首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The luminescence spectra of Pr3+ and Sm3+ ions in apatite Ca5[F∣(PO4)3] crystals from Spain and Russia have been compared with those for phosphate glasses doped with Pr3+, Sm3+ and Pr3+, Sm3+ ions. Time-resolved spectra measurements confirm that, in apatites, samarium ions occupy two non-equivalent crystal sites; the same is assumed for praseodymium ions. For the first time in minerals, the Stark splitting energy levels ΔE for 3H6 and 1D2 of Pr3+ ion and 6H7/2 of Sm3+ ion were determined. Some small differences in ΔE values for the Spanish and Russian apatite are discussed. The decay times of the excited levels of Pr3+, Sm3+ and Pr3+, Sm3+ doped in phosphate glass were measured at room temperature and at 77 K. The energy transfer process between samarium and praseodymium ions was observed and the energy transfer rate was calculated.  相似文献   

2.
The Kerio valley lies between the Elgeyo escarpment and the Tugen hills which mark the western margin of the Kenya rift valley. The main fluorite deposits are located in the southern part of the valley at Kimwarer, Choff and Kamnaon.Three types of inclusion fillings were identified: Liquid+Vapour, Liquid+Daughter Minerals and Liquid. The L+V type is dominant. Inclusions occur as clusters, trails along the crystal growth zones and as isolated ones. Low salinities, apparently lower than the 5% wt. NaCl equivalent, were established. Homogenization temperatures suggest that fluorite mineralization took place at different stages and at temperatures between 120 and 180 °C. Isolated readings above 180°C may be referring to the original inclusions in limestone. These measurements and the absence of CO2 in the inclusions, as well as the occurrence of vugs and crustifications with fluorite, suggest that mineralization took place at relatively shallow depths.Emission spectrum lines representing Eu2+, Dy3+, Tb3+ and Sm3+ in fluorite were identified. Sm3+ was detected only in the pinkish luminescence of veined fluorite, whereas the pinkish zone in banded fluorite contains Tb3+. Eu2+ which gives the strongest emission lines in the blue part of the visible spectrum, apparently is responsible for the strong blue cathodoluminescence (CL) in fluorite. The dominance of Eu2+ peaks further points to the fact that fluorite mineralization in the Kerio valley took place in an environment that was enriched in Lanthanide Rare Earth Elements (LREE). The presence of rare earths and radioactive elements in fluorite points towards their enrichment in the environment of fluorite mineralization. A juvenile origin of mineral forming solutions is proposed.Two generations of fluorite were established: allotriomorphic fluorite, forming the matrix, and the idiomorphic variety, occurring either in barite or in druzes in early fluorite. Barite in turn forms idiomorphic crystals in allotriomorphic fluorite. Relics of calcite occur in both K-feldspars and in early fluorite. Oxides and hydroxides of Fe, Mn, Ti and Al commonly occur in open spaces in fluorite. Of significance is the presence of gold in fluorite. Fluorite mineralization is of hydrothermal origin in the post-Miocene era and was formed as a result of metasomatic replacement of marble and open space fillings.  相似文献   

3.
运用偏光显微镜、电子探针对辽宁岫岩县桑皮峪透闪石玉的岩石学特征进行了研究,并运用二次离子质谱仪测定从桑皮峪透闪石玉中分离的锆石和榍石的年龄。结果表明:桑皮峪透闪石玉主要由透闪石组成,次要矿物包括磷灰石、方解石、绿泥石、石墨、褐铁矿、锆石、榍石等。偏光显微镜下桑皮峪透闪石玉的主要结构是毛毡状纤维交织结构、显微细晶质结构和纤维变晶结构;主要构造为块状构造。主要化学成分为SiO2、MgO和CaO,Mg2+/(Mg2++Fe2+)值为0.964~0.971。桑皮峪透闪石玉的锆石U-Pb谐和年龄为1 851±7 Ma,榍石的207Pb/206Pb年龄为1 848±17 Ma,表明桑皮峪透闪石玉矿形成于古元古代白云岩的区域变质时期。  相似文献   

