首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Metamorphosed mafic rocks probably corresponding lo ancient basaltic ashes (meta-tuffs) have been discovered in Kastern Vanoise. These rocks are interbedded within the Maastrichtian-paleocene formations of the Grande Motte unit. Their geochemícal characteristics are consistent with a within-plate affinity. A remote origin of these materials, as airfall ashes, is possible. These volcanic rocks arc coeval with eruptive alkaline products known is the Southern Alps. They have formed in a local extensional and/or strike-slip environment involving the internal Alpine realms around the Cretaceous-Tertiary boudary.  相似文献   

2.
In the Alps, interglacial and interstadial deposits are rarely preserved due to the intense erosive effect of glaciers in the valleys. Fortunately, some outcrops and cored sequences located in the field area ranging from Lyon to Evian provided sedimentary profiles datable by palynostratigraphy in a highly documented geomorphological context. An overview of several palynological sequences studied in this large area is proposed, and their position in a general chronostratigraphical pattern is discussed. Particular attention is paid to palynostratigraphical evidence whose relevance is tested with systematic comparisons with long reference European pollen sequences spanning several glacial cycles. Minimum ages are suggested for non-glacial episodes corresponding to the deposits studied.  相似文献   

3.
Monocrystalline quartz inclusions in garnet and omphacite from various eclogite samples from the Lanterman Range (Northern Victoria Land, Antarctica) have been investigated by cathodoluminescence (CL), Raman spectroscopy and imaging, and in situ X‐ray (XR) microdiffraction using the synchrotron. A few inclusions, with a clear‐to‐opalescent lustre, show ‘anomalous’ Raman spectra characterized by weak α‐quartz modes, the broadening of the main α‐quartz peak at 465 cm?1, and additional vibrations at 480–485, 520–523 and 608 cm?1. CL and Raman imaging indicate that this ‘anomalous’α‐quartz occurs as relicts within ordinary α‐quartz, and that it was preserved in the internal parts of small quartz inclusions. XR diffraction circular patterns display irregular and broad α‐quartz spots, some of which show an anomalous d‐spacing tightening of ~2%. They also show some very weak, hazy clouds that have d‐spacing compatible with coesite but not with α‐quartz. Raman spectrometry and XR microdiffraction characterize the anomalies with respect to α‐quartz as (i) a pressure‐induced disordering and incipient amorphization, mainly revealed by the 480–485 and 608‐cm?1 Raman bands, together with (ii) a lattice densification, evidenced by d‐spacing tightening; (iii) the cryptic development of coesite, 520–523 cm?1 being the main Raman peak of coesite and (iv) Brazil micro‐twinning. This ‘anomalous’α‐quartz represents the first example of pressure‐induced incipient amorphization of a metastable phase in a crustal rock. This issue is really surprising because pressure‐induced amorphization of metastable α‐quartz, observed in impactites and known to occur between 15 and 32 GPa during ultrahigh‐pressure (UHP) experiments at room temperature, is in principle irrelevant under normal geological P–T conditions. A shock (due to a seism?) or a local overpressure at the inclusion scale (due to expansion mismatch between quartz and its host mineral) seem the only geological mechanisms that can produce such incipient amorphization in crustal rocks. This discovery throws new light on the modality of the quartz‐coesite transition and on the pressure regimes (non‐lithostatic v. lithostatic) during high‐pressure/UHP metamorphism. In particular, incipient amorphization of quartz could favour the quartz‐coesite transition, or allow the growth of metastable coesite, as already experimentally observed.  相似文献   

