首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Improving image classification and its techniques have been of interest while handling satellite data especially in hilly regions with evergreen forests particularly with indistinct ecotones. In the present study an attempt has been made to classify evergreen forests/vegetation in Moulirig National Park of Arunachal Pradesh in Eastern Himalayas using conventional unsupervised classification algorithms in conjunction with DEM. The study area represents climax vegetation and can be broadly classified into tropical, subtropical, temperate and sub-alpine forests. Vegetation pattern in the study area is influenced strongly by altitude, slope, aspect and other climatic factors. The forests are mature, undisturbed and intermixed with close canopy. Rugged terrain and elevation also affect the reflectance. Because of these discrimination among the various forest/vegetation types is restrained on satellite data. Therefore, satellite data in optical region have limitations in pattern recognition due to similarity in spectral response caused by several factors. Since vegetation is controlled by elevation among other factors, digital elevation model (DEM) was integrated with the LISS III multiband data. The overall accuracy improved from 40.81 to 83.67%. Maximum-forested area (252.80 km2) in national park is covered by sub-tropical evergreen forest followed by temperate broad-leaved forest (147.09 km2). This is probably first attempt where detailed survey of remote and inhospitable areas of Semang sub-watershed, in and around western part of Mouling Peak and adjacent areas above Bomdo-Egum and Ramsingh from eastern and southern side have been accessed for detailed ground truth collection for vegetation mapping (on 1:50,000 scale) and characterization. The occurrence of temperate conifer forests and Rhododendron Scrub in this region is reported here for the first time. The approach of DEM integrated with satellite data can be useful for vegetation and land cover mapping in rugged terrains like in Himalayas.  相似文献   

2.
植被是林业和环境的重要组成因子,植被信息是林业和环境专业地理信息系统的重要组成部分,通过生产实践,介绍了植被信息数据采集的方法。  相似文献   

3.
Fuzzy based soft classification have been used immensely for handling the mixed pixel and hence to extract the single class of interest. The present research attempts to extract the moist deciduous forest from MODIS temporal data using the Possibilistic c-Means (PCM) soft classification approach. Temporal MODIS (7 dates) data were used to identify moist deciduous forest and temporal AWiFS (7 dates) data were used as reference data for testing. The Simple Ratio (SR), Normalized Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI), and Transformed Normalized Difference Vegetation Index (TNDVI) were used to generate the temporal vegetation indices for both the MODIS and the AWiFS datasets. It was observed from the research that the MODIS temporal NDVI data set1, which contain the minimum number of images and avoids the temporal images corresponding to the highest frequency stages of onset of greenness (OG) and end of senescence (ES) activity of moist deciduous forest have been found most suitable data set for identification of moist deciduous forest with the maximum fuzzy overall accuracy of 96.731 %.  相似文献   

4.
Forest cover plays a key role in climate change by influencing the carbon stocks, the hydrological cycle and the energy balance. Forest cover information can be determined from fine-resolution data, such as Landsat Enhanced Thematic Mapper Plus (ETM+). However, forest cover classification with fine-resolution data usually uses only one temporal data because successive data acquirement is difficult. It may achieve mis-classification result without involving vegetation growth information, because different vegetation types may have the similar spectral features in the fine-resolution data. To overcome these issues, a forest cover classification method using Landsat ETM+ data appending with time series Moderate-resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data was proposed. The objective was to investigate the potential of temporal features extracted from coarse-resolution time series vegetation index data on improving the forest cover classification accuracy using fine-resolution remote sensing data. This method firstly fused Landsat ETM+ NDVI and MODIS NDVI data to obtain time series fine-resolution NDVI data, and then the temporal features were extracted from the fused NDVI data. Finally, temporal features combined with Landsat ETM+ spectral data was used to improve forest cover classification accuracy using supervised classifier. The study in North China region confirmed that time series NDVI features had significant effects on improving forest cover classification accuracy of fine resolution remote sensing data. The NDVI features extracted from time series fused NDVI data could improve the overall classification accuracy approximately 5% from 88.99% to 93.88% compared to only using single Landsat ETM+ data.  相似文献   

