首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
一些学者和我们的工作证实藤壶胶的主要成分为蛋白质。Lindner等(1969)对缺刻藤壶Balanus crenatus Bruguieri进行了溶解试验,结果表明这种藤壶胶不溶于苯、稀酸、稀碱等溶剂;李刚等(1978)认为藤壶胶是一种交联度很高、结合很牢固的蛋白  相似文献   

2.
藤壶(Balanus)是重要的海洋污损生物。研究报道在藤壶胶形成过程中,赖氨酰氧化酶(Lysyl oxidase,LOX)起了至关重要的作用。但迄今未见藤壶来源的LOX的重组表达和性质研究的报道,这已成为理解藤壶胶形成机制的瓶颈。为解决此问题,本研究聚焦海洋污损生物藤壶来源的LOX,通过系统筛选原核表达载体和LOX结构域,首次实现了藤壶来源的赖氨酰氧化酶(BalLOX)的高效可溶性表达,表达产率为0.28 g/L,是文献报道的哺乳动物来源LOX的373倍。研究结果表明重组表达的BalLOX具有较高的生物酶活性。该研究为后续深入理解藤壶胶形成机制及LOX在藤壶粘附中的角色和功能奠定了重要基础。  相似文献   

3.
陈新  唐敏  刘秋妤  卓文  李紫薇 《海洋科学》2017,41(7):150-156
藤壶是最常见的海洋污损动物,也是材料防污性能检测和评价试验中最主要的动物模型。藤壶附着从腺介幼虫探索适宜基底开始,到随后分泌藤壶胶进行固着,期间受自身及多种环境因子的影响。本文从藤壶腺介幼虫的黏附行为、影响黏附的因素和藤壶胶的特性3个方面出发,综述了近年来在藤壶黏附领域的研究进展,期望为新型防污产品的研发和检测评价提供较系统的参考资料。  相似文献   

4.
藤壶是海洋污损生物中分布较广、危害较大的种类之一。藤壶分泌的胶粘物能在海水中六小时内固化,使底盘与附着基表面粘着,长期作为附着基的船舶、海上设施便受到腐蚀等严重污损。为了防除污损,研究藤壶胶的固化机理有着现实意义。但是固化机理研究的深入又有赖于固态胶的溶解。藤壶胶因分泌的阶段不同而有初生胶和次生胶之分,一些学者认为固态胶难于溶解,只能水解或降解。  相似文献   

5.
通过观察在不同材质表面上黏附的网纹藤壶底板的微观结构,发现不同的基底材料对网纹藤壶底板结构有明显影响。在底板不同区域,其微观结构呈现多样化,这可能与底板处于不同形成期或与底板承担的侧壁链接、藤壶胶运输等功能有关。网纹藤壶底板结构复杂性高、可塑性强,这为藤壶适应严酷多变的海洋环境提供了必要的结构基础。  相似文献   

6.
网纹藤壶初生胶和次生胶比较   总被引:1,自引:1,他引:1  
众所周知,藤壶牢固地附着在海洋的结构物上,徒手无法将它取下。当藤壶底板处聚集大量次生胶时,用双手就能轻易地取下。我们用这一方法辨别附着在贻贝上的藤壶是否有大量次生胶存在。表面看来,似乎初生胶粘结力比次生胶强,,因而人们会提出这两种胶的化学性质是否相同的问题。李刚等(1978)和严文侠等(1981)分别报道了网纹藤壶初生胶和次生胶生化成份,初生胶旦白含量65.5%,灰分占26.9%;次生胶为  相似文献   

7.
九龙江口硬相潮间带藤壶类动物的群落生态   总被引:1,自引:1,他引:1  
福建九龙江口硬相潮间带共有8种藤壶,其中以绿鳞笠藤壶Tetraclita squamosa squamosa,白脊藤壶Balanus albicostatus和泥藤壶Balanus uliginosus为优势种。根据藤壶优势种的分布状况,九龙江口硬相潮间带藤壶群落可分为三种类型:1.日本鳞笠藤壶Tetraclitasquamosa japonica-绿鳞笠藤壶群落;2.白脊藤壶-绿鳞笠藤壶群落;3.泥藤壶-白脊藤壶群落。研究结果还表明,各藤壶群落的附着密度和生物量均随盐度的降低而减少。生物量一般春季较高,夏、秋季较低;附着密度则冬季较高,春季较低。潮汐是影响河口区硬相潮间带藤壶垂直分布的主要因素。  相似文献   