4.
The Sesia zone (Italian Western Alps) offers one of the best preserved examples of pre-Alpine basement reactivated, under eclogite facies conditions, during the Alpine orogenesis. A detailed mineralogical study of eclogitized acid and basic granulites, and related amphibolites, is presented. In these rare weak to undeformed rocks microstructural investigations allow three main metamorphic stages to be distinguished.
(a) A medium- to low- P granulite stage giving rise to the development of orthopyroxene + garnet + plagioclase + brown amphibole + ilmenite ± biotite in basic granulites and garnet + K-feldspar + plagioclase + cordierite + sillimanite + biotite + ilmenite in acid granulites.
(b) A post-granulite re-equilibration, associated with the development of shear zones, producing discrete amphibolitization of the basic granulites and widespread development of biotite + sillimanite + cordierite + spinel in the acid rocks.
(c) An eo-Alpine eclogite stage giving rise to the crystallization of high- P and low- T assemblages.
In an effort to quantify this evolution, independent well-calibrated thermobarometers were applied to basic and acid rocks. For the granulite event, P-T estimates are 7–9 kbar and 700–800° C, and for subsequent retrograde evolution, P-T was 4–5 kbar and 600° C. For the eo-Alpine eclogite metamorphism, pressure and temperature conditions were 14–16 kbar and 550° C.
The inferred P-T path is consistent with an uplift of continental crust produced by crustal thinning prior to the subduction of the continental rocks. In the light of the available geochronological constraints we propose to relate the pre-Alpine granulite and post-granulite retrograde evolution to the Permo-Jurassic extensional regime. The complex granulite-eclogite transition is thus regarded as a record of the opening and of the closure of the Piedmont ocean.  相似文献   

5.
Multiscale structural analysis and petrological modelling were used to establish the pressure‐peak mineral assemblages and pressure–temperature (P–T) conditions recorded in the rodingites of the upper Valtournanche portion of the oceanic Zermatt‐Saas Zone (ZSZ; Western Alps, northwestern Italy) during Alpine subduction. Rodingites occur in the form of deformed dykes and boudins within the hosting serpentinites. A field structural analysis showed that rodingites and serpentinites record four ductile deformation stages (D1–D4) during the Alpine cycle, with the first three stages associated with new foliations. The most pervasive fabric is S2 that is marked by mineral assemblages in serpentinite indicating pressure‐peak conditions, involving mostly serpentine, clinopyroxene, olivine, Ti‐clinohumite and chlorite. Three rodingite types can be defined: epidote‐bearing, garnet–chlorite–clinopyroxene‐bearing and vesuvianite‐bearing rodingite. In these, the pressure‐peak assemblages coeval with S2 development involve: (i) epidoteII + clinopyroxeneII + Mg‐chloriteII + garnetII ± rutile ± tremoliteI in the epidote‐bearing rodingite; (ii) Mg‐chloriteII + garnetII clinopyroxeneII ± vesuvianiteII ± ilmenite in the garnet–chlorite–clinopyroxene‐bearing rodingite; (iii) vesuvianiteII + Mg‐chloriteII + clinopyroxeneII + garnetII ± rutile ± epidote in vesuvianite‐bearing rodingite. Despite the pervasive structural reworking of the rodingites during Alpine subduction, the mineral relicts of the pre‐Alpine ocean floor history have been preserved and consist of clinopyroxene porphyroclasts (probable igneous relicts from gabbro dykes) and Cr‐rich garnet and vesuvianite (relicts of ocean floor metasomatism). Petrological modelling using thermocalc in the NCFMASHTO system was used to constrain the P–T conditions of the S2 mineral assemblages. The inferred values of 2.3–2.8 GPa and 580–660 °C are consistent with those obtained for syn‐S2 assemblages in the surrounding serpentinites. Multiscale structural analysis indicates that some ocean floor minerals remained stable under eclogite facies conditions suggesting that minerals such as vesuvianite, which is generally regarded as a low‐P phase, could also be stable in favourable chemical systems under high‐P/ultra‐high‐pressure (HP/UHP) conditions. Finally, the reconstructed P–T–d–t path indicates that the P/T ratio characterizing the D2 stage is consistent with cold subduction as estimated in this part of the Alps. The estimated pressure‐peak values are higher than those previously reported in this part of ZSZ, suggesting that the UHP units are larger and/or more abundant than those previously suggested.  相似文献   