5.
Because of the pointing capability of the Hyperion/Earth Observing-One (EO-1) to improve the revisit time of the scene, temporal series of narrowband vegetation indices (VIs) can be generated to study the phenology of the Amazonian tropical forests. In this study, 10 selected narrowband VIs calculated from Hyperion nadir and off-nadir data and from different view directions (forward scattering and backscattering) were analyzed for their sensitivity to view-illumination effects along the dry season on the Seasonal Semi-deciduous Forest. Data analysis was also supported by PROSAIL modeling to simulate the spectral response of this forest type in both directions. Hyperion and PROSAIL results showed that the Enhanced Vegetation Index (EVI) and Photochemical Reflectance Index (PRI) were the two more anisotropic VIs, whereas the Normalized Difference Vegetation Index (NDVI), Structure Insensitive Pigment Index (SIPI) and the Vogelmann Red Edge Index (VOG) were comparatively less sensitive to view-illumination effects. When compared to the other VIs and because of the greater dependence on the near-infrared (NIR) reflectance, EVI showed a different spectral behavior. EVI increased from forward scattering to backscattering and with decreasing solar zenith angle (SZA) towards the end of the local dry season, due to reduction in shading and enhancement of the illumination effects. On the other hand, PRI was higher with increasing shading in the forward scattering direction, as deduced from the PROSAIL simulation. Results emphasized the importance of taking into account bidirectional effects when analyzing temporal series of VIs collected over tropical forests by imaging spectrometers with pointing capability or even by multispectral sensors with large field-of-view (FOV).  相似文献   

6.
基于TM数据的植被覆盖度反演   总被引:6,自引:5,他引:6  
本文首先对TM影像进行了几何纠正、辐射校正、大气校正;然后根据混合像元的结构特征,利用TM数据从植被指数(NDVI)中采用“等密度模型”和“非密度模型”提取了宜昌南部地区的植被覆盖度。在用“非密度模型”反演植被覆盖度的过程中,叶面积指数(LAI)是一个必要的参数,本文提出了一种改进的借助可见光波段和近红外波段反射值来提取叶面积指数(LAI)的方法。通过和MODIS数据反演结果比较表明:“非密度模型”的估算精度要高于“等密度模型”;利用“等密度模型”和“非密度模型”反演植被覆盖度是可行。  相似文献   

7.
Invasive species have been the focus of environmentalists due to their undesired impact on the ecosystem. Spread of Lantana (Lantana camara L.), an invasive plant species, has been found in diverse geophysical environments causing a threat to the native flora. Various eradication programmes have been attempted such as burning, chemical sprays, bio-control agents and physical plugging mechanism for removing such invasive species in India. The efforts and success of these programmes need to be augmented with a correct, quick and cost effective technique of mapping in order to locate them, understand their spatial extent and hence make the process comprehensive. Also Lantana’s appearance as dense vegetation patches in remote sensing data causes problems for estimating forest canopy density. Remote sensing provides a possible solution in qualitatively and quantitatively evaluating terrestrial surface vegetation cover using spectral measure-ments. This research paper addresses issues and techniques adopted to detect and extract Lantana, and can be used for various applications in forestry as well as in eradication programmes. This study attempted to understand the appropriate band combination using Landsat data and generating vegetation indices in order to extract Lantana patches in an accurate manner. Twenty nine different vegetation indices were analyzed for their effectiveness in differentiating Lantana from other classes. The study showed that SAVI (Soil Adjusted Vegetation Index) is most favorable in discriminating Lantana followed by Perpendicular Vegetation Index-3 in the optimum bio-window (February to April).  相似文献   

8.
高分辨率影像的植被分类方法对比研究   总被引:12,自引:0,他引:12  
颜梅春 《遥感学报》2007,11(2):235-240
高分辨率影像的纹理信息可解决用光谱分类面临的“同物异谱”和“同谱异物”问题,更精确地分辨地物的细微变化,但将纹理作为主要信息进行植被分类的研究较少。本文以南京市钟山景区为例,利用IKONOS影像数据的纹理信息进行植被分类,并将结果与用光谱信息、植被指数信息的分类结果比较。共使用了4个灰度共生矩阵纹理量:CON(对比)、COR(相关)、HOM(同质)和MCON(改进的对比)分析各类植被的纹理表征设阈值分割;用3个植被指数:NDVI(归一化指数)、MSAVI(改进的土壤调节指数)和SAVI(土壤调节指数)(L取0.5和5)选择发现SAVI5最能区分。对纹理和指数信息均设各类型的阈值进行分割提取;基于光谱信息分别用最小距离监督分类和ISODATA非监督分类。研究中先进行数据恢复,再分别用三种信息将试验区植被分为6类:草地、竹林、常绿针叶林、常绿阔叶林、混交林和园地,最后将三种方法4个结果进行比较。精度评价的结论是:纹理信息分类的精度最高,植被指数次之,光谱信息中的非监督分类最低,纹理反映地物光谱及差异信息,可作为最佳方法用于植被分类。  相似文献   