4.
For the first time, the luminescence properties of Pr3+, Nd3+ and Tm3+ and Yb3+ ions in fluorite crystal have been obtained by steady-state measurements. In addition, the luminescence spectra of Ce3+, Sm2+, Sm3+, Dy3+, Er3+ and Yb3+ were measured. It was pointed out that λexc.?=?415?nm is most suitable for measuring the Ho3+ emission beside the Er3+. The emission of trivalent holmium and erbium ions was measured independently using time-resolved measurements and tentative assignment of luminescence lines to C 3v and C 4v symmetry sites was proposed. Besides for natural fluorite crystal, the transitions between Stark energy levels of lanthanide ions were presented.  相似文献   

5.
Summary ?The occurrence of divalent rare earth elements (Sm2+, Yb2+, Tm2+, and Ho2+) in natural fluorite is evaluated using a suite of 37 samples deriving mainly from Sn–W deposits in the Erzgebirge (Germany), Central Kazakhstan, and the Mongolian Altai. Trace element composition was determined by ICP-AES and ICP-MS. The defect structure of the samples was studied by cathodoluminescence (CL), electron paramagnetic resonance (EPR), and optical absorption spectroscopy. Reduction of cubic Sm3+, Yb3+, Tm3+, and Ho3+ under radioactive irradiation produces the corresponding divalent centres. Our data suggest a preferable formation of Sm2+ and Yb2+ under thorium and of Tm2+ and Ho2+ under uranium irradiation. Irradiation (indicated by intense brownish (thorium) and deep purple (uranium) coloration of fluorite) gives rise to a population of divalent centres in equilibrium with their decay. However, sporadic radioactive irradiation and stabilisation of the divalent state of the REE by other electron defects were found in most cases. Three models of stabilisation of Sm2+, Yb2+, Tm2+, and Ho2+ are discussed. The most effective mechanism for Sm, Yb, Tm, and Ho is coupling with Fe3+ centres (REE3++Fe2+ → REE2++Fe3+). Accordingly, the occurrence of Fe3+ centres in natural fluorite is regarded to indicate not an oxidising, but rather a reducing environment during fluorite precipitation. Originally incorporated in the divalent form, Fe2+ was converted to Fe3+ by radioactive irradiation. Such a conclusion is in agreement with the finding of high contents of interstitial fluorine providing tetragonal local compensation of trivalent REE centres in crystals with high Fe3+. If Fe is not present, compensation of divalent Sm, Yb, and Tm is achieved by radiogenic oxidation of Ce(Pr, Tb)3+ accompanied by charge transfer (REE3++Ce(Pr, Tb)3+ → REE2++ Ce(Pr, Tb)4+). Ho2+ is sometimes stabilised by a hole trapped by an electron localised on a F vacancy (Ho3++e on □F → REE2++ self-trapped exciton). Because Sm2+ is optically active, the stabilisation by Fe3+ (stable up to temperatures above 350 °C) or Ce(Pr, Tb)4+ (unstable even under visible light) in samples may be determined by careful observations in the field. Institut für Geotechnik, ETH Zürich, ETH-H?nggerberg, Zürich, Switzerland Stanford Linear Accelerator Center, Menlo Park, CA, USA Received January 8, 2002; revised version accepted June 10, 2002  相似文献   

6.
 Late Proterozoic to Cambrian carbonate rocks from Lone Mountain, west central Nevada, record multiple post-depositional events including: (1) diagenesis, (2) Mesozoic regional metamorphism, (3) Late Cretaceous contact metamorphism, related to the emplacement of the Lone Mountain granitic pluton and (4) Tertiary hydrothermal alteration associated with extension, uplift and intrusion of silicic porphyry and lamprophyre dikes. Essentially pure calcite and dolomite marbles have stable isotopic compositions that can be divided into two groups, one with positive δ13C values from+3.1 to +1.4 ‰ (PDB) and high δ18O values from +21.5 to +15.8 ‰ (SMOW), and the other with negative δ13C values from –3.3 to –3.6‰ and low δ18O values from +16.9 to +11.1‰. Marbles also contain minor amounts of quartz, muscovite and phlogopite. Brown and blue luminescent, clear, smooth textured quartz grains from orange luminescent calcite marbles have high δ18O values from +23.9 to +18.1‰, while brown luminescent, opaque, rough textured quartz grains from red luminescent dolomite marbles typically have low δ18O values from +2.0 to +9.3‰. The δ18O values of muscovite and phlogopite from marbles are typical of micas in metamorphic rocks, with values between +10.4 and +14.4‰, whereas mica δD values are very depleted, varying from −102 to −156‰. No significant lowering of the δ18O values of Lone Mountain carbonates is inferred to have occurred during metamorphism as a result of devolatilization reactions because of the essentially pure nature of the marbles. Bright luminescence along the edges of fractures, quartz cements and quartz overgrowths in dolomite marbles, low δD values of micas, negative δ13C values and low δ18O values of calcite and dolomite, and depleted δ18O values of quartz from dolomite marbles all indicate that meteoric fluids interacted with Lone Mountain marbles during the Tertiary. Partial oxygen isotopic exchange between calcite and low 18O meteoric fluids lowered the δ18O values of calcite, resulting in uniform quartz-calcite fractionations that define an apparent pseudoisotherm. These quartz-calcite fractionations significantly underestimate both the temperature of metamorphism and the temperature of post-metamorphic alteration. Partial oxygen isotopic exchange between quartz and meteoric fluids also resulted in 18O depletion of quartz from dolomite marbles. This partial exchange was facilitated by an increase in the surface area of the quartz as a result of its dissolution by meteoric fluids. The negative δ13C values in carbonates result from the oxidation of organic material by meteoric fluids following metamorphism. Stable isotopic data from Lone Mountain marbles are consistent with the extensive circulation of meteoric hydrothermal fluids throughout western Nevada in Tertiary time. Received: 1 February 1994/Accepted: 12 September 1995  相似文献   

