首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Heavy metals are introduced in human tissue through breathing air, food chain and human skin. They can cause damage to the nervous system and internal organs. In the present study, sixty street dust samples were collected from the central area of Tehran and were digested in the laboratory to determine the content of Zn, Ni, Cd, Cr, Cu and Pb, using inductively coupled plasma optical emission spectrometry (ICP-OES). The level of contamination with the analyzed metals was determined according to the following indices: geo-accumulation index (I geo), enrichment factor (EF), pollution index (PI), integrated pollution index (IPI) and potential ecological risk index (RI). The average concentration of heavy metals found was in the order of Zn > Cu > Pb > Ni > Cr > Cd. The average I geo values for Cd, Cr, Cu, Ni, Pb and Zn were 1.53, ?1.88, 2.68, ?0.67, 1.62 and 2.70, respectively. Among the investigated heavy metals, zinc and copper had the maximum average EF values and were placed into the “very severe enrichment” class. Potential ecological risk factor (E r) also indicated that Cd had the highest risk, and it was classified as of considerable potential ecological risk. Therefore, it is necessary to pay more attention to the appearance of Cd in the human environment. The calculated potential ecological risk index values also illustrated that the street dust samples presented a “moderate ecological risk.” The calculated IPI values showed that the pollution levels of the street dust samples ranged from high to extremely high.  相似文献   

2.
The concentrations of metals (Pb, Cr, Ba, Zn, V, Mn, Co, Cu, Ni and As) in 38 soil samples collected from the industrial district in Weinan (NW China) were determined by wavelength dispersive X-ray fluorescence spectrometry. The magnetic parameters of soil including low-/high-frequency susceptibility and frequency-dependent susceptibility were measured. The modified three-step BCR sequential extraction procedure was used to evaluate mobility, availability and persistence of trace elements in urban soil samples. Multivariate (principal component analysis, clustering analysis and correlation analysis) and geostatistical analysis (ArcGIS tools) were applied to the obtained data to evaluate the analytical results and to identify the possible pollution sources of metals as well as geo-spatial distributions. The results revealed that the sampling area was mainly influenced by two main sources: (1) Ba, Cu, Pb, Cr and Zn were mainly derived from industrial sources, which combined with coal combustion as well as traffic factor. The mobility sequence based on the sum of the BCR sequential extraction stages was: Pb (53.79 %) > Zn (51.78 %) > Cu (50.96 %) > Ba (42.59 %) > Cr (18.47 %). Pb was the metal predominantly associated (~46.86 %) with the form bound to Fe/Mn oxides, and the highest percentage of Zn was exchangeable and carbonate-bound fraction. Cu was present mainly in organic fraction, while the residual fraction was the most dominant solid phase pool of Cr (~81.53 %) and Ba (~57.41 %). (2) Mn, V, Co, As and Ni in the study area were consistently from natural sources. The analysis of enrichment factors indicated that urban soils in Weinan City were classified as having significant enrichment by Ba, Cu, Pb, Cr and Zn. The overall results proposed the future tactics for Weinan environment quality control on a local scale that concerned not only the levels of risky, but also the industrial emission abatement techniques as well as urban setting.  相似文献   

3.
Guiyang is a famous tourist city located in southwestern China. In this study, dust from eleven residential areas, seven city squares, and nine schools was collected to measure the heavy metal levels and evaluate its risk. At each sampling site, 4-5 sub-samples were taken as a bulk sample. All samples were air-dried, ground, passed through a 0.105 mm nylon sieve, digested with HNO3-HC104 to determine the concentrations of Cd, Cu, Ni, Pb and Zn by ICP-MS, and digested with 1:1 aqua regia to determine As by AFS. The results show that the concentrations of As, Cd, Cu, Ni, Pb and Zn in dust of Guiyang City follow normal distribution with means of 16.1, 1.54, 138, 47.7, 129 and 479 mg/kg, respectively. Levels of As, Cd, Cu, Ni, Pb and Zn exceed the background level of soil in Guizhou Province by 33%, 96%, 100%, 78%, 96%, and 100%, respectively. Cd, Cu, Pb and Zn are heavily accumu- lated in dust of living areas with accumulation factors of 4.10, 5.12, 4.12 and 5.51, respectively. City square pos- sesses the highest geometric means of As, Cd, Cu, Pb, and Zn. The risks of heavy metal exposure to teenagers are not obvious and in an order ofAs〉Pb〉Cu〉Ni〉Zn (Cd).  相似文献   