6.
7.
Analyses for major, minor, and trace element contents of metamorphosed, variably rodingitized mafic rocks demonstrate substantial removal of Na and as much as three-fold gains in Ca as a consequence of rodingitization. Modest declines in Si and Fe can be explained in terms of dilution effects. Losses in K and Ba do not correlate with Ca% and may have been caused by an alteration process not related to the rodingitization. The Ca-metasomatism was not accompanied by a gain in Sr. The relative contents of Ti, Zr, Hf, Y, Co, Sc, and heavy REE show no readily detectable changes, despite the rodingitization (±other alteration) and subsequent metamorphisms, namely, eclogite facies (T800° C, P 20kbar) followed by amphibolite facies, sillimanite zone. Protoliths were tholeiitic basalt or diabase, and gabbro, with trace element contents indicative of a spreading center origin. Trace element and REE patterns indicate low-pressure fractionation of this magma, with plagioclase stable. This petrogenesis is consistent with prior conclusions on the shallow crustal origin of the protolith of the eclogite-metarodingite-garnet lherzolite suite in the Cima Lunga-Adula nappe, Central Alps. Based on their bulk chemical composition, the mafic rocks in this suite could be the equivalent of Mesozoic ophiolitic rocks in the more external parts of the Alps.  相似文献   

8.
Pebbly mudstones are a conspicuous element of sedimentary sequences deposited in different tectonic settings and sedimentary environments. Whereas for many diamictites a glacial origin seems plausible, the problem to distinguish glacial from non-glacial diamictites is often difficult for Precambrian examples where palaeoclimatic constraints are generally lacking. This article documents an Eocene pebbly mudstone of the Southhelvetic nappes of eastern Central Switzerland (Blockmergel) for which a glacial origin can be firmly rejected and which may thus serve as an example for non-glacial marine diamictites and their sedimentary and palaeotectonic environment. The Blockmergel are interpreted as the product of gravitational deposition of single blocks across steep palaeo-slopes (subaqueous rockfall) into a basin otherwise dominated by suspension settling sedimentation. The Blockmergel occur within the basal part of the early fill of the North Alpine Foreland Basin, which constitutes a deepening upward sequence above basal shallow marine limestones. The Blockmergel demonstrate substantial Middle to Late Eocene sub-aerial erosion and fluvial transport (producing the rounded pebbles) and local extensional fault movements in the proximal part of the incipient North Alpine Foreland Basin. They are capped sharply by forced-regressive shoreface sandstones and the whole sequence thus demonstrates locally very shallow to subaerial conditions within an otherwise rather deep hemipelagic marine basin. This, and the extensional fault movements, are linked to a long-standing feature of Helvetic palaeogeography—the Southhelvetic swell zone. That this swell still operated during the Priabonian i.e. shortly before finally being overthrust by the orogenic wedge of the evolving Alpine orogen is a new element in Alpine palaeotectonics and seems to highlight the importance of the reactivation of inherited palaeotectonic faults. Finally, the example of the Blockmergel is suggested as a useful analogue to help distinguishing glacial-sourced from slope-derived diamictites in the Neoproterozoic sedimentary record and may thus help resolving the “diamictite dichotomy”.  相似文献   