8.
藤壶亚目是目前为止海洋生物群落中种类最丰富和最重要的类群之一,也是海洋污损生物的重要组成部分,主要分布于岩石潮间带栖息地、深海热液口,有的物种会附着在红树林植物、动物和人工构筑物上。文章综述了藤壶亚目的起源以及分类系统的建立和发展,认为藤壶亚目在下白垩纪从有柄目分化而来,其中篱藤壶科(小藤壶总科)是最早分化出的一支,而后逐渐分化为星板藤壶总科、厚藤壶总科、鲸藤壶总科、笠藤壶总科、小藤壶总科和藤壶总科6支;总结了国内藤壶亚目的研究进展;比较了藤壶亚目系统发育学的研究方法;展望了未来的研究方向,即结合形态学方法与分子系统学方法研究藤壶亚目物种的系统发育关系,为今后研究藤壶亚目物种的分类及防治等工作提供借鉴和帮助。  相似文献   

9.
藤壶是潮间带生态、幼体发育以及生物防污损研究中重要的模式生物。目前,线粒体基因组学的发展有助于从线粒体基因组水平上更好地理解系统发育关系。本研究获得东方小藤壶Chthamalus challengeri完整线粒体基因组,大小为15358bp的环状分子。与藤壶亚目其它物种相比,东方小藤壶非编码区的长度较长,而基因区的长度则相近。东方小藤壶线粒体基因组A+T含量为70.5%。现有藤壶物种的线粒体基因组中存在起始和终止密码子的变化。同属的东方小藤壶和触肢小藤壶C. antennus具有共同的基因排列。然而,小藤壶科中不同属之间却具有不同的基因排列,包括两个tRNA基因出现易位,一个基因块出现倒置。值得注意的是,与以往藤壶亚目物种不同,小藤壶属两个物种的srRNAlrRNA基因都在重链上编码。小藤壶科中进化树的拓扑结构与基因排列证据相互支持,系统发育分析表明小藤壶科是单系群,而藤壶科和古藤壶科则是多系群。  相似文献   

10.
本文研究了舟山沿岸四种藤壶(三角藤壶Balanustrigonus,纹藤壶B.amphitriteamghitrite,白脊藤壶B.albicostatus及日本笠藤壶Tetraclitajaponica)壳板的亚显微结构。结果表明,壳板表面的亚显微结构主要有生长脊(包括毛脊、大脊、微脊)和放射脊。其中,大脊和放射脊系本文首次报道。大脊于蔡壶蜕皮后毛脊(刚毛)形成的同时或其后形成,与蜕度周期有关。放射脊的形成可增加壳板的坚固度。各种生长脊的数量及强弱变化反映了藤壶的生理代谢状况及环境对藤壶成长的影响。本文比较了四种藤壶之间壳板表面的亚显微结构,发现它们有很大的差异。通过比较四种藤壶成体和幼体之间壳板表面的亚显微结构,发现藤壶壳板表面结构与年龄有密切关系,尤以生活于潮间带中上区的白脊藤壶和日本笠藤壶为显著。环境,尤其是潮区,对藤壶壳板的生长有很大影响。日本笠藤壶、白脊藤壶、纹藤壶壳板结构明显受其生活的潮区影响。  相似文献   

11.
藤壶科DNA 分类研究   总被引:2,自引:1,他引:1  
围胸总目藤壶科的分类系统经历了二亚科系统(小藤壶亚科 Chthamalinae,藤壶亚科 Balaninae)、三亚科系统[藤壶亚科(Balaninae),巨藤壶亚科(Megabalaninae),凹藤壶亚科(Concavinae)],现在采用的是四亚科系统[藤壶亚科(Balaniae)、纹藤壶亚科(Amphibalanus)、巨藤壶亚科(Megabalaninae)和凹藤壶亚科(Concavinae)],但各亚科之间的系统演化关系尚未进行过分子系统学方面的研究.许多藤壶科物种存在趋同进化的趋势,致使传统的形态分类存在困难,不能正确地进行鉴别.本文测定了藤壶科3个亚科里个代表种的线粒体 COI,16S 和12S 基因的部分序列,结合 GenBank 中藤壶科其他物种的12S,28S和18S等基因序列,比较了不同基因片段作为鉴别藤壶科物种的条形码的可行性和有效性,并联合16S和12S序列初步分析了藤壶科各亚科之间的一些亲缘关系.研究结果表明:COI基因的种间和种内遗传距离有明显的间隔区, COI最小种间距离为0.122,远大于最大种内距离0.023,而16S基因的种间与种内距离存在覆盖,最小种间距离为0.018,小于最大种内距离0.023,因此表明,线粒体基因 COI能更准确地鉴定藤壶科种间以及种内关系,并得出阈值为种内差异小于0.023,种间差异大于0.1.ML和BI系统发育分析结果基本一致,支持4亚科的分类系统;巨藤壶亚科形成明显单系群,支持率很高,而两种纹藤壶和管藤壶聚成一支,形成一个单系,本结果支持Newman & Ross的假说,即纹藤壶属和管藤壶属应合并.  相似文献   

