首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
In this study, a two-dimensional floating pier consists of single rectangular impermeable pontoon with side supporting pile-columns is studied. The purpose of this study is to present a theoretical solution for the linearized problem of incident waves exerting on a floating pier with pile-restrained. All boundary conditions are linearized in the problem, which is incorporated into a scattering problem and radiation problem with unit displacement. The method of separation of variables is used to solve for velocity potentials. For the radiation problem with unit heave and pitch amplitude, the boundary value problem with non-homogeneous boundary condition beneath the structure is solved by using a solution scheme. By calculating the wave force from velocity potential and solving the equation of motion of the floating structure simultaneously a close form theoretical solution for the problem is developed. The finite element method was also applied to calculate the dynamic responses on the supporting piles subjected to the pontoon motions and incident waves.  相似文献   

2.
In the long-wave approximation, we perform the numerical analysis of the plane problem of runup of waves of various shapes on a sloping beach. We study transformations of the shape of waves flooding the beach and in the course of their subsequent rundown. The dependence of maximum elevations and lowerings of the sea level on the parameters of the waves approaching the beach, the depth of the shelf, and the slope of the bottom are investigated. It is shown that the shape of waves affects the amplitude characteristics of oscillations of the coastline. The heights of the vertical runup of waves incident on a sloping beach can be several times higher than the amplitude of waves entering the shelf zone.  相似文献   

3.
A plane problem of free stationary gravitational waves in a horizontal current with vertical shear of the velocity is studied in the linear statement. The determination of the parameters of waves is reduced to the solution of the Sturm–Liouville boundary-value problem. For some vertical distributions of current velocity, we obtain analytic solutions. We propose a numerical algorithm for finding the parameters of waves. On the basis of the performed analysis, we establish the possibility of existence of stationary surface waves in currents for certain ranges of the Froude number. As the Froude number decreases, the waves become shorter, which leads to a faster attenuation of waves disturbances with depth. Under the actual conditions, the waves are short and suffer the influence of shear currents only in the subsurface layer of the ocean.  相似文献   

4.
5.
Real sea conditions are characterized by multidirectional sea waves. However, the prediction of hull load responses in oblique waves is a difficult problem due to numeral divergence. This paper focuses on the investigation of numerical and experimental methods of load responses of ultra-large vessels in oblique regular waves. A three dimensional nonlinear hydroelastic method is proposed. In order to numerically solve the divergence problem of time-domain motion equations in oblique waves, a proportional, integral and derivative (PID) autopilot model is applied. A tank model measurement methodology is used to conduct experiments for hydroelastic responses of a large container ship in oblique regular waves. To implement the tests, a segmented ship model and oblique wave testing system are designed and assembled. Then a series of tests corresponding to various wave headings are carried out to investigate the vibrational characteristics of the model. Finally, time-domain numerical simulations of the ship are carried out. The numerical analysis results by the presented method show good agreement with experimental results.  相似文献   

6.
港口中系泊船在波浪作用下运动问题的本质是浅水波浪与浮体的相互作用。与深水情况不同,浅水问题应当考虑水底、水域边界的影响及浅水波浪自身的特性,单一模型很难实现该模拟过程。为此,建立了Boussinesq方程计算入射波和Laplace方程计算散射波的全时域组合计算模型。有限元法求解的Boussinesq方程能使入射波充分考虑到水底、水域边界的影响和浅水波浪的特性;散射波被线性化,采用边界元法求解,并以浮体运动时的物面条件为入射波和散射波求解的匹配条件。该方法为完全的时域方法,计算网格不随时间变动,计算过程较为方便。通过与实验及其他数值方法的结果进行比较,验证了本模型对非线性波面、浮体的运动都有比较理想的计算结果,显示了本模型对非线性问题具有较好的计算能力。  相似文献   