9.
极化干涉SAR反演植被垂直结构剖面研究   总被引:2,自引:0,他引:2  
植被的高度和垂直结构剖面都是森林生物量和森林碳循环模型中的关键输入参数,极化干涉SAR的出现使定量获取植被结构参数成为可能。首先,将改进的两次拟合法估计的植被高度作为进一步反演植被垂直结构剖面的先验知识;然后,通过勒让德多项式展开以及双基线极化干涉数据提取植被的垂直结构剖面;最后,利用仿真以及真实极化干涉SAR数据进行方法验证和结果定性分析。研究表明,利用不同极化状态下的干涉相干性变化提取植被结构参数是可行且有效的。  相似文献   

10.
微波植被指数在干旱监测中的应用   总被引:3,自引:0,他引:3  
在植被覆盖区域,归一化植被指数(NDVI)被广泛地应用于干旱遥感监测。和基于光学遥感的植被指数相比,Shi等提出的微波植被指数MVI(Microwave Vegetation Index)被证实能够反映更多的植被生长信息。本文以MVI为基础,利用MVI代替目前比较成熟的温度植被指数TVDI(Temperature Vegetation Index)中的NDVI,构建温度微波植被干旱指数TMVDI(Temperature Microwave Vegetation Index),发展了一种新的干旱监测方法。本文以2006年夏季四川省发生的百年难遇的干旱为研究对象,将基于TMVDI与TVDI的干旱监测结果进行了对比分析。最后,为评估监测结果的准确性,将遥感监测的结果与基于气象站点降雨观测数据构建的标准降雨指数SPI(Standardized Precipitation Index)的计算结果进行了对比分析。结果表明,利用低频降轨微波辐射计数据计算的T MVDI最适合于进行植被覆盖区域的干旱监测。  相似文献   

11.
There is an urgent necessity to monitor changes in the natural surface features of earth. Compared to broadband multispectral data, hyperspectral data provides a better option with high spectral resolution. Classification of vegetation with the use of hyperspectral remote sensing generates a classical problem of high dimensional inputs. Complexity gets compounded as we move from airborne hyperspectral to Spaceborne technology. It is unclear how different classification algorithms will perform on a complex scene of tropical forests collected by spaceborne hyperspectral sensor. The present study was carried out to evaluate the performance of three different classifiers (Artificial Neural Network, Spectral Angle Mapper, Support Vector Machine) over highly diverse tropical forest vegetation utilizing hyperspectral (EO-1) data. Appropriate band selection was done by Stepwise Discriminant Analysis. The Stepwise Discriminant Analysis resulted in identifying 22 best bands to discriminate the eight identified tropical vegetation classes. Maximum numbers of bands came from SWIR region. ANN classifier gave highest OAA values of 81% with the help of 22 selected bands from SDA. The image classified with the help SVM showed OAA of 71%, whereas the SAM showed the lowest OAA of 66%. All the three classifiers were also tested to check their efficiency in classifying spectra coming from 165 processed bands. SVM showed highest OAA of 80%. Classified subset images coming from ANN (from 22 bands) and SVM (from 165 bands) are quite similar in showing the distribution of eight vegetation classes. Both the images appeared close to the actual distribution of vegetation seen in the study area. OAA levels obtained in this study by ANN and SVM classifiers identify the suitability of these classifiers for tropical vegetation discrimination.  相似文献   

