首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Landslides are triggered by earthquakes, volcanoes, floods, and heavy continuous rainfall. For most types of slope failure, soil moisture plays a critical role because increased pore water pressure reduces the soil strength and increases stress. However, in-situ soil moisture profiles are rarely measured. To establish the soil moisture and landslide relationship, a qualitative comparison among soil moisture derived from AMSR-E, precipitation from TRMM and major landslide events was conducted. This study shows that it is possible to estimate antecedent soil moisture conditions using AMSR-E and TRMM satellite data in landslide prone areas. AMSR-E data show distinct annual patterns of soil moisture that reflect observed rainfall patterns from TRMM. Results also show enhanced AMSR-E soil moisture and TRMM rainfall prior to major landslide events in landslide prone regions of California, U.S.; Leyte, Philippines; and Dhading, Nepal.  相似文献   

2.
黄土高原区域尺度土壤水分空间变异性   总被引:24,自引:0,他引:24       下载免费PDF全文
土壤水分是黄土高原植物生长发育和生态环境重建的主要限制因子。为揭示黄土高原区域尺度深层土壤水分的空间变异性,在黄土高原共布点234个,采集深剖面土壤水分样品12198个。采用经典统计和地统计学相结合的方法系统分析了土壤水分的分布规律、变异特征及影响因素。结果表明:①黄土高原地区土壤水分在水平方向上表现出由东南向西北递减,在垂直方向上(0~500cm)表现出先减小后增加的分布特征;②土地利用对区域尺度土壤水分的数量及垂直分布规律具有显著影响;③土壤水分在不同土层深度(0~500cm)的变异系数、空间异质比等参数的垂直分布均呈先减小后增加趋势,这些参数在表达土壤水分变异的效果上具有一致性。相关结果对黄土高原区域尺度水土过程调控、生态水文过程研究具有一定参考价值。  相似文献   

3.
4.
黄土高原退耕坡地土壤水分空间变异性研究   总被引:32,自引:1,他引:32       下载免费PDF全文
以神木生态观测站为例,利用经典统计学方法对黄土高原退耕坡地土壤水分在空间三维不同方向和不同位置的空间变异性进行了研究,并对空间变异的尺度和时间依赖性等问题进行了探讨,以便为坡地水分管理和植被恢复提供参考。研究结果表明土壤水分在垂直方向和水平方向(垂直于坡长方向)的平均变异程度为弱变异;而在东西方向(坡长方向)、二维平面和三维空间上为中等变异性;土壤水分沿坡长方向从坡顶到坡脚表现出先减小后增大的趋势,且在各坡位变异程度不一,呈现出变异程度为坡上>坡中>坡下的趋势;土壤水分沿南北方向表现为阴坡>山脊>阳坡的明显趋势,其变异程度为阳坡>阴坡;在40~200 cm土层深度内,土壤水分在垂直方向表现出先减小后增大的趋势,且在各土层的变异程度与各层平均土壤水分成明显的正相关。  相似文献   

5.
Soil organic carbon (SOC) is one of the key components for assessing soil quality. Meanwhile, the changes in the stocks SOC may have large potential impact on global climate. It is increasingly important to estimate the SOC stock precisely and to investigate its variability. In this study, Yangjuangou watershed was selected to investigate the SOC distribution under different land uses. We found that SOC concentration decreased with increasing soil depth under all land uses and was significantly different across the vertical soil profile (P < 0.01). However, considering effect of land use on SOC, it is only significant (P < 0.01) in the topsoil (0-5 cm) layer. This indicated that land use has a large effect on the stocks of SOC in the surface soil. The stratification ratio of SOC > 1.2 may mean that soil quality is improving. The order of the SOC density (0-30 cm) under different land uses is forestland > orchard land > grassland > immature forestland > terraced cropland. The SOC stock is found to be as large as 2.67 × 103 t (0-30 cm) in this watershed. Considering time effect of restoration, the slope cropland just abandoned is more efficient for SOC accumulation than trees planted in the semi-arid hilly loess area.  相似文献   