7.
In this work, a theoretical analysis of the dynamic response of a poro-elastic soil to the action of long water waves is conducted. For some combinations of the physical parameters of the soil and the water waves, the vertical stress tends towards zero at a certain unknown depth in the soil, as measured from the top of that medium. Under this condition, the liquefaction of the soil is imminent, at which time the excess pore pressure is essentially equal to the overburden soil pressure. Physical problems of this type have been widely studied in the specialized literature. However, most major studies have focused on solving the governing equations together with a liquefaction criterion. Here, the maximum momentary liquefaction depth induced by long water waves is considered as part of the problem, which is treated as an eigenvalue problem. To solve this problem, the governing equations are written in dimensionless form. The theoretical results show that for long waves, the horizontal displacements are smaller in magnitude than the vertical displacements, and when the wavelength or wave period increases, the maximum liquefaction also increases. Analytical solutions for the excess pore pressure and the horizontal and vertical displacements are obtained. The analytical results for the pore pressure are found to be very close to the analytical results reported in the specialized literature.  相似文献   

8.
Within the framework of the linear theory of long waves taking into account the action of the Coriolis force, we solve the problem of generation of internal waves by a barotropic tide impinging on a bottom irregularity of the sea-ridge type. The cross section of the ridge is assumed to be rectangular and the stratification of the ocean is regarded as stepwise with two thermoclines (three-layer model). We study the dependences of the characteristics of generated waves on the parameters of stratification and the period of the impinging barotropic tide. Translated by Peter V. Malyshev and Dmitry V. Malyshev  相似文献   

9.
The structure of trapped symmetric disturbances in rotating stratified shear flows is investigated theoretically. It is shown that the arrangement of the trapping region is determined by atmospheric stratification. For example, if the characteristic Brunt-Väisälä frequency is greater (smaller) than the inertial frequency, waves are trapped in the region of anticyclonic (cyclonic) velocity shear. Accordingly, in the first (second) case, the frequencies of trapped waves are smaller (greater) than the inertial frequency. The problem of finding the frequencies of trapped waves is reduced to solving the Schrödinger equation but with a more complex dependence on a spectral parameter. Exact solutions to the problem are obtained for a triangular jet and a hyperbolic shear layer.  相似文献   

10.
The plane linear problem on the generation of the internal and gyroscopic waves in continuously stratified ocean by a moving area of surface pressures which are harmonic over time is considered. The possible types of the forced waves, the amplitudes and the resonance conditions of generation of the wave fields are determined based on the analytical solution derived for the case of a uniformly stratified ocean.Translated by Mikhail M. Trufanov. UDK 551.466.81.  相似文献   

11.
Water waves propagating over a layer of soft mud or submerged aquatic vegetation can drastically attenuate over distances comparable to several wave lengths. The attenuation in the case of mud has been found previously to be reasonably described by an exponential decay. Waves reflect from beaches and any structures that they impact. The reflected waves affect wave heights measured in the field or laboratory wave basins.Decomposition of small amplitude waves into incident and reflected waves is a linear problem. However, the presence of the exponential damping introduces nonlinearity to the decomposition problem and requires an iterative process for solving the problem. Despite considerable experimental research on attenuation of waves over mud, none of the existing methods for decomposition of incident and reflected waves have accounted for this case.Here, the Newton Algorithm was used to account for the effect of wave decay over mud by quasi-linearizing the nonlinear equations. Also, a second method using a new error function and a commercial nonlinear solver was proposed in both time and frequency domain. The performance of both methods has been verified using artificial as well as laboratory data.  相似文献   

12.
The present study considers the prediction of extreme values of the second-order hydrodynamic parameters related to offshore structures in waves, where the application of Gaussian distribution is not valid. Particularly, this study focuses on a characteristic function approach in the frequency domain to estimate the probability distribution of the second-order quantities, and the results are compared with direct simulations in the time domain. The stochastic behaviors of the second-order hydrodynamic quantities are investigated with the characteristic function approach, which involves eigenvalue analyses of Hermitian kernels constructed with quadratic transfer functions. Three different second-order responses are considered: the springing responses of TLP tendons representative of the sum-frequency problem, the slow-drift motions of a semi-submersible platform moored in waves as a representative of the difference-frequency problem, and the wave run-up around a vertical column for regular and irregular waves. The applicability of the present approach in predicting extreme values is assessed by comparing the results with the values obtained from time-domain signals.  相似文献   