7.
The concentrations of fluorine in groundwater of North Jordan range from 0.009 to 0.055 mg/l. Other chemical parameters, e.g. pH, EC, TDS, Cl, TH, HCO3, PO4, SO4, NO3, NH4, K, Ca, Mg, and NO3 have been studied and showed higher concentrations in HCO3 and NO3 of 307 and 51 mg/l, respectively. Thermodynamic considerations show that almost all the analyzed samples are undersaturated with respect to calcite and fluorite. This undersaturation is probably due to their low availability in the locations. Fluoride concentration shows a positive relation to pH and HCO3, whereas Cl, Mg, Ca, and Na initially increase and then decrease with increasing fluoride in the water. Saturation indexes of fluorite and calcite are estimated. The chemistry of the groundwater is controlled by the fluorite and calcite solubility. The topography of the area has exerted control on the aerial extent of fluoride concentration.  相似文献   

8.
Natural calcite from Kuerle, Xinjiang, China, shows orange-red fluorescence when exposed to short-wave ultraviolet (UV) light (Hg 253.7 nm). Photoluminescence (PL) emission and excitation spectra of the calcite are observed at room temperature in detail. The PL emission spectrum under 208 nm excitation consists of three bands: two UV bands at 325 and 355 nm and an orange-red band at 620 nm. The three bands are ascribed to Pb2+, Ce3+ and Mn2+, respectively, as activators. The Pb2+ excitation band is observed at 243 nm, and the Ce3+ excitation band at 295 nm. The Pb2+ excitation band is also observed by monitoring the Ce3+ fluorescence, and the Pb2+ and Ce3+ excitation bands, in addition to six Mn2+ excitation bands, are also observed by monitoring the Mn2+ fluorescence. These indicate that four types of the energy transfer can occur in calcite through the following processes: (1) Pb2+ → Ce3+, (2) Pb2+ → Mn2+, (3) Ce3+ → Mn2+ and (4) Pb2+ → Ce3+ → Mn2+.  相似文献   

9.
We have interpreted a number of luminescence centers in natural tugtupite Na8Al2Be2Si8O24Cl2, sodalite Na8Al6Si6O24C2 and hackmanite Na8Al6Si6O24(Cl2,S) by use of laser-induced time-resolved luminescence spectroscopy. The main new results are the following: Fe3+, Mn2+, Eu2+, Ce3+, mercury type (potentially Pb2+, Tl+, Sn2+ and/or Sb3+), radiation induced luminescence centers; several types of S2 centers. Spectral shift connected with the presence of luminescence centers, which are detected together with S2 centers and impossible to resolve with continuous wave luminescence spectroscopy, is the possible reason for spectral diversity of S2 luminescence centers presented in different publications.  相似文献   