12.
互花米草Spartina alterniflora自1979年引入至今,已在我国海岸带大范围扩张并对盐沼湿地生态系统产生了很大影响.本研究以附着生物藤壶为例,研究了互花米草扩张对附着生物的影响.通过对5个断面共28个样方的米草植株、附着藤壶以及藤壶在互花米草上的最大附着高度调查,获得结果如下:藤壶在互花米草滩上的附着范围位于潮沟两侧,且呈宽度约为5 m的带状分布;潮沟规模越大,其向陆方向的延伸范围越宽;每个站位藤壶附着的相对最大高度都位于同一水平.附着藤壶均为白脊管藤壶Fistulobalanus albicostatus,平均干重237±69g·m-2,大部分藤壶直径在2~10mm之间.互花米草的平均干重为981±81g·m-2,潮沟附近互花米草高壮但密度较小,远离潮沟互花米草矮小但密度较大.分析表明,互花米草为藤壶提供了附着基质,并影响藤壶在潮间带的平面分布格局(尽管藤壶的生态位保持不变).影响白脊管藤壶分布特征的原因主要是海水浸没时间的差异;负地形的浸没时间更有利于藤壶的附着和生存;另外潮沟较高的潮水流速除了利于白脊管藤壶幼体的附着外,还可以通过水流的涨、落为其带来充足的食物.  相似文献   

13.
舟山海区几种藤壶的食性分析   总被引:1,自引:0,他引:1  
舟山海区五种藤壶的食性成分分析表明:其胃含物可分为浮游动物、浮游植物、有机碎屑及无机颗粒四类。浮游动物以挠足类为主,浮游植物以硅藻为主。不同大小个体的藤壶摄食偏向有所差别:大个体藤壶较多地摄食大型的烧足类等浮游动物,而小个体藤壶较多地摄食小型的硅藻等浮游植物和有机碎屑。藤壶食物成分种类与其生活海区中的浮游生物种类相一致,并随海区中浮游生物种类和数量变化而变化。通过测定发现,分布于外海的三角藤壶的食物颗粒度明显大于近海虾塘中的纹藤壶的食物颗粒度。  相似文献   

14.
通过测定网纹藤壶覆盖面积分别为35%,75%和100%的碳钢试样,在藤壶去除前、后的自然腐蚀电位和阴极动电位扫描极化曲线的变化,研究了网纹藤壶覆盖面积对碳钢腐蚀的影响;并以线性极化法研究了附有网纹藤壶试样的瞬时腐蚀率与浸挂时间的关系。随着试样表面网纹藤壶覆盖面积的增大,碳钢在海水中的自然腐蚀电位正移、极化阻力增大、腐蚀速度减缓。附有网纹藤壶的试样,其瞬时腐蚀率随浸海时间的延长而降低。  相似文献   

15.
网纹藤壶初生胶化学和物理特性的研究   总被引:1,自引:0,他引:1  
李刚  刘承松 《海洋与湖沼》1978,9(2):224-229
藤壶 Balanus reticulatus Utinomi 是海洋污损生物中危害最大的种类之一。藤壶的生活史包括短暂的浮游生活幼虫期和固着生活的成体期。藤壶自金星幼虫附着在一个表面上变态为成体后,在其正常的生长发育过程中,每蜕皮一次就需要分泌一圈胶粘物质,以保持底盘与附着基表面的粘着状态,这种胶粘物质称为藤壶初生胶;而藤壶在各种意外损  相似文献   

16.
研究海洋污损生物藤壶(Barnacle)不同生长阶段附着强度,可为科学制定藤壶清除规范及设计相关机械设备提供依据。本文采用浸泡法在湛江调顺岛(21°31''N,110°41''E)实海中挂板,结合形貌观察藤壶生长过程,利用自行设计的剪切强度测试装置,选取网纹藤壶测试不同生长阶段剪切强度。结果表明:试板浸泡10 d,幼体藤壶开始附着;30 d试板表面藤壶覆盖面积约占30%,基底直径1~6 mm,部分藤壶死亡形成空壳;60 d试板约50%面积被藤壶覆盖,试板表面有覆膜,空壳现象加剧,藤壶基底直径最大达10 mm;90 d试板约95%面积被藤壶覆盖,出现藤壶相叠现象,基底直径1~13 mm。藤壶附着生长过程中,剪切强度变化符合“快-慢”的特点,以藤壶基底直径为变量,构建藤壶剪切强度Logistic增长模型,决定系数R2=0.99,说明模型拟合良好。利用构建的Logistic增长模型将藤壶剪切强度划分为速增期(基底直径4.0~6.4 mm),缓增期(基底直径6.4~8.7 mm)及渐停期(基底直径>8.7 mm)3个阶段。结合藤壶附着生长过程,藤壶在附着后采用机械方式清除的最佳清除时期在速增期。  相似文献   