6.
为了研究青藏高原暖季土壤水分对冻土区地表热状况的影响,选取2010-2012年5-9月在青藏高原唐古拉气象场获取的气象及其活动层数据,分析了表层土壤水分对地表反照率以及土壤热参数的影响.结果表明:唐古拉站暖季表层土壤含水量集中在0.15~0.27之间,地表反照率值集中在0.14~0.24之间,日平均土壤热导率的波动范围在0.9~2.0 W·m-1·K-1之间,土壤热容的波动范围主要集中在0.8×106~1.8×106 J·m-3·K-1之间,而土壤热扩散率则主要集中在0.6×10-6~2.2×10-6 m2·s-1之间.土壤水分对地表反照率影响较大,随着土壤水分的增长,地表反照率呈现出明显的减小趋势.土壤水分对地表反照率的影响还受到植被生长周期的影响,土壤水分和地表反照率之间的关系在植被枯萎期和生长期有明显的差异性.唐古拉地区土壤热参数也明显受到土壤水分变化的影响,随着土壤水分的增加,土壤热导率、热容和热扩散率都为增大趋势,但是土壤水分对土壤热导率的影响较为显著,而对土壤热扩散率的影响则不显著.  相似文献   

7.
8.
Distribution patterns of suspended sediments and sea surface temperatures in, Mobile Bay were derived from algorithms using digital data from the visible, near infrared, and infrared channels of the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-TIROS-N satellite. Closely spaced AVHRR scenes for January 20, 24, and 29, 1982, were compared with available environmental information taken during the same period. A complex interaction between river discharge, winds, and astronomical tides controlled the distribution patterns of suspended sediments. These same variables, coupled with air temperatures, also governed the distribution patterns of sea surface temperatures.  相似文献   

9.
青藏高原春季土壤湿度与中国东部夏季降水之间的关系   总被引:5,自引:6,他引:5  
应用SVD方法分析了青藏高原地区春季土壤湿度异常和中国东部地区夏季降水之间的关系.结果表明,青藏高原不同地区、不同深度的土壤湿度与中国东部夏季降水的相关特征不同.青藏高原东北部和西北部0~10cm深度(表层)土壤湿度与中国华北、东北地区的夏季降水为正相关,而与华南地区为负相关;青藏高原中部及南部0~10cm表层土壤湿度与华北地区夏季的降水有较强负相关;青藏高原北部及东部10~200cm深度(深层)土壤湿度与华北、东北地区的夏季降水为负相关,而与华南地区夏季降水为正相关;青藏高原中东部10~200cm深层土壤湿度与长江中下游和华南大部分地区夏季降水呈负相关关系.即青藏高原不同地区、不同深度层春季土壤湿度的变化,对中国东部地区的夏季降水具有显著影响.  相似文献   

10.
It is important to understand how groundwater recharge responds to precipitation variability in space and time, especially in those areas such as Yanqing Basin (China), where groundwater represents the sole water resource. A simple soil-water balance method is applied for spatio-temporal simulation of groundwater recharge in Yanqing Basin from 1981 to 2000. It was implemented on a monthly time step considering the effects of land use and soil texture. The area-average recharge associated with various land uses and soil textures was then compared with zonal analysis using a geographic information system (GIS). The main findings include: (1) the variation of groundwater recharge follows precipitation changes, either at yearly or seasonal intervals, (2) land use plays a more influential role in groundwater recharge than soil texture in this area, and (3) the water table quickly rises in response to recharge in the shallow parts of the aquifer, while there is a delay of 0.5–1.0?years where the groundwater level is at depth 4–10?m. The application demonstrates how spatio-temporal analysis can be utilized for groundwater-recharge estimation through distributed modeling and GIS.  相似文献   

