首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
陈迪  孙启振 《海洋学报》2022,44(12):42-54
本文利用1951−2021年哈德莱中心提供的海冰和海温最新资料以及美国国家海洋和大气管理局气候预报中心提供的NCEP/NCAR再分析资料,分析探讨了北极海冰70余年的长期变化特征,进而研究了其快速减少与热带海温场异常变化之间的联系,揭示了在全球热带海洋海温场变化与北极海冰之间存在密切联系的事实。结果表明,北极海冰异常变化最显著区域出现在格陵兰海、卡拉海和巴伦支海。热带不同海区对北极海冰的影响存在明显时滞时间和强度差异,热带大西洋的影响相比偏早,印度洋次之,太平洋偏晚。热带大西洋、印度洋和中东太平洋海温异常影响北极海冰的最佳时间分别是后者滞后26个月、30个月和34个月,全球热带海洋影响北极海冰的时滞时间为33个月。印度洋SST对北极海冰的影响程度最强,其次是太平洋,最弱是大西洋。全球热带海洋对北极海冰的影响过程中,热带东太平洋和印度洋起主导作用。当全球热带海洋SST出现正(负)距平时,北极海冰会出现偏少(多)的趋势,而AO、PNA、NAO对北极海冰变化起重要作用,是热带海洋与北极海冰相系数的重要“纽带”。而AO、PNA和NAO不仅受热带海洋SST的影响,同时也受太平洋年代际振荡PDO和大西洋多年代际AMO的影响,这一研究为未来北极海冰快速减少和全球气候变暖机理的深入研究提供理论支撑。  相似文献   

2.
本文利用1950-2015年间Hadley环流中心海冰和海温资料及NCEP/NCAR再分析资料,研究了热带太平洋海温异常对北极海冰的可能影响,并从大气环流和净表面热通量两个角度探讨了可能的物理机制。结果表明,在ENSO事件发展年的夏、秋季节,EP型与CP型El Niño事件与北极海冰异常的联系无明显信号。而La Niña事件期间北极海冰出现显著异常,并且EP型与CP型La Niña之间存在明显差异。EP型La Niña发生时,北极地区巴伦支海、喀拉海关键区海冰异常减少,CP型La Niña事件则对应着东西伯利亚海、楚科奇海地区海冰异常增加。在EP型La Niña发展年的夏、秋季节,热带太平洋海温异常通过遥相关波列,使得巴伦支海、喀拉海海平面气压为负异常并与中纬度气压正异常共同构成类似AO正位相的结构,形成的风场异常有利于北大西洋暖水的输入,同时造成暖平流,偏高的水汽含量进一步加强了净表面热通量收入,使得巴伦支海、喀拉海海冰异常减少。而在CP型La Niña发展年的夏季,东西伯利亚海、楚科奇海关键区受其东侧气旋式环流的影响,以异常北风分量占主导,将海冰从极点附近由北向南输送到关键区,海冰异常增加,而净表面热通量的作用较小。  相似文献   

3.
本文对2000~2004年连续5年冬季老虎滩水温与渤海冰面积数据进行统计分析,得到渤海海冰面积与老虎滩水温的回归关系,对冬季海冰预报具有一定的参考意义。  相似文献   

4.
On the basis of the arctic monthly mean sea ice extent data set during 1953-1984, the arctic region is divided into eight subregions,and the analyses of empirical orthogonal functions, power spectrum and maximum entropy spectrum are made to indentify the major spatial and temporal features of the sea ice fluctuations within 32-year period. And then, a brief appropriate physical explanation is tentatively suggested. The results show that both seasonal and non-seasonal variations of the sea ice extent are remarkable, and iis mean annual peripheral positions as well as their interannu-al shifting amplitudes are quite different among all subregions. These features are primarily affected by solar radiation, o-cean circulation, sea surface temperature and maritime-continental contrast, while the non-seasonal variations are most possibly affected by the cosmic-geophysical factors such as earth pole shife, earth rotation oscillation and solar activity.  相似文献   

5.
1Introduction Seaiceoccupiesthemainpartofthesurfaceof theArcticOcean.ThefocusoftheSecondChineseNa- tionalArcticResearchExpedition(CHINAE-2003) wastounderstandthevariationsofarcticmarineenvi- ronmentsandtheseaiceeffectsontheclimatechanges ofglobalextent,inmiddleandlowerlatitudesareas, especiallyinChina.Therefore,thejointsea-ice-airob- servationforseaicestudieswasoneofthekeypro- jectsinCHINARE-2003.Theinvestigatedareacov- ered3000kmfromsouthtonorthand900kmfrom westtoeast.Seventemporali…  相似文献   