9.
Talc-phengite, an assemblage hitherto believed to be rare, isfound in regional distribution in the Gran Paradiso area, whereit occurs in the characteristic mineral association chloritoid-talc-phengite(Si3·43·5). Talc contains up to 15 moleper cent minnesotaite, and chloritoid up to 45 mole per centof the magnesium end member. The talc-phengite stability resultsbasically from the disappearance of chlorite + quartz in rockswith low and moderate MgO/FeO ratios through the divariant reactionsfirst recognized here: Fe-Mg-Chlorite+quartz talc + garnet + H2O and Fe-Mg-chlorite + quartz talc + Chloritoid + H2O These reactions imply the disappearance of the join biotite-chloritein the presence of quartz and thus open a talc-phengite stabilityfield (±garnet or chloritoid or Mg-chlorite) which extends,with increasing P and T, toward Mg-richer compositions. Whetheror not it reaches the magnesian subsystem in the Gran Paradisoarea cannot be ascertained. However, the sporadic occurrenceof the high-pressure assemblage talc-kyanite-chloritoid 50 to70 km further northeast in the vicinity of the Monte Rosa massifwithin the same lithological unit (Zermatt-Saas Fee zone s.l.)indicates the instability of any chlorite in quartz-bearingrocks, and implies that talc-phengite must also be stable forpurely magnesian compositions in that area. This progressivestabilization of talc-phengite with increasing metamorphic gradesupports Abraham & Schreyer's (1976) hypothesis of a high-pressurefield for this assemblage, and rules out Chernosky's construction(1978) implying a low-pressure field. The following paragenetic sequence is proposed for pelitic compositionswith intermediate Mg/Fe ratios and excess quartz subjected tohigh-pressure metamorphism with maximum temperatures near 400–500°C: chlorite-illite chlorite-phengite chloritoid-talc-phengite.The absence of biotite is a compositional effect due to thehigh degree of phengite substitution in the white mica. *Present address: Institut fr Mineralogic, Ruhr-Universitt, Postfach 10 21 48, D-4630 Bochum 1, Federal Republic of Germany.  相似文献   

10.
Thermal structure of a fossil subduction wedge in the Western Alps   总被引:1,自引:0,他引:1  
New peak metamorphic temperatures are obtained by Raman spectroscopy of Carbonaceous Material to document the thermal structure of the central Western Alps with high sampling resolution. We show that peak metamorphic T gradually increases eastward from <330 to 350 °C (ultra-Dauphinois to subbriançonnais units), ∼350 to more than 400 °C (Briançonnais domain including the Zone Houillère where metamorphic index minerals are rare) and from 350 to more than 500 °C (Liguro–Piemontese domain). Combined with other constraints on the metamorphic evolution, this dataset reveals a good preservation of the overall thermal structure of the fossil subduction wedge, with no particular thermal overprint during collision. However, local confrontation with P – T estimates and radiometric ages reveals more subtle variations within tectonic units and across the main contacts that are linked to the past activity of the major thrusts and extensional shear zones during subduction and exhumation.  相似文献   

11.
Chris D. Parkinson   《Lithos》2000,52(1-4):215-233
Coarse-grained whiteschist, containing the assemblage: garnet+kyanite+phengite+talc+quartz/coesite, is an abundant constituent of the ultrahigh-pressure metamorphic (UHPM) belt in the Kulet region of the Kokchetav massif of Kazakhstan.

Garnet displays prograde compositional zonation, with decreasing spessartine and increasing pyrope components, from core to rim. Cores were recrystallized at T=380°C (inner) to 580°C (outer) at P<10 kbar (garnet–ilmenite geothermometry, margarite+quartz stability), and mantles at T=720–760°C and PH20=34–36 kbar (coesite+graphite stability, phengite geobarometer, KFMASH system reaction equilibria). Textural evidence indicates that rims grew during decompression and cooling, within the Qtz-stability field.

Silica inclusions (quartz and/or coesite) of various textural types within garnets display a systematic zonal distribution. Cores contain abundant inclusions of euhedral quartz (type 1 inclusions). Inner mantle regions contain inclusions of polycrystalline quartz pseudomorphs after coesite (type 2), with minute dusty micro-inclusions of chlorite, and more rarely, talc and kyanite in their cores; intense radial and concentric fractures are well developed in the garnet. Intermediate mantle regions contain bimineralic inclusions with coesite cores and palisade quartz rims (type 3), which are also surrounded by radial fractures. Subhedral inclusions of pure coesite without quartz overgrowths or radial fractures (type 4) occur in the outer part of the mantle. Garnet rims are silica-inclusion-free.