4.
为探究绿洲城市道路积尘重金属污染风险,在新疆库尔勒市采集54个代表性道路积尘样品,分析其中Hg、Cd、As、Pb、Cr和Cu等6种元素含量,基于GIS技术与地学统计法,采用污染负荷指数法和US EPA健康风险评价模型,对道路积尘中重金属污染及潜在健康风险进行评价。结果表明:库尔勒市道路积尘中Hg、Cd、As、Pb和Cu等元素含量的平均值均小于土壤环境质量—建设用地土壤污染风险管控标准(GB 36600—2018)中的筛选值,但Cr元素含量平均值为相应筛选值的9.90倍。污染评价结果表明,研究区道路积尘中Cr呈现重度污染,Hg、Cd、As、Pb和Cu呈无污染。道路积尘中重金属元素的污染负荷指数介于0.0142~0.0522,平均值为0.0266,处于无污染水平。从道路积尘重金属污染空间分布格局来看,库尔勒市东北部和北部区域出现污染高值区。健康风险评估结果表明,经手-口摄入途径是库尔勒市道路积尘重金属日均暴露量及健康风险的主要途径,儿童受到的健康风险高于成人。库尔勒市道路积尘中Hg、Cd、As、Pb、Cr与Cu等元素的非致癌风险及致癌风险处于安全范围内,As对非致癌风险的贡献最大,Cr对致癌风险的贡献最大。  相似文献   

5.
Human activities have progressively increased in recent years. Consequently, significant environment deterioration resulted. Soils have a particularly varied vulnerability to heavy metal pollution, especially in the vicinity of industrial areas. Heavy metal contamination of soil may induce risks and hazards to humans and the ecosystem, while toxic metals in soil can severely inhibit the biodegradation of organic contaminants. This paper is focused on human health risk assessment from extremely contaminated soil with heavy metals, mainly with carcinogenic elements. The study refers to an agricultural area in the vicinity of an old metallurgical processing industrial facility. The contaminants evaluated in the present paper are beryllium (Be), cadmium (Cd), chromium (Cr), nickel (Ni) and lead (Pb). Contamination level is pointed out through laboratory analysis results of soil samples taken from 0–0.2 m, 0.2–0.4 m soil layers and up to 2.1 m soil depth. Some heavy metal concentrations (Cd, Cr and Pb) exceed the intervention thresholds for sensitive areas, as they are stipulated in the national regulation in Romania. The identified average concentration levels of Cd, CrVI and Pb in the first layer of the investigated land are 23.83, 7.71 and 704.22 mg/kgd.w, respectively. The results show that the potential risk of human health is relevant (higher than the acceptable one after World Health Organization) and a possible solution for the remediation should become a major concern for the investigated area.  相似文献   

6.
The aim of the present study was to assess the levels of heavy metal contamination in soils and its effects on human health in the northern Telangana, India. Soil samples were collected randomly from 15 sampling stations located in the northern Telangana and analyzed for arsenic (As), chromium (Cr), copper (Cu), zinc (Zn), nickel (Ni), and lead (Pb). The index of geo-accumulation (Igeo), ecological risk index (ERI), hazard quotient (HQ), hazard index (HI), cancer risk (CR), and lifetime cancer risk (LCR) were used to estimate the heavy metal pollution and its consequence to human health. Results indicated that As, Zn, Cu, Pb, and Ni were within recommended limits, while Cr concentration (60 mg/kg) exceeded the maximum recommended limit in 93% of soil samples. The HI values of Cu, Ni, and Zn were all less than the recommended limit of HI?=?1, indicating that there were no non-carcinogenic risks from these elements for children and adults. LCR for As and Cr concentrations of the soils was found higher than the acceptable threshold value of 1.0E?04, indicating significant carcinogenic risk due to higher concentration of these metals in the soils of the study region. The chronic daily intake of the metals is of major concern as their cumulative effect could result in several health complications of children and adults in the region. Therefore, necessary precautions should be taken to eradicate the health risk in the study region.  相似文献   

7.
Heavy metal contamination in polished rice grains collected from Hunan Province, Southern China, has been investigated in this study. The concentrations of Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn in rice were determined by microwave-assisted digestion and inductively coupled plasma-mass spectrometry method. In order to evaluate the correlations among heavy metals, statistical analyses including Pearson’s correlation analysis, principal component analysis and hierarchical cluster analysis were performed. Three distinct clusters were classified by the hierarchical cluster analysis approach. In the principal component analysis, three principle components were extracted with the eigenvalue >1.0. The spatial distribution of heavy metals was predicted by the ordinary kriging interpolation. Cu and Ni with similar distribution patterns could be primarily originated from geogenic source. The hot-spot areas in the distribution patterns of Mn, Pb and Zn could be mainly related to mining and smelting activities. Cd and Co might be derived from the combination of natural existence and anthropogenic sources. The chronic non-carcinogenic effect on local rice consumers from exposure to heavy metals was estimated by the target hazard quotient. The average target hazard quotient values of Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn were 1.754, 0.367, 0.003, 0.544, 0.165, 0.775, 0.228, 0.049 and 0.481, respectively. The target hazard quotient value of Cd exceeded the threshold value suggesting high potential health risk to residents in Hunan Province through rice consumption.  相似文献   