10.
The Costelloe Murvey Granite is a chemically evolved, high heat production, leucocratic component of the 400 Ma old Galway Granite batholith and is host to hydrothermal fluorite-quartz-calcite veins. A previously reported clinopyroxene 40Ar-39Ar age of 231±4 Ma obtained from a pre-mineralization dolerite dyke is reinterpreted as dating this mineralization. The hydrothermal fluid extensively altered its granite wallrocks, leading to lower Sm and Nd and higher Rb concentrations in altered granite, disturbing both its Rb-Sr and Sm-Nd isotopic systems. The 87Sr/86Sr ratio of the hydrothermal fluid from which fluorite and calcite precipitated ranged from 0.7101 to 0.7139. These ratios are very much lower than in the Costelloe Murvey Granite at the time of mineralization, precluding the granite as a source for more than 2% of the hydrothermal Sr. The initial 143Nd/144Nd ratio varies between fluorite in different veins due to Nd derivation from local wallrocks, and between fluorite of petrographically distinct growth phases within a single hand specimen, highlighting the difficulty of Sm-Nd isochron dating of fluorite in cases where there are multiple sources of hydrothermal Nd. It is proposed that fluorite and calcite precipitated where hot, dilute fluids rising through the granite mixed with cooler, more saline fluids of basinal origin migrating through Lower Carboniferous limestone which then overlay the granite. Received: 3 August 1995 / Accepted: 11 April 1996  相似文献   

11.
 Investigations of peridotite xenolith suites have identified a compositional trend from lherzolite to magnesian wehrlite in which clinopyroxene increases at the expense of orthopyroxene and aluminous spinel, and in which apatite may be a minor phase. Previous studies have shown that this trend in mineralogy and chemical composition may result from reaction between sodic dolomitic carbonatite melt and lherzolite at pressures around 1.7 to 2 GPa. This reaction results in decarbonation of the carbonatite melt, releasing CO2-rich fluid. In this study, we have experimentally reversed the decarbonation reaction by taking two natural wehrlite compositions and reacting them with CO2 at a pressure of 2.2 GPa and temperatures from 900 to 1150° C. Starting materials were pargasite-bearing wehrlites, one with minor apatite (composition 71001*) and one without apatite (composition 70965*). At lower temperatures (900° C) the products were apatite+pargasite+magnesite harzburgite for runs using composition 71001*, and pargasite+dolomite lherzolite for runs using composition 70965*. At and above 1000° C, carbonatite melt with harzburgite residue (olivine+orthopyroxene+spinel) and with lherzolite residue (olivine+orthopyroxene+clinopyroxene+ spinel) were produced respectively. Phase compositions in reactants and products are consistent with the documented carbonatite/lherzolite reactions, and also permit estimation of the carbonatite melt compositions. In both cases the melts are sodic dolomitic carbonatites. The study supports the hypothesis of a significant role for ephemeral, sodic dolomitic melts in causing metasomatic changes in the lithosphere at P≤2 GPa. The compositions of wehrlites imply fluxes of CO2, released by metasomatic reactions, which are locally very large at around 5 wt% CO2. Received: 15 December 1995/Accepted: 14 February 1996  相似文献   

12.
The oxygen isotope ratios (δ18O) of most igneous zircons range from 5 to 8‰, with 99% of published values from 1345 rocks below 10‰. Metamorphic zircons from quartzite, metapelite, metabasite, and eclogite record δ18O values from 5 to 17‰, with 99% below 15‰. However, zircons with anomalously high δ18O, up to 23‰, have been reported in detrital suites; source rocks for these unusual zircons have not been identified. We report data for zircons from Sri Lanka and Myanmar that constrain a metamorphic petrogenesis for anomalously high δ18O in zircon. A suite of 28 large detrital zircon megacrysts from Mogok (Myanmar) analyzed by laser fluorination yields δ18O from 9.4 to 25.5‰. The U–Pb standard, CZ3, a large detrital zircon megacryst from Sri Lanka, yields δ18O = 15.4 ± 0.1‰ (2 SE) by ion microprobe. A euhedral unzoned zircon in a thin section of Sri Lanka granulite facies calcite marble yields δ18O = 19.4‰ by ion microprobe and confirms a metamorphic petrogenesis of zircon in marble. Small oxygen isotope fractionations between zircon and most minerals require a high δ18O source for the high δ18O zircons. Predicted equilibrium values of Δ18O(calcite-zircon) = 2–3‰ from 800 to 600°C show that metamorphic zircon crystallizing in a high δ18O marble will have high δ18O. The high δ18O zircons (>15‰) from both Sri Lanka and Mogok overlap the values of primary marine carbonates, and marbles are known detrital gemstone sources in both localities. The high δ18O zircons are thus metamorphic; the 15–25‰ zircon values are consistent with a marble origin in a rock-dominated system (i.e., low fluid(external)/rock); the lower δ18O zircon values (9–15‰) are consistent with an origin in an external fluid-dominated system, such as skarn derived from marble, although many non-metasomatized marbles also fall in this range of δ18O. High δ18O (>15‰) and the absence of zoning can thus be used as a tracer to identify a marble source for high δ18O detrital zircons; this recognition can aid provenance studies in complex metamorphic terranes where age determinations alone may not allow discrimination of coeval source rocks. Metamorphic zircon megacrysts have not been reported previously and appear to be associated with high-grade marble. Identification of high δ18O zircons can also aid geochronology studies that seek to date high-grade metamorphic events due to the ability to distinguish metamorphic from detrital zircons in marble.  相似文献   