11.
Continuous observation data collected over the year 2008 at Astronomical Observatory, Thiruvananthapuram in south Kerala (76°59′E longitude and 8°30′N latitude) are used to study the diurnal, monthly and seasonal soil moisture variations. The effect of rainfall on diurnal and seasonal soil moisture is discussed. We have investigated relationships of soil moisture with surface albedo and soil thermal diffusivity. The diurnal variation of surface albedo appears as a U-shaped curve on sunny days. Surface albedo decreases with the increase of solar elevation angle, and it tends to be a constant when solar elevation angle is greater than 40°. So the daily average surface albedo was calculated using the data when solar elevation angle is greater than 40°. The results indicate that the mean daily surface albedo decreases with increases in soil moisture content, showing a typical exponential relation between the surface albedo and the soil moisture. Soil thermal diffusivity increases firstly and then decreases with the increase of soil moisture.  相似文献   

12.
黄河流域连接了青藏高原、黄土高原、内蒙古高原、华北平原,是我国重要的生态屏障。开展黄河流域植被时空变化及其与土壤湿度相关性分析,定量揭示土壤湿度对植被生长的影响,有利于干旱监测及生态环境保护。利用MOD13Q1 NDVI产品和全球陆面数据同化系统(global land data assimilation system,GLDAS)土壤湿度数据,采用Sen+Mann-Kendall趋势检验法和相关性分析法,分析了2000—2020年黄河流域植被时空变化特征及土地利用变化对植被生长的影响,并在流域尺度探索了生长季植被归一化植被指数(NDVI)与不同深度土壤湿度的相关性。结果表明:(1)研究区植被NDVI在空间上呈现“南高北低”的特征,沿黄河径流方向,上游右岸区域植被生长状况明显好于左岸,中下游两岸区域植被生长状况无明显差异。2000—2020年NDVI整体呈增加趋势,从2000年的0.356增加到2020年的0.435。(2)不同用地类型的NDVI由大到小依次为:林地>耕地>草地>未利用地,不同季节NDVI由大到小依次为:夏季>秋季>春季>冬季。(3)研究区大部分区域植被生长状况处于改善和稳定的状态,小部分区域处于退化状态,退化区域的主要原因是草地退化、城市扩张导致耕地退化及耕地转为建设用地。(4)NDVI与不同深度的土壤湿度(0~10 cm、10~40 cm、40~100 cm、100~200 cm)整体呈正相关趋势,相关系数分别为0.535,0.647,0.681,0.619;不同土地利用类型的NDVI与不同深度土壤湿度的相关性有差异,耕地、草地和未利用地NDVI与10~40 cm处的土壤湿度正相关面积最大,而林地NDVI与40~100 cm处的土壤湿度正相关面积最大。相关研究成果可为黄河流域高质量发展提供科学依据。  相似文献   

13.
Soil pH plays an important role in biogeochemical processes in soils. The spatial distribution of soil pH provides basic and useful information relevant to soil management and agricultural production. To obtain an accurate distribution map of soil pH on the Loess Plateau of China, 382 sampling sites were investigated throughout the region and four interpolation methods, i.e., inverse distance weighting (IDW), splines, ordinary kriging, and cokriging, were applied to produce a continuous soil pH surface. In the study region, soil pH values ranged from 6.06 to 10.76, with a mean of 8.49 and a median of 8.48. Land use type had a significant effect (p < 0.01) on soil pH; grassland soils had higher pHs than cropland and forestland soils. From a regional perspective, soil pH showed weak variation and strong spatial dependence, indicated by the low values of the coefficient of variation (0.05) and the nugget-to-sill ratios (<0.25). Indices of cross-validation, i.e., average error, mean absolute error, root mean square error, and model efficiency coefficient were used to compare the performance of the four different interpolation methods. Kriging methods interpolated more accurately than IDW and splines. Cokriging performed better than ordinary kriging and the accuracy was improved using soil organic carbon as an auxiliary variable. Regional distribution maps of soil pH were produced. The southeastern part of the region had relatively low soil pH values, probably due to higher precipitation, leaching, and higher soil organic matter contents. Areas of high soil pH were located in the north of the central part of the region, possibly associated with the salinization of sandy soils under inappropriate irrigation practices in an arid climate. Map accuracy could be further improved using new methods and incorporating other auxiliary variables, such as precipitation, elevation, terrain attributes, and vegetation types.  相似文献   