Type 1 inclusions in garnet cores represent the low-P, low-T precursor stage to UHPM recrystallization, and attest to the persistence of low-P assemblages in the coesite-stability field. Coesites in inclusion types 2, 3, and 4 are interpreted to have sequentially crystallized by net transfer reaction (kyanite+talc=garnet+coesite+H2O), and were sequestered within the garnet with progressively decreasing amounts of intragranular aqueous fluid.

During the retrograde evolution of the rock, all three inclusion types diverged from the host garnet PT path at the coesite–quartz equilibrium, and followed a trajectory parallel to the equilibrium boundary resulting in inclusion overpressure. Coesite in type 2 inclusions suffered rapid intragranular H2O-catalysed transformation to quartz, and ruptured the host garnet at about 600°C (when inclusion P27 kbar, garnet host P9 kbar). Instantaneous decompression to the host garnet PT path, passed through the kyanite+talc=chlorite+quartz reaction equilibrium, resulting in the dusty micro-assemblage in inclusion cores. Type 3 inclusions suffered a lower volumetric proportion transformation to quartz at the coesite–quartz equilibrium, and finally underwent rupture and decompression when T<400°C, facilitating coesite preservation. Type 4 coesite inclusions are interpreted to have suffered minimal transformation to quartz and proceeded to surface temperature conditions along or near the coesite–quartz equilibrium boundary.  相似文献   


12.
Bedrock fission‐track analysis, high‐resolution petrography and heavy mineral analyses of sediments are used to investigate the relationships between erosion and tectonics in the Western Alps. Along the Aosta Valley cross‐section, exhumation rates based on fission‐track data are higher in the fault‐bounded western block than in the eastern block (0.4–1.5 vs. 0.1–0.3 mm yr−1). Erosion rates based on the analysis of bed‐load in the Dora Baltea drainage display the same pattern and have similar magnitudes in the relative sub‐basins (0.4–0.7 vs. 0.04–0.08 mm yr−1). Results highlight that climate, relief and lithology are not the controlling factors of erosion in the Western Alps. The main driving force behind erosion is instead tectonics that causes the differential upward motion of crustal blocks.  相似文献   

13.
Rock avalanches are complex phenomena that occur with a low frequency but which have a high destructive potential. As a consequence, the people who are responsible for the management of a territory are more and more interested in predicting the possible evolutions of well-known potential events. Tackling the above problems from a quantitative point of view, the RASH3D code, based on continuum mechanics concepts, has been here used to predict the evolution of a potential rock avalanche in the Western Italian Alps. A calibration-based approach, in which rheological parameters are constrained by systematic adjustment during trial-and-error back-analysis of past events similar to the landslide under investigation, is proposed to set rheological parameter values to be used for prediction purposes. The back-analysis of a 2?106 m3 rock avalanche located in the Divedro Valley, close to the area of the potential event, has then been analysed using both a frictional and a Voellmy rheology. The characteristics of the slope and the dynamics of the event have made the frictional rheology more suitable to come to the correct simulation of the historical case. The back-analysis results have contributed not only in the selection of the rheological parameter values but also in the choice of the type of rheological law to use in the carried out forward-analyses.  相似文献   

14.
A detailed meso- and microscopic structural investigation of a laminated manganiferous meta-chert from the Western Italian Alps has resulted in the recognition of five deformation phases. During the third phase large subhorizontal shear movements took place, resulting in reorientation of pre-existing structures and sheath-fold formation. This was accompanied by a decrease in pressure, reflected by the zoning of blue-amphiboles and by microboudinage and the formation of stretching cracks in minerals. The orientation of amphiboles, together with some evidence from quartz c-axis fabrics suggest that the deformation took place by simple shear. During the late stages of sheath-fold formation the deformation became non-rotational.  相似文献   