13.
El Hammam is the only fluorite mine in Morocco (production 100,000 t/year). The fluorite mineralization is in an array of fluorite–calcite veins and is characterized by unusually high REE content in carbonate minerals (1,400 ppm in calcite; up to 2,000 ppm in siderite) and in fluorite (about 600 ppm). Since the 1960s, the genesis of the deposit has been attributed to a mesothermal hydrothermal event connected with late-Variscan granitic intrusions. Precise 40Ar/39Ar dating of hydrothermal K-feldspar yields an age of formation of the El Hammam deposit at 205 ± 1 Ma. Its genesis is therefore associated in time and space with the development of the Triassic–Jurassic basins and the associated anorogenic continental flood basalts of the Moroccan Mesetian Middle Atlas. The source of the hydrothermal mineralization (magmatic and/or metamorphic) is discussed.  相似文献   

14.
 The Sanggok mine used to be one of the largest lead-zinc mines in the Hwanggangri mining district, Republic of Korea. The present study characterizes the heavy metal contamination in the abandoned Sanggok mine creek on the basis of physico-chemical properties of various kinds of water samples (mine, surface and groundwater). Hydrochemistry of the water samples is characterized by the relatively significant enrichment of Ca2+, HCO3 , NO3 and Cl in the surface and groundwaters, whereas the mine water is relatively enriched in Ca2+, Mg2+, heavy metals, and HCO3 and SO4 2–. The more polluted mine water has a lower pH and higher Eh, conductivity and TDS values. The concentrations of some toxic elements (Al, As, Cd, Cu, Fe, Mn, Pb, Se, Sr, Pb and Zn) are tens to hundreds of times higher in the mine water than in the unpolluted surface and groundwaters. However, most immobile toxic pollutants from the mine drainage were quickly removed from the surface water by the precipitation of Al and Fe oxyhydroxides. Geochemical modeling showed that potentially toxic heavy metals might exist largely in the forms of MSO4 2– and M2+ in the mine water. These metals in the surface and groundwaters could form M2+, CO3 2– and OH complex ions. Computer simulation indicates that the saturation indices of albite, alunite, anhydrite, chlorite, fluorite, gypsum, halloysite and strontianite in the water samples are undersaturated and have progressively evolved toward the saturation condition. However, barite, calcite, chalcedony, dolomite, gibbsite, illite and quartz were in equilibrium, and only clay minerals were supersaturated. Ground and mine waters seemed to be in equilibrium with kaolinite field, but some surface water were in equilibrium with gibbsite and seceded from the stability field of quartz. This indicates that surface water samples in reaction with carbonate rocks would first equilibrate with carbonate minerals, then gibbsite to kaolinite. Investigations on water quality and environmental improvement of the severely polluted Sanggok creek, as well as remediation methods on the possible future pollution of the groundwater by the acid mine drainage from the abandoned metal mines, are urgently required. Received: 4 February 2000 · Accepted: 9 May 2000  相似文献   