14.
In soil and water conservation research, vegetation is considered to be a primary factor affecting soil erosion. Many studies focus on the relationship between soil erosion and a given attribute of vegetation. Few studies have attempted a comprehensive analysis of vegetation attributes. Thus, the aim of this study is to explain the relationship between vegetation and soil erosion in detail. We studied 104 vegetation plots and 104 soil samples in the Yangjuangou catchment, Loess Plateau, Shaanxi Province, China. According to a correlation analysis of the vegetation attributes and soil 137Cs inventories, vegetation cover exerts a positive effect on soil erosion. In addition, vegetation aggregation increases with increasing soil loss. During this period of study, plant diversity can have different relationships with soil erosion according to the vegetation pattern. When vegetation distribution is relatively homogeneous, plant cover decreases with increasing diversity, and the soil loss increases. When vegetation pattern distributes between homogeneous and heterogeneous, the relationship between vegetation diversity and soil erosion is not obvious. When vegetation distribution is in a heterogeneous pattern, cover increases with increasing diversity, and soil loss decreases.  相似文献   

15.
Soil moisture variability and controls are little known in large gullies of the Loess Plateau which represent complex topography with steep slopes. This study analyzed spatial–temporal variability of soil moisture at the 0–20, 20–40, 40–60, and 60–80 cm depths in a large gully of the Loess Plateau based on root-zone soil moisture measurements for 3 years (2009–2011). The result showed that mean soil moisture, standard deviation (SD), and coefficient of variation, were highly dependent on depth; the highest mean value was observed at the 20–40 cm depth, while the lowest one was at the 0–20 cm depth. The SD increased with mean soil moisture for various depths as soil moisture was relatively wet; however, a transition that SD decreased with mean soil moisture occurred when soil moisture was relatively dry. Positive correlations exist between moisture contents over different depths, and that the relationships of the neighboring layers are relatively high with R 2 from 0.70 to 0.76. Correlation analysis, principle component analysis, and stepwise multiple regression analysis showed that soil particle size distribution and topography (slope and elevation) were the main environmental factors controlling soil moisture variability in the large gully.  相似文献   

16.
为揭示科尔沁沙地典型区地表参数和蒸散发的时空分布以及变化特征,采用Landsat-7和气象数据,并结合METRIC(Mapping Evapotranspiration at high Resolution with Internalized Calibration)模型,分析了研究区净辐射(Rn)和蒸散发(ET)的时空变化、不同土地覆被类型ET特征及其影响因素。结果表明:(1)研究区典型土地覆被沙丘和草甸的Rn和ET估算值与涡度相关实测值拟合结果均良好,说明METRIC模型可以为研究区提供合理的ET估算;(2)研究区下垫面Rn和ET的时空分布情况为:各年Rn和ET在年内变化趋势相同,空间上不同土地覆被类型中水体的Rn和ET最大,农田和草甸次之,沙丘最小;(3)沙丘的CV值大于农田与草甸,表明年际间沙丘的ET波动较大,农田和草甸相对稳定,ET年际变化主要受气象因素的影响。  相似文献   