12.
Recent studies in Amazonian tropical evergreen forests using the Multi-angle Imaging SpectroRadiometer (MISR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) have highlighted the importance of considering the view-illumination geometry in satellite data analysis. However, contrary to the observed for evergreen forests, bidirectional effects have not been evaluated in Brazilian subtropical deciduous forests. In this study, we used MISR data to characterize the reflectance and vegetation index anisotropies in subtropical deciduous forest from south Brazil under large seasonal solar zenith angle (SZA) variation and decreasing leaf area index (LAI) from the summer to winter. MODIS data were used to observe seasonal changes in the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI). Topographic effects on their determination were inspected by dividing data from the summer to winter and projecting results over a digital elevation model (DEM). By using the PROSAIL, we investigated the relative contribution of LAI and SZA to vegetation indices (VI) of deciduous forest. We also simulated and compared the MISR NDVI and EVI response of subtropical deciduous and tropical evergreen forests as a function of the large seasonal SZA amplitude of 33°. Results showed that the MODIS-MISR NDVI and EVI presented higher values in the summer and lower ones in the winter with decreasing LAI and increasing SZA or greater amounts of canopy shadows viewed by the sensors. In the winter, NDVI reduced local topographic effects due to the red-near infrared (NIR) band normalization. However, the contrary was observed for the three-band EVI that enhanced local variations in shaded and sunlit surfaces due to its strong dependence on the NIR band response. The reflectance anisotropy of the MISR bands increased from the summer to winter and was stronger in the backscattering direction at large view zenith angles (VZA). EVI was much more anisotropic than NDVI and the anisotropy increased from the summer to winter. It also increased from the forward scatter to the backscattering direction with the predominance of sunlit canopy components viewed by MISR, especially at large VZA. Modeling PROSAIL results confirmed the stronger anisotropy of EVI than NDVI for the subtropical deciduous and tropical evergreen forests. PROSAIL showed that LAI and SZA are coupled factors to decrease seasonally the VIs of deciduous forest with the first one having greater importance than the latter. However, PROSAIL seasonal variations in VIs were much smaller than those observed with MODIS data probably because the effects of shadows in heterogeneous canopy structures or/and cast by emergent trees and from local topography were not modeled.  相似文献   

13.
This study assesses whether MODIS Vegetation Continuous Fields percent tree cover (PTC) data can detect deforestation and forest degradation. To assess the usefulness of PTC for detecting deforestation, we used a data set consisting of eight forest and seven non-forest categories. To evaluate forest degradation, we used data from two temperate forest types in three conservation states: primary (dense), secondary (moderately degraded) and open (heavily degraded) forest. Our results show that PTC can differentiate temperate forest from non-forest categories (p = 0.05) and thus suggests PTC can adequately detect deforestation in temperate forests. In contrast, single-date PTC data does not appear to be adequate to detect forest degradation in temperate forests. As for tropical forest, PTC can partially discriminate between forest and non-forest categories.  相似文献   

14.
应用面向对象的决策树模型提取橡胶林信息   总被引:4,自引:0,他引:4  
橡胶林的无序和不合理种植引发了一系列的生态问题,快速监测橡胶林空间分布及动态变化,对橡胶的合理种植、区域生态环境保护以及有关部门的规划决策有重要的指导意义。以MODIS归一化植被指数NDVI时间序列数据和多时相的Landsat TM数据为基础分析橡胶林的季相和光谱特征,确定橡胶识别的关键时期和特征参数,构建面向对象的决策树分类模型,开展橡胶信息提取研究。结果表明,多时相的遥感数据可反映橡胶的季相特征,以TM数据为基础计算得到的陆表水分指数LSWI和归一化植被指数NDVI可作为橡胶识别的光谱特征参数,橡胶休眠期是利用遥感方法进行橡胶提取的最佳时期。相比于单时相数据,利用包含橡胶关键物候期的多时相遥感数据能得到更高的橡胶林提取精度。  相似文献   

15.
利用星载激光雷达的大光斑全波形数据估测植被结构参数、监测森林生态已受到广泛关注。为了更准确地理解森林植被的结构参数和光学特性对激光雷达回波波形的影响,利用实测森林植被数据提取植被空间分布的统计规律,考虑地形坡度变化和植被冠层反射特性的影响,生成参数化的森林植被空间轮廓反射模型,结合星载激光雷达的回波理论,建立了面向植被的星载激光雷达波形仿真器。由大兴安岭地区的实测植被数据提取的统计规律生成的森林目标仿真波形与地球科学激光测高仪系统(Geoscience Laser Altimeter System,GLAS)真实回波波形具有较好的一致性,平均相关系数R2达到0.91。通过波形仿真分析发现,光斑尺寸减小有利于大坡度地形的森林信息反演,研究成果对中国未来研制星载激光雷达载荷的系统参数设计具有参考意义。  相似文献   