8.
重庆秀山西北部农田土壤重金属生态健康风险评价   总被引:1,自引:0,他引:1       下载免费PDF全文
为了解矿业活动较多的重庆秀山县西北部农田土壤重金属污染状况,采集了表层土壤样品386件,分析测定As、Cd、Cr、Cu、Hg、Ni、Pb、Zn、Mn等9种重金属元素,采用地累积指数法、潜在生态危害指数法和健康风险评估模型,对该区土壤重金属污染程度、生态风险和健康风险进行评估。结果表明,该区农田土壤9种重金属平均值都高于重庆市土壤背景值,呈现不同程度的积累;Cd、Hg明显超出国家农用地土壤污染风险筛选值,超标率分别为75.2%和44.6%。土壤中Hg污染较严重,处于中污染或重污染状态,Mn、As、Cd总体呈轻污染,其余重金属基本无污染。生态风险评价显示,Hg、Cd为主要生态危害元素,Hg以强、很强和极强风险为主,Cd以中等风险为主。人体健康风险评价显示,儿童更易受到重金属污染威胁,重金属对成人不具有非致癌风险,对儿童具有非致癌风险,As、Cr是主要非致癌因子;成人致癌风险在可接受范围内,个别土壤样对儿童具有致癌风险,As致癌风险最大。  相似文献   

9.
【研究目的】 山东是中国矿业与农业发达省份、沂南县东部堪称其代表。掌握当地土壤重金属污染及对生态健康风险的影响对生态环境保护有重要意义。【研究方法】 系统调查分析表层土壤样品4779件,获取Hg、Cd、Cr、Ni、As、Cu、Pb、Zn等元素分布最新数据,并用地累积指数法、潜在生态危害指数法和健康风险评估模型等评价研究了生态健康风险及相关问题。【研究结果】 (1)上述重金属均量与临沂市土壤背景值大致相当,仅Hg略偏高且变异系数最大,指示当地土壤Hg受人类活动影响明显。与国家农用地土壤污染风险筛选值相比,Cu、Cr、Ni是相对主要超标元素,As、Cd、Cu、Pb超标倍数大,它们均可能会产生生态健康危害;(2)据地累积指数平均值,该区土壤总体无污染,据单样值,Hg、Cu污染最突出,其他6元素污染较轻;(3)生态风险方面,Hg、Cd是主要生态风险元素,As、Cu次之。高生态风险区为铜井镇南东部、界湖镇西北金场附近以及县城西部主城区3个片区;(4)人体健康风险方面,重金属对成人不具有非致癌风险和致癌风险,极个别地区对儿童具有非致癌风险和致癌风险,Cr、As是主要非致癌风险元素,As致癌风险最大。【结论】 沂南县东部土壤质量总体较好,铜井镇南东部、界湖镇西北金场附近以及县城西部主城区3个片区为高生态风险区,Hg、Cr、As为主要生态健康风险元素。  相似文献   

10.
The total concentrations and oral bioaccessibility of heavy metals in surface-exposed lawn soils from 28 urban parks in Guangzhou were investigated, and the health risks posed to humans were evaluated. The descending order of total heavy metal concentrations was Fe > Mn > Pb > Zn > Cu > Cr > Ni > Cd, but Cd showed the highest percentage bioaccessibility (75.96%). Principal component analysis showed that Grouped Cd, Pb, Cr, Ni, Cu and Zn, and grouped Cr and Mn could be controlled two different types of human sources. Whereas, Ni and Fe were controlled by both anthropogenic and natural sources. The carcinogenic risk probabilities for Pb and Cr to children and adults were under the acceptable level (<1 × 10−4). Hazard Quotient value for each metal and Hazard Index values for all metals studied indicated no significant risk of non-carcinogenic effects to children and adults in Guangzhou urban park soils.  相似文献   