15.
Aragonite occurrences from two areas of the Western Alps are described. It is shown that aragonite has been formed under blueschist metamorphic conditions in the Western Vanoise, while it has been precipitated under sub-surface conditions in the Queyras region. An uplift (P, T) path of the aragonite-bearing rocks of the Western Vanoise is constructed using two independent methods: (1) temperature estimates using the Sr++ content of aragonite in the successive veins and (2) the kinetics of the aragonitecalcite solid-state transition. The uplift (P, T) path has an unusual shape with an important temperature decrease (100° to 150° C for a pressure decrease of 0.2 GPa) following blueschists metamorphism (P=0.7 GPa, T=300° C). Thermal models show that this unusual (P, T) path of the Western Vanoise can be explained if one maintains a low temperature (between 125° and 175° C) at the base of the tectonic unit containing the aragonite-bearing rocks during part of its burial history, followed by the whole of its exhumation. A tectonic scenario is proposed to account for the observed and modelled (P, T) path.  相似文献   

16.
Microfossils and a U–Pb age dating on zircon grains in the tuff beds exposed in the axial part of the Tsukeng anticline along the Pinglin River in the Western Foothills near Nantou, central Taiwan, show an occurrence of the Eocene volcanics unconformably beneath the uppermost part of the Latest Oligocene Wuchihshan Formation. This is the first discovery of the Eocene tuff exposed in the Western Foothills.The proposed Miocene “Tsukeng Formation” and “Takeng Formation” of Ho et al. (1956) named for sequences exposed in the Nantou area, Western Foothills, have to be abandoned and the standard Oligocene–Miocene lithostratigraphy used commonly in the Western Foothills of northern Taiwan is properly applicable in central Taiwan. The thick pink–brown–green colored volcanics unconformably beneath the uppermost Wuchihshan Formation is named for the first time as the Pinglin Tuff which contains Late Middle Eocene calcareous nannofossils (Zone NP16) consistent with a U–Pb age dating (38.8 ± 1 Ma) on zircon grains in the tuff. The Pinglin Tuff is overlying the Middle Eocene Chungliao Formation which contains indigenous larger foraminifera Discocyclina dispansa ex. interc. sella-dispansa and calcareous nannofossils of Zones NP14–15. The Middle Eocene Pinglin Tuff and Chungliao Formation represent the Paleogene syn-rift sequence unconformably overlain by the Latest Oligocene–Miocene post-rift sequence. This is the first document with conclusive paleontological data and age dating showing an occurrence of Paleogene marine rift basin exposed in the Western Foothills. This study also confirms similar Tertiary basin architecture between the Taiwan Strait–Pearl River Mouth Basin in the NE South China Sea and the Western Foothills onland central Taiwan.  相似文献   

17.
Previous research has shown that speleothems from the northern rim of the European Alps captured submillennial-scale climate change during the last glacial period with exceptional sensitivity and resolution, mimicking Greenland ice-core records. Here we extend this so-called NALPS19 record across the Late Glacial using two stalagmites which grew continuously into the Holocene. Both specimens show the same high-amplitude δ18O signal as Greenland ice cores down to decadal resolution. The start of the warming at the onset of the equivalent of Greenland Interstadial (GI) GI-1e at 14.66 ± 0.18 ka agrees with the North Greenland Ice Core Project (NGRIP) (14.64 ± 0.28 ka) and comprised a temperature rise of about 5–6 °C. The transition from the equivalent of GI-1a into the equivalent of Greenland Stadial (GS) GS-1 (broadly equivalent to the Younger Dryas) commenced at 13.02 ± 0.13 ka which is consistent with NGRIP (12.80 ± 0.26 ka) within errors. The onset of the Holocene started at 11.78 ± 0.14 ka (11.65 ± 0.10 ka at NGRIP) and involved a warming of about 4–5 °C. In contrast to δ18O, δ13C values show no response to (sub)millennial climate shifts due to strong rock-buffering and only record a long-term trend of soil development starting with the rapid warming at 14.7 ka.  相似文献   