17.
Soil conservation measures undertaken to address land degradation can alter the hydrologic cycle by changing partitioning of water fluxes at the land surface. While effects on runoff are well documented, impacts of soil conservation activities on fluxes to groundwater are poorly understood. The goal of this study was to examine fluxes to groundwater in a semi-arid area of China’s Loess Plateau that has been subject to extensive soil conservation activities. Unsaturated zone pore-water pressures and concentrations of chloride show that impacts on deep drainage differ between ecological and structural soil conservation approaches. High matric potentials and low chloride beneath cultivated terrace and gulley sites are consistent with deep drainage occurring at these sites. Estimated recharge rates for dryland cultivated upland sites were approximately 55??0?mm/year (11??8% of mean annual rainfall) based upon chloride mass balance. In contrast, results suggest that mature tree and shrub plantations prevent deep drainage. Stable isotope signatures of unsaturated-zone moisture and groundwater indicate that focused infiltration through gullies and other topographic lows is likely to be the primary recharge mechanism. The results of this study highlight the potential for inadvertent effects of some soil conservation approaches on regional water resources.  相似文献   

18.

地球关键带是维系地球生态系统功能和人类生存的关键区域,土壤水分是黄土高原关键带植被恢复与生态环境重建的关键因子之一。为探明黄土关键带深剖面土壤水分变化过程并进行模型模拟,对黄土高原长武塬区苹果地和小麦地的深层土壤水分(0~18m)进行监测(2011~2013年,共选择11个不同日期进行深剖面土壤水分监测),在此基础上,采用Hydrus-1D进行模型模拟,分析了深剖面土壤水分动态及其模拟效果的主控因素。结果表明:1)苹果地(6~18m)、小麦地(3~18m)的深层土壤含水量随时间变化很小;0~1m的土壤含水量随时间变化较大;不同土地利用类型会产生不同的土壤水分过程及运动机制;在根系及近根系区,土壤含水量变化受根系分布格局及土壤质地共同影响,接近地表时还同时受降雨、蒸发等上边界条件影响;在非根系区,土壤含水量的主要影响因素为土壤质地;2)利用前6次的实测数据进行调参和校正,后5次实测数据进行预测效果检验,取得了较好的深剖面土壤水分模拟效果——苹果地的决定系数、相对误差绝对值、均方根误差分别介于0.5923~0.7637、3.33%~5.20%、0.0149~0.0168cm3/cm3 之间,小麦地分别介于0.2414~0.6822、2.64%~4.58%、0.0177~0.0247cm3/cm3 之间;3)叶面积指数、根系深度与分布是影响深剖面土壤水分动态模拟效果的主控因素。相关结果可为黄土关键带深剖面土壤水分模拟与调控提供参考。

  相似文献   

19.
20.
Loess occurs widely in Northwestern China, covering Neogene clay and other sedimentary units that overlie the bedrock. The Neogene clays of the Baoji Region of Shaanxi Province, north China, including the eolian Hipparion and paleo-Sanmen Lake fluvial deposits, are typical clays of the southern Chinese Loess Plateau. These clays are also sensitive key strata controlling the development of large-scale landslides along the slope of the loess tableland surrounding the Guanzhong Basin. To investigate the Neogene clay types and landslides in the region, soil samples were tested and the macro- and micro-structures of the clay strata were analyzed. Comprehensive analysis methods, including the pipette method and fine X-ray diffraction, were applied to quantitatively analyze the sample composition and determine the clay mineral types. The Neogene clays are mainly composed of illite and montmorillonite mixed-layer minerals. On the Williams’ discrimination diagram of swelling potential, both types of clay are medium to strongly expansive soil. Two case studies illustrate that rainfall reduces the shear strength of the Neogene clay and raises the groundwater level. Rainfall has gradually destroyed the structure of the Neogene clay, transforming it to sliding belt soil. The sliding belt lies mainly within the Neogene clay layers, significantly affecting the occurrence and characteristics of landslides in Baoji. The rise in groundwater level and weakening of the shear strength of the Neogene clay are important factors in the occurrence of landslides. The long-term strength is a key factor affecting the development of loess landslides along the loess tableland in Baoji.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号