11.
Heavy metal pollution of soils has become a major concern in China as a consequence of rapid urbanization and industrialization in recent years. However, the evaluation on soil heavy metal pollution in Shenyang, the largest heavy industrial base city in China, has not yet been conducted. In this study, accumulation, chemical speciation, and vertical distribution Cu, Zn, Pb and Cd in soils were studied and pollution condition was assessed in Tiexi Industrial District of Shenyang, the largest and oldest industrial zone in Northeastern China. The results showed that in topsoil, the average concentration of total Cu, Zn, Pb, and Cd was 209.06, 599.92, 470.19 and 8.59 mg kg−1, respectively, much higher than the national threshold limit. The values of pollution index and integrated pollution index showed that the pollution level was Cd > Cu > Zn > Pb, and Cd, Cu and Zn belong to heavy pollution level. The residual, Fe and Mn oxide-bound, and organic-bound species accounted for about 90%, while carbonate-bound and exchangeable species accounted for about 10%. This study indicates that the soils in the industrial zone were widely and extremely polluted by multi-heavy metals as a result of long-term industrial activities.  相似文献   

12.
周墨  唐志敏  张明  梁晓红  湛龙 《地质通报》2021,40(12):2149-2158
为研究江西省赣州市主要耕作区土壤-水稻系统中重金属的含量及人体健康风险,系统采集了赣州市主要耕作区水稻及根系土样品954组,分析了水稻籽实和根系土中Cd、Cr、Hg和Pb的含量及根系土pH值,利用美国环保署(USEPA)推荐的健康风险评估模型进行健康风险评价。研究表明:随着土壤pH值升高,水稻籽实中各重金属元素超标率逐渐降低,其中Cd是土壤和水稻中最主要的污染元素;在土壤-水稻系统中,Cd的迁移能力和土壤pH值是决定水稻籽实重金属是否超标的主要因素。健康风险评价结果显示,研究区重金属总非致癌风险指数HI < 1,说明几乎不存在由食用水稻得慢性疾病的风险。致癌健康风险值为7.10×10-3,Cd是最主要的致癌风险因子,Cr和Pb致癌风险属于可接受范围。基于行政单元的人体健康风险区划表明,上犹县、兴国县和南康区存在一定的风险,虽然重金属没有出现显著超标,但是有关部门应对水稻及根系土中Cd元素含量予以重视,将Cd元素作为赣州市土壤重金属污染防控工作中优先控制的重金属。  相似文献   

13.
14.
The urban environment quality is of vital importance as the majority of people now live in cities. Due to the continuous urbanization and industrialization with rapidly increasing economy in China, metals are continuously emitted into soils, imposing a great threat on human health. Urban soils might be affected by industrial activities, transport, agricultural practice, and waste disposal. An extensive survey was conducted in the highly urbanized Zhangzhou City (Fujian Province, China) using a systematic sampling strategy. Concentrations of Hg, Cd, Pb, Zn, Cu, As, Cr and Ni were measured on 108 topsoil samples collected from parks (0-15 cm), residential areas and suburban agricultural soils. Statistic approach (cluster analysis) was adopted for identification of natural and anthropogenic influence on heavy metal contents. The maps of metal concentrations in surface soils were made based on geographical information system (GIS) data. All of these aim at assessing the distribution of these heavy metals in the urban environment.  相似文献   

15.
Heavy metals in soils are of great environmental concern, in order to evaluate heavy metal contents and their relationships in the surface soil of industrial area of Baoji city, and also to investigate their influence on the soils. Soil samples were collected from 50 sites, and the concentration of Pb, Zn, Cu, Cr, Ni heavy metals and the contents of characteristics in soil from industrial area of Baoji city were determined with X-ray fluorescence method. The concentrations of Pb, Zn, Cu, Cr and Ni in the investigated soils reached the amount of 2,682.00–76,979.42, 169.30–8,288.58, 62.24–242.36, 91.96–110.54 and 36.14–179.28 mg kg−1, respectively. The major element Pb contents of the topsoils were determined. to highlight the influence of ‘anthropic’ features on the heavy metal concentrations and their distributions. To compare, all values of elements were much higher than those of unpolluted soils in the middle of Shaanxi province that average 16.0–26.5, 67.1–120.0, 17.8–57.0, 46.9–65.6 and 24.7–34.6 mg kg−1 for Pb, Zn, Cu, Cr and Ni, respectively. An ensemble of basic and relativity analysis was performed to reduce the precipitate of Pb in soil was extremely high and greatly relativity with other elements. Meanwhile, Pb, Zn, Cu, Cr, Ni heavy metals were typical elements of anthropic activities sources, so it was easy to infer to the tracers of anthropic pollutions from the factorial analysis, which was coming from the storage battery manufactory pollutions. The pollutant distributions were constructed for the urban area which identified storage battery manufactory soot precipitate as the main source of diffuse pollution and also showed the contribution of the topsoils of industrial area of Baoji city as the source point of pollution. Consequently, the impact of heavy metals on soil was proposed and discussed. These results highlight the need for instituting a systematic and continuous monitoring of heavy metals and other forms of pollutants in Baoji city to ensure that pollution does not become a serious problem in the future.  相似文献   