18.
Summary The coexistence of a colourless and a yellow garnet was observed in eclogite-facies manganese concentrations of the Mesozoic ophiolitic Zermatt-Saas Unit, at the Praborna mine near Saint-Marcel, Val d’Aoste, Italy, and in the upper Maurienne Valley, France. They occur both in oxidised metachert with hematite and braunite (+ minor Mn-pyroxenoid and tirodite, rare tiragalloite; with ardennite or piemontite in distinct layers), and in more reduced, carbonate-rich boudins included in it. The co-occurrence takes a variety of textural aspects, from coexisting euhedral garnets (10–100 μm in size for the calderite to mm-size for spessartine) to sharp overgrowths of yellow calderitic garnet on colourless spessartine, to yellow cauliflower-like masses (a few hundreds of μm in size) overgrowing colourless spessartine and showing evidence of oscillatory zoning, resorption stages and resumed growth. Sector zoning and anisotropy are common, although not consistent features. Compositions can be expressed to 95% in the quadrilateral system (Ca, Mn2+)3 (Al, Fe3+)2 Si3O12, with less than 1.0 wt% MgO and 0.8 wt% TiO2 in colourless spessartine, and less than 0.2 wt% MgO and 1.6 wt% TiO2 in yellow garnet. Calcium partitions into the ferric garnet. Coexisting pairs define two compositional gaps, bounded by values of the Fe3+/(Al + Fe3+) ratio of 10 and 15% for the first one, of 40 and 65% for the other. The optically obvious discontinuity (colour change and Becke’s line) corresponds to the narrower gap, between colourless spessartine and yellow spessartine, whereas the broad compositional gap occurs within yellow garnet, between yellow spessartine and yellow calderite, and is only revealed by back-scattered electron images. Only the latter can be a candidate for a miscibility gap, if any. Present address: Centre de Géochimie de la Surface – EOST, 1 rue Blessig, 67083 Strasbourg Cedex, France  相似文献   

19.
Fault data collected from the Schistes Lustrés domain point to the existence of successive steps of deformation and indicate that extension is not multidirectional. This study underlines the continuity between the patterns of late brittle/ductile exhumation tectonics and brittle deformation, and strenghtens the view that extensional movements dominate in shallow levels of the inner Western Alps since at least 35–30 Ma. The progressive clockwise rotation of the earliest directions of extension with time is compatible with the amount of anticlockwise rotation from c. 35 Ma determined by recent palaeomagnetic studies, whereas the last documented N–S extension may reflect a short‐lived stage of orogen‐parallel extension.  相似文献   

20.
The contrasted seismotectonic regime of the Western Alps is characterized by radial extension in the high chain, combined with local compressive areas at the foothill of the belt, and everywhere occurrence of transcurrent tectonics. Here, we compare this seismotectonic regime to a large-scale compilation of GPS measurements in the Western Alpine realm. Our analysis is based on the raw GPS database, which give the measured velocity field with respect to the so called “stable Europe”, and an interpolated velocity field, in order to smooth the database on a more regular mesh. Both strain rate and rotational components of the deformation are investigated. The strain rate field shows patch-like structure, with extensional areas located in the core and to the North of the belt and compressional areas located in its periphery. Although the GPS deformation fields (both raw and interpolated) are more spatially variable than the seismotectonic field, a good qualitative correlation is established with the seismotectonic regionalization of the deformation. The rotation rate fields (both raw and interpolated) present counterclockwise rotations in the innermost part of the belt and a surprising continuous zone of clockwise rotations following the arc-shape geometry of the Western Alps along their external border. We interpret this new result in term of a counterclockwise rotation of the Apulia plate with respect to the stable Europe. This tectonic scheme may induce clockwise rotations of crustal block along the large strike-slip fault system, which runs in the outer part of the belt, from the Rhône-Simplon fault to the Belledonne fault and Southeastward, to the High-Durance and Argentera fault.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号