13.
The plane problem on the generation of linear internal waves by a moving area of time-harmonic surface pressures in a continuously-stratified ocean of constant depth is considered. An analytical relation has been derived for forced internal waves off the site of their generation in the form of an internal wave field superposition corresponding to individual vertical modes. The possible wave regimes are determined. For the Brunt-Väisälä frequency distribution in the North Atlantic, the generation conditions and amplitudes of diverse radiated waves are numerically determined.Translated by Vladimir A. Puchkin.  相似文献   

14.
Experiments on the scattering of radio waves in the range 200 m to 3 cm from a rough sea surface are described. Amplitude, frequency, and space-time characteristics of scattered radio signals at different states of the sea surface are presented. It is shown that the problem of the short and medium wave scattering from the sea can be solved by the perturbance method. In this case the mechanism of scattering is of "resonant" character. The intensity of the backscatter signals is proportional to the density of the spatial spectrum on the half-length of the radio waves. The high frequency radio wave scattering is well described by a two-scale model of the scattering surface, "ripple on the large wave." The intensity of scattered radio signals is also proportional to the spectrum density of "ripples" whose length is approximately equal to half a radio wave. The effect of the large waves is to modulate the amplitude of a scattered radio signal and to broaden its frequency spectrum. Methods of solution of the reverse problem were considered. This allowed determination of parameters of sea roughness by characteristics of scattered radio signals. The principles of design of the corresponding equipment are described.  相似文献   

15.
M. V. Kalashnik 《Oceanology》2014,54(2):144-151
We studied trapped long quasi-inertial waves in horizontally inhomogeneous flows with low Rossby numbers. A simple heuristic derivation of two equations for the wave amplitude is presented. These equations are true for strong and weak density stratifications. A spectral problem is formulated to find the frequencies of trapped waves based on the amplitude equations. Exact solutions of the hyperbolic problem for a free hyperbolic shear layer are found. It is shown that the location of the trapping area principally depends on the stratification. If the buoyancy frequency is greater than the inertial frequency, trapping occurs in the region of anticyclonic velocity shear; if the buoyancy frequency is smaller than the inertial frequency, trapping occurs in the region of cyclonic velocity shear. Thus, in the first case, the frequencies of the trapped waves are smaller than the inertial frequency, while, in the second case, they are greater. The intense wave activity observed in the regions of oceanic fronts and jet currents can be related to the existence of trapped waves.  相似文献   

16.
Using a linear statement, the paper studies surface waves occurring due to minor shifts of the bottom sections. A plane case is considered. An analytical solution to the problem has been derived using Fourier transforms. Asymptotic laws for the degeneration of waves propagating over finite bottom deformations have been defined. Numerical analysis of the integrals is applied to study the effect of the horizontal extent of a wave generation area and bottom irregularities on the shape of waves and their amplitudinal and energetic parameters. Attention is focused on the manifestation of frequency dispersion at the stage of wave generation as a developed wave process. Translated by Vladimir A. Puchkin.  相似文献   

17.
The formation of the spectrum of short wind waves from the gravity-capillary and capillary ranges under the effect of three-wave interactions is considered. In order to determine the spectrum, the kinetic equation for wave packets is integrated to the point where the solution is established. Three-wave interactions are described by a collision integral without introducing any additional assumptions simplifying the problem. This calculation procedure reproduces the Zakharov-Filonenko theoretical spectra, which correspond to the cases of energy equipartition and the inertial range. It is shown that the main role of three-wave interactions lies in the energy transfer from the range of short gravity waves to waves with shorter wavelengths. This transfer is accomplished both locally in the Fourier space and as a result of interactions between short and long waves. Its characteristic features are the formation of a dip on the curvature spectrum in the region of a minimum phase velocity of waves and the formation of a secondary peak in the capillary range. The dip is filled and disappears as the wind speed increases. Taking into account the interaction between short and long waves increases the spectrum in the capillary range several times, and the balance between energy input from long waves and viscous dissipation is established in the capillary range. The energy sink caused by three-wave interactions, viscous dissipation, and wind forcing cannot give the stability of the spectrum of short gravity waves.  相似文献   