15.
The fluorite deposits of the Valle de Tena, Central Pyrenees, include stratabound (Portalet) and vein (Lanuza and Tebarray) deposits the formation of which are linked to a Namurian-Westfalian emersion episode and to post-Hercynian hydrothermal systems similar to those occurring elsewhere in Hercynian Europe. In this study, strontium isotopes were used to determine the source(s) of strontium, and by inference calcium, of the fluorite mineralizations, as well as the nature of the ore-forming fluids. Fluorite and calcite from each deposit have similar 87Sr/86Sr ratios (Portalet 0.7085–0.7108; Lanuza 0.7086–0.7104 and Tebarray 0.7086–0.7101). In all deposits, the Sr isotope composition of most of the Ca-minerals is more radiogenic than that of the host limestones. This indicates that the Ca-minerals contain a mixture of Sr derived locally from the host limestones and 87 Sr-enriched Sr leached from silicate minerals in the siliciclastic portion of the basement sequence and in granites from the study area. Volcanic rocks are ruled out as a significant Sr source for the fluorite deposits. The observed trend in 87Sr/86Sr versus 1/Sr support a fluid-rock interaction model which satisfactorily reproduces the marked 87Sr-enrichment in the fluorites and calcites from the deposits. Received: 19 February 1997 / Accepted: 22 July 1997  相似文献   

16.
Groundwater samples were collected from various localities of Mithi sub-district of the Thar Desert of Pakistan and analysed for fluoride ion along with other chemical parameters. The area is mainly covered by sand dunes and kaolin/granite at variable depths. Results showed that collected water samples were severely contaminated by the presence of fluoride ion and most of the samples have higher concentration than prescribed WHO standards (1.5 mg/l) for drinking water. Fluoride ion concentrations ranged between 0.09 and 11.63 mg/l with mean and median values of 3.64 and 3.44 mg/l, respectively, in this area whereas, distribution pattern showed high concentrations in the vicinity of Islamkot and Mithi towns. The content of F has also been correlated with other major ions found in the groundwater of the study area. The positive correlation of F with Na+ and HCO3 showed that the water with high Na+ and HCO3 stabilizes F ions in the groundwater of the Thar Desert. The pH versus F plots signifies high fluoride concentration at higher pH values, implying that alkaline environment favours the replacement of exchangeable OH with F in the groundwater of Mithi area. The saturation indices (SI) of fluorite (CaF2) and calcite (CaCO3) in the groundwater samples showed that most of the samples are oversaturated with respect to calcite whereas majority of samples have been found under saturated with respect to fluorite. The log TDS and Na/Na+Ca ratio reflected supremacy of weathering of rocks, which promotes the availability of fluoride ions in the groundwater. Piper diagram has been used to classify the hydrofacies. In the cation triangle, all samples are Na-type, while the anion triangle reflects major dominance of Cl-type with a minor influence of HCO3 and SO4 .  相似文献   

17.
Sr content was measured in 6 fluorite and 7 calcite samples from an epithermal deposit of fluorite at Monte delle Fate near Cerveteri (Latium, Italy). Sr isotope ratios were obtained from two selected samples. Sr contents of calcite range from 1,200 to 2,620 ppm and of fluorite from 10 to 360 ppm. 87Sr/86Sr values of calcite and fluorite are 0.7087 and 0.7091, respectively. Such isotope ratios clearly indicate that the bulk of strontium present in both minerals was provided by marine sedimentary reservoirs. According to the Sr distribution coefficient, the low contents measured in fluorite, which formed after calcite, clearly prove that the mineral was not deposited by the same kind of waters from which calcite originated. The high Sr contents of calcite suggest that the bicarbonate-bearing waters have largely interacted with Ca-sulphate evaporites of Upper Triassic age. On the contrary, the waters from which fluorite precipitated were apparently involved in a more superficial circulation through post-Triassic sedimentary formations.
Résumé On a determiné la teneur de strontium dans 6 échantillons de fluorite et 7 échantillons de calcite d'un gisement à fluorite près de Monte delle Fate, Cerveteri (Latium; Italie centrale). De plus les rapports isotopiques du même élément ont été mésurés pour deux échantillons choisis. Les teneurs du strontium dans la calcite et la fluorite varient de 1 200 à 2 620 ppm et de 10 à 360 ppm, respectivement. La valeur du rapport 87Sr/86Sr est pour la calcite 0,7087 et pour la fluorite 0,7091. Ces rapports indiquent que les sédiments marins ont été la source de la plupart du strontium dans les deux minéraux. Selon le coefficient de distribution du strontium, la fluorite, de déposition postérieure à la calcite, n'a pas pu précipiter de la même eau de la calcite. Les teneurs élevées de l'élément dans la calcite sont la conséquence de l'interaction des eaux bicarbonatées avec les sédiments sulfate-évaporitiques du Triassique supérieur. Au contraire les eaux primaires de la fluorite ont circulé dans les sédiments post-Triassiques.
  相似文献   