6.
北极海冰变率的独特模式及其与大气强迫的关系   总被引:1,自引:1,他引:0  
The spatial structure of the Arctic sea ice concentration(SIC) variability and the connection to atmospheric as well as radiative forcing during winter and summer for the 1979–2017 period are investigated. The interannual variability with different spatial characteristics of SIC in summer and winter is extracted using the empirical orthogonal function(EOF) analysis. The present study confirms that the atmospheric circulation has a strong influence on the SIC through both dynamic and thermodynamic processes, as the heat flux anomalies in summer are radiatively forced while those in winter contain both radiative and "circulation-induced" components. Thus,atmospheric fluctuations have an explicit and extensive influence to the SIC through complex mechanisms during both seasons. Moreover, analysis of a variety of atmospheric variables indicates that the primary mechanism about specific regional SIC patterns in Arctic marginal seas are different with special characteristics.  相似文献   

7.
PCR-DGGE approach was used to analyze bacterial diversity in the bottom section of seven arctic sea ice samples colleted from the Canada Basin. Thirty-two 16S rDNA sequences were obtained from prominent DGGE bands. The closest relatives of these sequences are found to be those of cultivated or uncultured bacteria from antarctic or arctic sea ice. Phylogenetic analysis clustered these sequences or phylotypes within α- proteobacteria, γ-proteobacteria and CFB (cytophaga-flexibacter-bacteroides) group. Sequences belonging to γ-proteobacteria were dominant and members of the CFB group were highly abundant. It was suggested that the CFB group was the representative of the bottom section of sea ice samples.  相似文献   

8.
By using the atmosphere-ocean coupled model (CGCM) which is composed of a 2-level global atmospheric general circulation model and a 4-layer Pacific oceanic general circulation model developed in the Institute of Atmospheric Physics of Chinese Academy of Sciences, and two model climatological fields got from the two independent models' numerical integrations respectively, the Pacific sea surface temperature anomalies (SSTA) from 1988 to 1989 are simulated in this paper with observed atmospheric general circulation data and sea surface temperature fields as initial conditions and monthly coupling scheme. In order to remove systematic biases of the model climatological fields, interaction variables between atmosphere and ocean are also corrected simultaneously. The experiments show that the simulation results can be improved effectively if these interaction variables are corrected in spite of the fact that there always exist systematic biases in independent numerical simulations of atmospheric part and oc  相似文献   

9.
北极地区不同冰龄的海冰厚度变化研究   总被引:1,自引:0,他引:1  
In this study, changes in Arctic sea ice thickness for each ice age category were examined based on satellite observations and modelled results. Interannual changes obtained from Ice, Cloud, and Land Elevation Satellite(ICESat)-based results show a thickness reduction over perennial sea ice(ice that survives at least one melt season with an age of no less than 2 year) up to approximately 0.5–1.0 m and 0.6–0.8 m(depending on ice age) during the investigated winter and autumn ICESat periods, respectively. Pan-Arctic Ice Ocean Modeling and Assimilation System(PIOMAS)-based results provide a view of a continued thickness reduction over the past four decades. Compared to 1980 s, there is a clear thickness drop of roughly 0.50 m in 2010 s for perennial ice. This overall decrease in sea ice thickness can be in part attributed to the amplified warming climate in north latitudes. Besides, we figure out that strongly anomalous southerly summer surface winds may play an important role in prompting the thickness decline in perennial ice zone through transporting heat deposited in open water(primarily via albedo feedback) in Eurasian sector deep into a broader sea ice regime in central Arctic Ocean. This heat source is responsible for enhanced ice bottom melting, leading to further reduction in ice thickness.  相似文献   

10.
海冰在极地海洋中是个较为独特的生境,海冰卤道系统中的光照强度、温度、盐度和生存空间随着季节更替发生显著变化[1].春天,在北极新冰和多年冰的底部冰藻旺发,随后浮游植物生产力上升[2,3].  相似文献   