18.
In this paper, we study the harmonic generation and energy dissipation as water waves propagating through coastal vegetation. Applying the homogenization theory, linear wave models have been developed for a heterogeneous coastal forest in previous works (e.g. [17], [10], [11]). In this study, the weakly nonlinear effects are investigated. The coastal forest is modeled by an array of rigid and vertically surface-piercing cylinders. Assuming monochromatic waves with weak nonlinearity incident upon the forest, higher harmonic waves are expected to be generated and radiated into open water. Using the multi-scale perturbation theory, micro-scale flows in the vicinity of cylinders and macro-scale wave dynamics are separated. Expressing the unknown variables (e.g. velocity, free surface elevation) as a superposition of different harmonic components, the governing equations for each mode are derived while different harmonics are interacting with each other because of nonlinearity in the cell problem. Different from the linear models, the leading-order cell problem for micro-scale flow motion, driven by the macro-scale pressure gradient, is now a nonlinear boundary-value-problem, while the wavelength-scale problem for wave dynamics remains linear. A modified pressure correction method is employed to solve the nonlinear cell problem. An iterative scheme is introduced to connect the micro-scale and macro-scale problems. To demonstrate the theoretical results, we consider incident waves scattered by a homogeneous forest belt in a constant shallow depth. Higher harmonic waves are generated within the cylinder array and radiated out to the open water region. The comparisons of numerical results obtained by linear and nonlinear models are presented and the behavior of different harmonic components is discussed. The effects of different physical parameters on wave solutions are discussed as well.  相似文献   

19.
Most off-shore oil platforms are supported by vertical cylinders extending to the ocean floor. An important problem in off-shore engineering is the calculation of the wave loading exerted on these vertical cylinders. Analytical solutions have been found for the case of plane incident waves incident on a circular cylinder by MacCamy and Fuchs [(1954), Wave forces on piles: a diffraction theory. U.S. Army Corps of Engineering, Beach Erosion Board, Technical Memorandum No. 69] and also for short-crested waves incident on a circular cylinder by Zhu [(1993), Diffraction of short-crested waves around a circular cylinder. Ocean Engng 20, 389–407]. However, for a cylinder of arbitrary cross-section, no analytic solutions currently exist. Au and Brebbia [(1983), Diffraction of water waves for vertical cylinders using boundary elements. Appl. Math. Modelling 7, 106–114] proposed an efficient numerical approach to calculate the wave loads induced by plane waves on vertical cylinders by using the boundary element method. However, wind-generated waves are better modelled by short-crested waves. Whether or not these short-crested waves can induce larger wave forces on a structure is of great concern to ocean engineers. In this paper wave loads, induced by short-crested incident waves, on a vertical cylinder of arbitrary cross-section are discussed. For a cylinder of certain cross-section, the wave loads induced by short-crested waves can be larger than those induced by plane waves with the same total wave number.  相似文献   

20.
Resonance Induced by Edge Waves in Hua-Lien Harbor   总被引:2,自引:0,他引:2  
This article first reviews previous numerical studies on the resonance problem of Hua-Lien Harbor. All the research leads to the conclusion that resonance can be stimulated by 2-D infragravity waves. However, a literature survey suggests that outside the harbor these plane infragravity waves are too small to excite violent water-body movement inside. On the other hand, 3-D infragravity waves trapped along the coastline, also known as edge waves, are more likely to exist outside the harbor and their effect needs to be thoroughly discussed. Based on previous measurements, the response of Hua-Lien Harbor is best simulated using edge waves of 160 and 140 second periods and their resonance mechanisms are analyzed. The former case has a longitudinal resonant mode and hence the amplitude in the inner harbor is large. The latter case has a transverse mode in the outer basin and hence only berths in the outer basin are influenced. These features are both consistent with field measurement. Therefore, it is very likely that edge waves are responsible for the resonance of Hua-Lien Harbor. Finally, based on observation after the construction of the present offshore breakwaters, a theory is proposed to explain the trapping of incident edge waves, and a measure to further reduce the resonance is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号