16.
黄克标  庞勇  舒清态  付甜 《遥感学报》2013,17(1):165-179
结合机载、星载激光雷达对GLAS(地球科学激光测高系统)光斑范围内的森林地上生物量进行估测,并利用MODIS植被产品以及MERIS土地覆盖产品进行了云南省森林地上生物量的连续制图。机载LiDAR扫描的260个训练样本用于构建星载GLAS的森林地上生物量估测模型,模型的决定系数(R2)为0.52,均方根误差(RMSE)为31Mg/ha。研究结果显示,云南省总森林地上生物量为12.72亿t,平均森林地上生物量为94Mg/ha。估测的森林地上生物量空间分布情况与实际情况相符,森林地上生物量总量与基于森林资源清查数据的估测结果相符,表明了利用机载LiDAR与星载ICESatGLAS结合进行大区域森林地上生物量估测的可靠性。  相似文献   

17.
土地利用/覆盖分类通常是利用地物的波谱反射特征进行监督或非监督分类,分类结果由于"同物异谱、异物同谱"现象的存在,往往分类精度不高。而植被指数和地表温度作为表征地表覆盖状况的生物物理参数,已成功用于宏观尺度的土地利用/覆盖分类,使得分类结果有所提高,而对于区域尺度的土地利用/覆盖分类却少见报道。本文充分利用TM数据的多光谱特征,从中提取了植被指数NDVI、地表温度Ts、温度植被角度TVA和温度植被距离TVD这四种分类特征进行监督分类,通过对7种组合方案(反射率波段组合、NDVI与反射率波段组合、Ts与反射率波段组合、NDVI与Ts和反射率波段组合、TVA与反射率波段组合、TVD与反射率波段组合、TVA与TVD和反射率波段组合)的分类结果进行比较,得出以下结论:①NDVI、Ts、NDVI和Ts、TVD作为分类特征参与到多波段地表反射率影像分类中,能够提高分类精度,而TVA、TVA和TVD的加入却没有改善分类结果;②总体分类精度受到训练样本与检验样本比例的影响。  相似文献   

18.
气象卫星条件植被指数监测土壤状况   总被引:23,自引:1,他引:23  
本文介绍用1985-1991年NOAA卫星标准化植被指数(NDVI)资料进行处理生成的条件植被指数(VCI),研究我国土壤的湿度状况,并阐述了应用VCI,结合常规资料进行综合分析,监测由于干旱或大范围洪涝所造成的宏观植被状况变化的情况。研究结果表明,用气象卫星资料可以对我国的干旱、洪涝状况进行宏观动态监测。  相似文献   

19.
The need for quantitative and accurate information to characterize the state and evolution of vegetation types at a national scale is widely recognized. This type of information is crucial for the Democratic Republic of Congo, which contains the majority of the tropical forest cover of Central Africa and a large diversity of habitats. In spite of recent progress in earth observation capabilities, vegetation mapping and seasonality analysis in equatorial areas still represent an outstanding challenge owing to high cloud coverage and the extent and limited accessibility of the territory. On one hand, the use of coarse-resolution optical data is constrained by performance in the presence of cloud screening and by noise arising from the compositing process, which limits the spatial consistency of the composite and the temporal resolution. On the other hand, the use of high-resolution data suffers from heterogeneity of acquisition dates, images and interpretation from one scene to another. The objective of the present study was to propose and demonstrate a semi-automatic processing method for vegetation mapping and seasonality characterization based on temporal and spectral information from SPOT VEGETATION time series. A land cover map with 18 vegetation classes was produced using the proposed method that was fed by ecological knowledge gathered from botanists and reference documents. The floristic composition and physiognomy of each vegetation type are described using the Land Cover Classification System developed by the FAO. Moreover, the seasonality of each class is characterized on a monthly basis and the variation in different vegetation indicators is discussed from a phenological point of view. This mapping exercise delivers the first area estimates of seven different forest types, five different savannas characterized by specific seasonality behavior and two aquatic vegetation types. Finally, the result is compared to two recent land cover maps derived from coarse-resolution (GLC2000) and high-resolution imagery (Africover).  相似文献   

20.
本文讨论了以热带森林植被为主体的再生资源的面积动态变化监测。研究中包括两个部分。首先,我们利用多时相遥感图像对大面积的西双版纳州进行地类判读,系统地分析了森林植被的动态变化。其次,利用Landsat MSS和TM数据对自然保护区的动态变化进行了包含无监督分类和归一化差值植被指数分析的数字图像处理,变化分类也相当符合实际。总的实验结果表明,这种监测方法是很有效的,可在再生资源监测中特别是在森林植被监测中加以推广应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号