11.
本文使用SVD等诊断分析方法探讨北极秋季海冰密集度与亚洲冬季温度异常之间的关系。结果表明,近30余年来,北极秋季海冰减少伴随着亚洲大陆冬季温度降低,但青藏高原地区、北冰洋和北太平洋沿岸除外。北极秋季海冰密集度减小激发欧亚大陆和北冰洋北部两个区域位势高度的改变,这种异常的变化模态从秋季持续到冬季。位势高度异常的负值中心位于巴伦支海和喀拉海。位势高度异常的正值中心位于蒙古区域。与重力位势高度异常伴随的风场异常为亚洲冬季温度降低提供自北向南的冷气流。随着北极海冰的不断减少,其与亚洲大陆冬季温度降低之间的关系将为气候长期预测提供参考。  相似文献   

12.
应用1973~1999年南极气温和海冰资料,分别对它们进行了统计分析,结果表明,南极的最低温度中心位于东南极大陆(东方站),这种分布特征是与南极地形相对应的.南极东方站的年平均地面气温是-55.3℃;地面最高气温出现在12月至翌1月,其温度为-32.1℃;地面最低气温出现在8月,其温度为-68.2℃.南极各地区的地面气温具有不同的变化特征.根据温度的变化特征,将南极的气候分为4种类型:南极大陆型、南极半岛型、东南极沿岸型和海湾型.近年来南极半岛的气温有明显升高的趋势,而东南极沿岸的气温有明显下降的趋势,它们的变化呈明显的反位相.南极海冰与南极气温变化有较好的对应关系,气温升高的南极半岛的海冰有减少的趋势,而气温下降的东南极的海冰有增加的趋势.这种结果很难用温室效应来解释南极与全球气候变化的差异.东南极海冰变化与南太平洋的海温场存在密切关系,其影响过程是通过南极海冰范围的异常增加或减少,直接影响南极绕极流的冷暖结构及其异常冷暖水的经向输送,从而导致热带和副热带太平洋上层海温场的异常变化.  相似文献   

13.
14.
The relationship between the spring bloom along the Primorye coast and the sea ice of the Tatarskiy Strait in the northern region of the East/Japan Sea, a semi-enclosed marginal sea in the North Pacific, was investigated using the ten-year SeaWiFS chlorophyll-a concentration data and DMSP/SSMI sea ice concentration data from 1998 to 2007. Year-to-year variations in the chlorophyll-a concentrations in the spring were positively correlated with those of the sea ice concentrations in the Tatarskiy Strait in the previous winter with a correlation coefficient of 0.77. Abrupt increases in nutrients, essential for the spring bloom in the upper ocean during spring, were supplied from sea ice-melted waters. Time series of vertical distributions of the nutrients indicated that phosphate concentrations were extremely elevated in the upper ocean (less than 100 m) without any connection to high concentrations in the deep waters below. The water mass from sea ice provided preferable conditions for the spring bloom through changes in the vertical stratification structure of the water columns. Along-coast ratios of stability parameters between two neighboring months clearly showed the rapid progression of the generation of a shallow pycnocline due to fresh water originating from sea ice. This study addressed the importance of the physical environment for biogeochemical processes in semi-enclosed marginal seas affected by local sea ice.  相似文献   

15.
《Marine Chemistry》2006,98(2-4):210-222
This study presents concentrations of dimethylsulphide (DMS) and its precursor compound dimethylsulphoniopropionate (DMSP) in a variety of sea ice and seawater habitats in the Antarctic Sea Ice Zone (ASIZ) during spring and summer. Sixty-two sea ice cores of pack and fast ice were collected from twenty-seven sites across an area of the eastern ASIZ (64°E to 110°E; and the Antarctic coastline north to 62°S). Concentrations of DMS in 81 sections of sea ice ranged from < 0.3 to 75 nM, with an average of 12 nM. DMSP in 60 whole sea ice cores ranged from 25 to 796 nM and showed a negative relationship with ice thickness (y = 125x 0.8). Extremely high DMSP concentrations were found in 2 cores of rafted sea ice (2910 and 1110 nM). The relationship of DMSP with ice thickness (excluding rafted ice) suggests that the release of large amounts of DMSP during sea ice melting may occur in discrete areas defined by ice thickness distribution, and may produce ‘hot spots’ of elevated seawater DMS concentration of the order of 100 nM. During early summer across a 500 km transect through melting pack ice, elevated DMS concentrations (range 21–37 nM, mean 31 nM, n = 15) were found in surface seawater. This band of elevated DMS concentration appeared to have been associated with the release of sea ice DMS and DMSP rather than in situ production by an ice edge algal bloom, as chlorophyll a concentrations were relatively low (0.09–0.42 μg l 1). During fast ice melting in the area of Davis station, Prydz Bay, sea ice DMSP was released mostly as extracellular DMSP, since intracellular DMSP was negligible in both hyposaline brine (5 ppt) and in a melt water lens (4–5 ppt), while extracellular DMSP concentrations were as high as 149 and 54 nM, respectively in these habitats. DMS in a melt water lens was relatively high at 11 nM. During the ice-free summer in the coastal Davis area, DMS concentrations in surface seawater were highest immediately following breakout of the fast ice cover in late December (range 5–14 nM), and then remained at relatively low concentrations through to late February (< 0.3–6 nM). These measurements support the view that the melting of Antarctic sea ice produces elevated seawater DMS due to release of sea ice DMS and DMSP.  相似文献   

