its complex structure and the existence of collimated outflows. The object consists of a moderately elongated shell, two (and probably three) pairs of collimated bipolar outflows at different orientations, and an attached circular shell. One of the collimated pairs is constituted by two curved, extended filaments the properties of which indicate a high-velocity, bipolar precessing jet. A difference of ≃10 km s−1 is found between the systemic velocity of the precessing jets and the centroid velocity of the nebula, as recently reported for Hu 2-1. We propose that this difference is as a result of orbital motion of the ejection source in a binary central star. The orbital separation of 30 au and period 100 yr estimated for the binary are similar to those in Hu 2-1, linking the central stars of both planetary nebulae to interacting binaries. Extraordinary similarities also exist between IC 4846 and the bewildering planetary nebula NGC 6543, suggesting a similar formation history for both objects.  相似文献   

17.
NGC 3783 is a nearby SBa, type 1 Seyfert galaxy. We present H  i and radio continuum images of the galaxy made with the Australia Telescope Compact Array (ATCA). We find that NGC 3783 has an H  i mass of 8.4×109 M, an H  i diameter of 1.9 D 0 ( D 0=37 kpc for h =0.5), and a nuclear depression in the H  i surface density. The H  i rotation curve is dominated by differential rotation, with little evidence of warping. The rotation curve suggests a mass-to-light ratio M L B =7.2 and a bar-pattern speed of 19±7 km s−1 kpc−1. The total mass of gas in the inner 50 arcsec is ≳10 per cent of the dynamical mass, and consistent with models that require significant gas content to fuel the Seyfert nucleus. There is no evidence that the nuclear activity in NGC 3783 is being stimulated by an interaction or merger: it may be a self-generated, perhaps bar-driven, process.  相似文献   

18.
We present optical and near-infrared spectroscopic observations of the optical Einstein ring 0047 – 2808. We detect both [O III ] lines λλ4959, 5007 near ∼ 2.3 μm, confirming the redshift of the lensed source as z  = 3.595. The Lyα line is redshifted relative to the [O III ] line by 140 ± 20 km s−1. Similar velocity shifts have been seen in nearby starburst galaxies. The [O III ] line is very narrow, 130 km s−1 FWHM. If the ring is the image of the centre of a galaxy, the one-dimensional stellar velocity dispersion σ = 55 km s−1 is considerably smaller than the value predicted by Baugh et al. for the somewhat brighter Lyman-break galaxies. The Lyα line is significantly broader than the [O III ] line, probably due to resonant scattering. The stellar central velocity dispersion of the early-type deflector galaxy at z  = 0.485 is 250 ± 30 km s−1. This value is in good agreement both with the value predicted from the radius of the Einstein ring (and a singular isothermal sphere model for the deflector), and with the value estimated from the D n −σ relation.  相似文献   

19.
We present for the first time a two-dimensional velocity field of the central region of the grand-design spiral galaxy NGC 5248, at 0.9-arcsec spatial resolution. The H α velocity field is dominated by circular rotation. While no systematic streaming motions are seen in the area of the nuclear grand-design spiral or the circumnuclear ring, the amplitude of residual velocities, after subtracting a model circular velocity field, reaches 20 km s−1 in projection. The rotation curve levels out at around 140 km s−1, after a well-resolved and rather shallow rise. We have generated an analytical model for the nuclear spiral and fitted it to our observations to obtain estimates of the pattern speed of the spiral and the speed of sound in the central region of NGC 5248. Our results are consistent with a low pattern speed, suggesting that the nuclear spiral rotates with the same rate as the main spiral structure in NGC 5248, and thus that the spiral structure is coupled from scales of a few hundred parsecs to several kiloparsecs. We have also compared the observed structure and kinematics between the nuclear regions of NGC 5248 and M100. Several similarities and differences are discussed, including the location of the peak emission regions on major and minor axes, and the spiral arm streaming motions. We find no kinematic evidence for the presence of a nuclear bar in NGC 5248.  相似文献   

20.
We present near-infrared spectroscopic observations of SN 1987A covering the period 1358 to 3158 d post explosion. This is the first time that IR spectra of a supernova have been obtained to such late epochs. The spectra comprise emission from both the ejecta and the bright, ring-shaped circumstellar medium (CSM). The most prominent CSM emission lines are recombination lines of H  i and He  i , and forbidden lines of [S  iii ] and [Fe  ii ]. The ejecta spectra include allowed lines of H  i , He  i and Na  i and forbidden lines of [Si  i ], [Fe  i ], [Fe  ii ] and possibly [S  i ]. The intensity ratios and widths of the H  i ejecta lines are consistent with a low-temperature Case B recombination spectrum arising from non-thermal ionization/excitation in an extended, adiabatically-cooled H envelope, as predicted by several authors. The slow decline of the ejecta forbidden lines, especially those of [Si  i ], indicates that pure non-thermal excitation was taking place, driven increasingly by the decay of 44Ti. The ejecta iron exhibits particularly high velocities  (4000–4500 km s-1)  , supporting scenarios where fast radioactive nickel is created and ejected just after the core bounce. In addition, the ejecta lines continue to exhibit blueshifts with values ∼−200 to −800 km s−1 to at least day 2000. These blueshifts, which first appeared around day 600, probably indicate that very dense concentrations of dust persist in the ejecta, although an alternative explanation of asymmetry in the excitation conditions is not ruled out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号