18.
A detailed Sr−Nd isotopic study of primary apatite, calcite and dolomite from phoscorites and carbonatites of the Kovdor massif (380 Ma), Kola peninsula, Russia, reveals a complicated evolutionary history. At least six types of phoscorites and five types of carbonatite have been identified from Kovdor by previous investigators based on relative ages and their major and accessory minerals. Isotopic data from apatite define at least two distinct groups of phoscorite and carbonatite. Apatite from the earlier phoscorites and carbonatites (group 1) are characterized by relatively low87Sr/86Sr (0.70330–0.70349) and143Nd/144Nd initial ratios (0.51230–0.51240) with F=2.01–2.23 wt%, Sr=2185–2975 ppm, Nd=275–660 ppm and Sm=31.7–96.2 ppm. Apatite from the second group has higher87Sr/86Sr (0.70350–0.70363) and143Nd/144Nd initial ratios (0.51240–0.51247) and higher F (2.63–3.16 wt%), Sr (4790–7500 ppm), Nd (457–1074 ppm) and Sm (68.7–147.6 ppm) contents. This group corresponds to the later phoscorites and carbonatites. One apatite sample from a carbonatite from the earlier group fits into neither of the two groups and is characterized by the highest initial87Sr/86Sr (0.70385) and lowest143Nd/144Nd (0.51229) of any of the apatites. Within both groups initial87Sr/86Sr and143Nd/144Nd ratios show negative correlations. Strontium isotope data from coexisting calcite and dolomite support the findings from the apatite study. The Sr and Nd isotopic similarities between carbonatites and phoscorites indicate a genetic relationship between the two rock types. Wide variations in Sr and Nd isotopic composition within some of the earlier carbonatites indicate several distinct intrusive phases. Oxygen isotopic data from calcite and dolomite (δ18O=+7.2 to +7.7‰ SMOW) indicate the absence of any low-temerature secondary processes in phoscorites and carbonatites, and are consistent with a mantle origin for their parental melts. Apatite data from both groups of phoscorite plot in the depleted quadrant of an εNd versus εSr diagram. Data for the earlier group lie along the Kola Carbonatite Line (KCL) as defined by Kramm (1993) and data from the later group plot above the KCL. The evolution of the phoscorites and carbonatites cannot be explained by simple magmatic differentiation assuming closed system conditions. The Sr−Nd data can best be explained by the mixing of three components. Two of these are similar to the end-members that define the Kola Carbonatite Line and these were involved in the genesis of the early phoscorites and carbonatites. An additional component is needed to explain the isotopic characteristics of the later group. Our study shows that apatite from rocks of different mineralogy and age is ideal for placing constraints on mantle sources and for monitoring the Sr−Nd evolution of carbonatites. Editorial responsibility: W. Schreyer  相似文献   

19.
Summary This work examines the red luminescence of benitoite studied by laser-induced time-resolved luminescence spectroscopy. This method allows the differentiation between luminescence centers of similar emission wavelengths, but different decay times. We have also examined the luminescence intensity and decay time as a function of temperature. We found that the red emission of benitoite consists of two individual bands and one line and suggest that the activators of luminescence in benitoite system are Ti3+ and a d3 element, namely Cr3+ or Mn4+.  相似文献   

20.
Natural fluorite emitting yellow fluorescence under UV light   总被引:1,自引:0,他引:1  
Many mineralogists believe that fluorite emits violet fluorescence under UV light, but a special fluorite from Japan emits yellow fluorescence under UV light. The analysis by inductively coupled plasma-mass spectrometry (ICP-MS) shows that this fluorite includes high concentrations of Dy together with various rare-earth (RE) impurities other than Pm and Eu. Photoluminescence (PL) emission and excitation spectra of the fluorite are investigated at 10, 80 and 300 K. The origin of yellow fluorescence is attributed to the electronic transition within Dy3+. Profiles of the PL and excitation spectra depend on the excitation wavelength and on the observation wavelength, respectively. The obtained spectra are ascribed to the RE ions Ce3+, Sm3+, Tb3+, Dy3+, Ho3+, Er3+, Sm2+ and Yb2+ in the fluorite. In natural fluorite, the low concentration of Eu enables us to observe the bright fluorescence characteristic of trivalent RE ions, instead of the bluish violet fluorescence due to Eu2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号