16.
The features of the sea ice growing and melting under the modern climatic conditions are considered with the use of the thermodynamic model of sea ice taking into account the seasonal melting and recrystallization of its upper layers. The evolution of the snowy and icy cover for the North Pole geographic point is estimated quantitatively on the basis of the NCEP/NCAR 2007 atmospheric reanalysis data.  相似文献   

17.
通过对2000~2004年连续5年冬季渤海逐日冰面积与营口日均气温积温的相关分析,发现二者相关关系较好,同时获得了逐日冰面积与营口日均气温积温的线性回归方程,并用此方程对2005~2006年冬季渤海的冰面积进行了预报试验,试验结果证明该方程具有一定的预报能力.  相似文献   

18.
The mean seasonal cycle of mixed layer depth (MLD) in the extratropical oceans has the potential to influence temperature, salinity and mixed layer depth anomalies from one winter to the next. Temperature and salinity anomalies that form at the surface and spread throughout the deep winter mixed layer are sequestered beneath the mixed layer when it shoals in spring, and are then re-entrained into the surface layer in the subsequent fall and winter. Here we document this ‘re-emergence mechanism’ in the North Pacific Ocean using observed SSTs, subsurface temperature fields from a data assimilation system, and coupled atmosphere–ocean model simulations. Observations indicate that the dominant large-scale SST anomaly pattern that forms in the North Pacific during winter recurs in the following winter. The model simulation with mixed layer ocean physics reproduced the winter-to-winter recurrence, while model simulations with observed SSTs specified in the tropical Pacific and a 50 m slab in the North Pacific did not. This difference between the model results indicates that the winter-to-winter SST correlations are the result of the re-emergence mechanism, and not of similar atmospheric forcing of the ocean in consecutive winters. The model experiments also indicate that SST anomalies in the tropical Pacific associated with El Niño are not essential for re-emergence to occur.The recurrence of observed SST and simulated SST and SSS anomalies are found in several regions in the central North Pacific, and are quite strong in the northern (>50°N) part of the basin. The winter-to-winter autocorrelation of SSS anomalies exceed those of SST, since only the latter are strongly damped by surface fluxes. The re-emergence mechanism also has a modest influence on MLD through changes in the vertical stratification in the seasonal thermocline.  相似文献   

19.
Sea ice disaster is one of the principal natural hazards that affect some coastal areas of China,and the formation of ice cover in a wave field has important characteristics.However,analysis of the mechanism in which waves affect the thermodynamic process of sea ice is lacking,and the influence of waves is not taken into consideration in numerical models of sea ice,largely because of a lack of simultaneous observations of waves and sea ice.Using observational data of the sea ice cycle in the coastal waters of Liaodong Bay(China),we analyzed the characteristics of hydrology,meteorology,and sea ice thickness during the formation of sea ice,and explored the changes in the interrelationships among heat fluxes,waves,and sea ice under actual sea conditions.The results could provide a decision-making support as a reference to the establishment and improvement of China's early waming system to sea ice disasters,and the protection of ice drilling operations and production platform safety.  相似文献   

20.
The method proposed for determining the total inorganic carbon (TC) concentrations in sea ice (Arctic region, North Pole-35 expedition) based on the measurement of the total alkalinity (TA) and the pH in the melt waters without the CO2 exchange with the atmosphere is considered. It is shown that the TC/Sal and TA/TC values through the entire ice section remain similar to these parameters in the subice water. The surface snow and the uppermost ice layers are characterized by elevated TA/TC values, which indicate the reaction Ca2+ + 2HCO3 = ↓CaCO3 + ↑CO2 + H2O. The release of CO2 to the atmosphere due to the decomposition of calcium hydrocarbonate is as high as ∼20 mmol/m2. The meltwater of the examined ice is undersaturated with CO2, which may result in a sink of atmospheric CO2 (∼30 mmol/m2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号