17.
海洋蔓足类在宿主体上常有固定的定着位置。同一个种在不同宿主体上的定着位置亦不相同。龟藤壶是以蔓足朝向宿主前进寸水流流过宿主体表的方向定向(0~°方式)的;薄壳龟藤壶在蟹体上,均以蔓足背向口器形成的水流进行定向;三角藤壶在贻贝壳上以±180°方式定向;薄壳星藤壶和高峰星藤壶在宿主体上以0—±180°方式定向;细板条茗荷在海蛇体上以0—±90°方向定向。在单向流向的码头,鳞笠藤壶、高峰星藤壶以蔓足朝向潮流影响较大的方向定向;在双向流向的海区,鳞笠藤壶、纹藤壶和白脊藤壶以峰板朝上、吻板朝下,与波轴呈约直角方向定向。在开敞性海岸,日本笠藤壶以峰板朝下、吻板朝向波浪冲散后水流下落的方向定向;龟足则在岩缝间以同样方式定向。海洋蔓足类具有对各种形式的水流产生反应的定向机制,据此,可为水文学家和古地理学家提供生物学的依据。  相似文献   

18.
小藤壶类除少数种为深海产外,大部栖息于潮间带,附着于岩石、码头、树木、管道、浮标或船底,是沿岸附着生物的主要种类,在潮间带岩岸生物群落中常占一定的优势。种类的准确鉴定对分析潮间带生态和附着生物的生态研究及防除工作都具有一定的意义。 早在1854年,Darwin就在藤壶科Balanidae下建立了小藤壶亚科Chthamalinae. Pilsbry (1916)将其提升为小藤壶科Chthamalidae,与Balanidae并列;1976年Newman& Ross对藤壶亚目Suborder Balanomorpha进行了全面的修订,分为3个总科(Chthamaloidea,Coronuloidea和Balanoide),他们将小藤壶科中壳壁带轮生副板的4属分出,建立鳞藤壶科Catophragmidae,与Chthamalidae一起置于小藤壶总科Chthamaloidea之下。 关于小藤壶类,国内仅有零星记载,缺少系统研究,特别是一些深水种尚无报道。本文根据中国科学院海洋研究所过去在全国沿海潮间带采集的标本写成,共报告小藤壶科9种,分隶于2亚科4属,其中有1新种,1种为我国首次录。新种的模式标本保存在中国科学院海洋研究所。 本文报告的小藤壶,分布于我国长江口以北海域的只有东方小藤壶Chthamalus challengeri Hoek,它大量出现在高潮带岩石上,对温、湿度变化的适应力很强,能忍受较长时间的周期性干燥和较大的温度变化幅度。其余种类则出现在长江口以南亚热带和热带海区,其中白条地藤壶Euraphia withersi和楯形矮藤壶Chamaesipho scutelliformis分布广,数量大;中国四板小藤壶Tetrachthamalus sinensis Ren在海南岛和北部湾沿岸占优势。  相似文献   

19.
正藤壶和茗荷儿都属于节肢动物门甲壳纲蔓足亚纲。它们都生活在海洋上,成体常固着于岩石、贝壳、珊瑚礁、漂浮的木块或其他物体上。藤壶是一类有灰白色石灰质外壳的海洋生物,形状有点像马的牙齿,曾经被认为是软体动物。藤壶分布甚广,数量繁多,故俗称为"马牙",常密集在一起。藤壶不但能附着在礁石上,而且能附着在船体上,任凭风吹浪打也冲刷不掉。我们所看到的藤壶外型,一般分为两种:一是鹅颈型藤壶,它们经由一个不同长度、  相似文献   

20.
网纹藤壶Amphibalanus reticulatus和鳞笠藤壶Tetraclita squamosa squamosa是我国东南沿海两种常见的海洋污损生物种类, 在海洋生态系统中占有重要地位。探讨这两种藤壶的幼虫发育与盐度的关系有助于丰富和发展海洋生物学知识, 并为海洋污损生物防除相关工作的开展提供数据资料。研究探讨了网纹藤壶和鳞笠藤壶无节幼虫在盐度为6‰、12‰、18‰、24‰、30‰(对照组)和36‰的培养条件下的发育状况, 观察记录5天后幼虫的存活率和各期幼虫所占百分比, 采用最小显著差数法进行差异显著性分析。结果表明, 当水体盐度≤18‰时, 会严重阻滞网纹藤壶和鳞笠藤壶幼虫的发育, 甚至导致死亡; 而当盐度≥24‰时, 这2种藤壶幼虫的成活率虽不会随盐度改变发生显著变化, 但盐度为30‰的水体更有利于网纹藤壶幼虫的发育, 而鳞笠藤壶幼虫发育状况受盐度变化的影响不大, 具备更强的耐受能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号