16.
17.
Distribution of AVS (acid volatile sulfide)-SEM (simultaneously extracted metals), transformation mechanism and risk assessment of heavy metals in the Nanhai Lake in Baotou City were discussed in this work. The results showed that the content of heavy metals in sediments increased due to the water pumped from the Yellow River, domestic sewage, municipal runoff and yacht waste release. Increasing water depth, domestic sewage influx and hydrophyte booming made the AVS level higher in downstream than upstream. The vertical distribution of AVS is characterized as multiple-peak in the sediment cores from the studied lake. Comparatively, the control abilities of the carbonate and sulfate to the heavy metals were five orders of magnitude lower than the sulfide phase. Therefore, AVS was the key factor controlling the precipitation of heavy metals in the Nanhai Lake. The ratio of SEM/AVS in the sediments, the acute sediment quality criteria and the chronic sediment quality criteria indicated that no acute toxicity for benthic organisms can be expected, and the AVS plays an important role in controlling the bioavailability and toxicity of heavy metals in the Nanhai Lake.  相似文献   

18.
In this study, the concentrations of seven heavy metals (As, Cd, Cu, Cr, Ni, Pb, and Zn) in the water, sediments, and nine tissues of eight fish species in Chaohu Lake were detected. And the ecological risk of sediments and food safety caused by heavy metals were evaluated. The mean concentrations of metals (As: 8.21, Cd: 0.58, Cu: 2.56, Cr: 0.50, Ni: 26.47, Pb: 3.51, Zn: 23.05 μg/L) in the water were found lower than the threshold values for the first-grade water quality (China environmental quality standards for surface water). The mean concentrations of Cr, Cu, Ni, Pb, and Zn in the sediments were 41.79, 19.31, 7.61, 7.09, and 102.85 μg/g, respectively, while the concentration of As and Cd was recorded below the detection limit. The ecological risk assessment demonstrated that metals in the sediments posed low ecological risk. The bioaccumulation of metals in fish tissues showed relatively high concentrations in liver, brain, kidney, and intestines while low levels of metals were detected in muscle. A fascinating phenomenon was firstly noticed that all metals highly existed in fish brain and exhibited an especially significant positive correlation with the metal concentrations in sediment, indicating a health risk for Chinese due to their consumption favor of fish head.  相似文献   

19.
20.
Concentration and distribution of heavy metals (Cd, Cu, Pb and Zn) in urban soils of Hangzhou, China, were measured based on different land uses. The contamination degree of heavy metals was assessed on the basis of pollution index (PI), integrated pollution index (IPI) and geoaccumulation index (I geo). The 0.1 mol l−1 HCl extraction procedure and gastric juice simulation test (GJST) were used to evaluate the potential mobility and environmental risk of heavy metals in urban soils. The average concentration of Cd, Cu, Pb and Zn in urban soils was measured at 1.2 (with a range of 0.7–4.6), 52.0 (7.4–177.3), 88.2 (15.0–492.1) and 206.9 (19.3–1,249.2) mg kg−1, respectively. The degree of contamination increased in the order of industrial area (IA) > roadside (RS) > residential and commercial areas (RC) > public park and green areas (PG). The PIs for heavy metals indicated that there is a considerable Cd, Cu, Pb and Zn pollution, which originate from traffic and industrial activities. The IPI of these four metals ranged from 1.6 to 11.8 with a mean of 3.5, with the highest IPI in the industrial area. The assessment results of I geo also supported that urban soil were moderately contaminated with Cd and to a lesser extent also with Cu, Pb and Zn. The IP and I geo values reveal the pollution degree of heavy metal was the order of Cd > Pb > Zn ≈ Cu. It was shown that mobility and bioavailability of the heavy metals in urban soils increased in the order of Cd > Cu > Zn ≈ Pb. Owing to high mobility of Cd and Cu in the urban soils, further investigations are needed to understand their effect on the urban environment and human health. It is concluded that industrial activities and emissions from vehicles may be the major source of heavy metals in urban contamination. Results of this study present a rough guide about the distribution and potential environmental and health risk of heavy metals in the urban soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号