首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Porphyroblast inclusion fabrics are consistent in style and geometry across three Proterozoic metamorphic field gradients, comprising two pluton-related gradients in central Arizona and one regional gradient in northern New Mexico. Garnet crystals contain curved ‘sigmoidal’ inclusion trails. In low-grade chlorite schists, these trails can be correlated directly with matrix crenulations of an older schistosity (S1). The garnet crystals preferentially grew in crenulation hinges, but some late crenulations nucleated on existing garnet porphyroblasts. At higher grade, biotite, staurolite and andalusite porphyroblasts occur in a homogeneous S2 foliation primarily defined by matrix biotite and ilmenite. Biotite porphyroblasts have straight to sigmoidal inclusion trails that also represent the weakly folded S1 schistosity. Staurolite and andalusite contain distinctive inclusion-rich and inclusion-poor domains that represent a relict S2 differentiated crenulation cleavage. Together, the inclusion relationships document the progressive development of the S2 fabric through six stages. Garnet and biotite porphyroblasts contain stage 2 or 3 crenulations; staurolite and andalusite generally contain stage 4 crenulations, and the matrix typically contains a homogeneous stage 6 cleavage. The similarity of inclusion relationships across spatially and temporally distinct metamorphic field gradients of widely differing scales suggests a fundamental link between metamorphism and deformation. Three end-member relationships may be involved: (1) tectonic linkages, where similar P-T-time histories and similar bulk compositions combine to produce similar metamorphic and structural signatures; (2) deformation-controlled linkages, where certain microstructures, particularly crenulation hinges, are favourable environments for the nucleation and/or growth of porphyroblasts; and (3) reaction-controlled linkages, where metamorphic reactions, particularly dehydration reactions, are associated with an increase in the rate of fabric development. A general model is proposed in which (1) garnet and biotite porphyroblasts preferentially grow in stage 2 or 3 crenulation hinges, and (2) chlorite-consuming metamorphic reactions lead to pulses in the rate of fabric evolution. The data suggest that fabric development and porphyroblast growth may have been quite rapid, of the order of several hundreds of thousands of years, in these rocks. These microstructures and processes may be characteristic of low-pressure, first-cycle metamorphic belts.  相似文献   

2.
Abstract The main porphyroblastic minerals in schists and phyllites of the Foothills terrane, Western Metamorphic Belt, central Sierra Nevada, California, are cordierite and andalusite (mostly chiastolite). Less commonly, biotite, muscovite, chlorite, garnet or staurolite are also present as porphyroblasts. The variety of porphyroblast and matrix microstructures in these rocks makes them suitable for testing three modern hypotheses on growth and deformation of porphyroblasts: (1) porphyroblast growth is always syndeformational; (2) porphyroblasts nucleate only in low-strain, largely coaxially deformed, quartz-rich (Q) domains of a crenulation foliation and are dissolved in active high-strain, non-coaxially deformed, mica-rich (M) domains, the spacing between which limits the size of the porphyroblasts; and (3) porphyroblasts generally do not rotate, with respect to geographical coordinates, during deformation, provided they do not deform internally, so that they may be used as reliable indicators of the orientation of former regional structural surfaces, even on the scale of orogenic belts. Some porphyroblast–matrix relationships in the Foothills terrane are inconsistent with hypotheses 1 and 2, and others are equivocal. For example, in many rocks it cannot be determined whether the porphyroblasts grew where the strain had already been partitioned into M and Q domains, whether the porphyroblasts caused this partitioning, or both. Although most porphyroblasts appear to be syndeformational, as predicted by hypothesis 1, observations that do not support the general application of hypotheses 1 and 2 to rocks of the Foothills terrane include: (a) lack of residual crenulations in many strain-shadows and alternative explanations where they are present; (b) absence of porphyroblasts smaller than the distance between nearest mica-rich domains; (c) nucleation of crenulations on existing porphyroblasts, rather than nucleation of porphyroblasts between existing crenulations; (d) presence of micaceous ‘arcs’in an undifferentiated matrix against some porphyroblasts, suggesting static growth; (e) absence of crenulations in porphyroblastic rocks showing sedimentary bedding; and (f) porphyroblasts with very small, random inclusions, which are probably pre-deformational. Similarly, porphyroblasts that have overgrown sets of crenulations and porphyroblasts with micaceous ‘arcs’are probably post-deformational, at least on the scale of a large thin section and probably over much larger areas, judging from mesoscopic structural evidence. Some porphyroblasts in rocks of the Foothills terrane do not appear to have rotated, with respect to geographical coordinates, during matrix deformation, in accordance with hypothesis 3, at least on the scale of a large thin section. However, other porphyroblasts evidently have rotated. In some instances, this appears to be due to mutual interference, but many apparently rotational porphyroblasts are too far apart to have interfered with each other, which indicates that the rotation was associated with deformation of the matrix. The occurrence of planar bedding surfaces adjacent to porphyroblasts about which bedding and/or foliation surfaces are folded suggests rotation of the porphyroblasts during non-coaxial flow parallel to bedding, rather than crenulation of the matrix foliation around static porphyroblasts. It appears that porphyroblasts may rotate during deformation if the matrix is relatively homogeneous, so that the strain is effectively non-coaxial. This may occur after homogenization of a matrix in response to the strongest degree of crenulation folding, whereas the same porphyroblasts may have been inhibited from rotating previously, when strain accumulation was partitioned in the matrix.  相似文献   

3.
Abstract Reactivation of early foliations accounts for much of the progressive strain at more advanced stages of deformation. Its role has generally been insufficiently emphasized because evidence is best preserved where porphyroblasts which contain inclusion trails are present. Reactivation occurs when progressive shearing, operating in a synthetic anastomosing fashion parallel to the axial planes of folds, changes to a combination of coarse- and finescale zones of progressive shearing, some of which operate antithetically relative to the bulk shear on a fold limb. Reactivation of earlier foliations occurs in these latter zones. Reactivation decrenulates pre-existing or just-formed crenulations, generating shearing along the decrenulated or rotated pre-existing foliation planes. Partitioning of deformation within these foliation planes, such that phyllosilicates and/or graphite take up progressive shearing strain and other minerals accommodate progressive shortening strain, causes dissolution of these other minerals. This results in concentration of the phyllosilicates in a similar, but more penetrative manner to the formation of a differentiated crenulation cleavage, except that the foliation can form or intensify on a fold limb at a considerable angle to the axial plane of synchronous macroscopic folds. Reactivation can generate bedding-parallel schistosity in multideformed and metamorphosed terrains without associated folds. Heterogeneous reactivation of bedding generates rootless intrafolial folds with sigmoidal axial planes from formerly through-going structures. Reactivation causes rotation or ‘refraction’of axial-plane foliations (forming in the same deformation event causing reactivation) in those beds or zones in which an earlier foliation has been reactivated, and results in destruction of the originally axial-plane foliation at high strains. Reactivation also provides a simple explanation for the apparently ‘wrong sense’, but normally observed ‘rotation’of garnet porphyroblasts, whereby the external foliation has undergone rotation due to antithetic shear on the reactivated foliation. Alternatively, the rotation of the external foliation can be due to its reactivation in a subsequent deformation event. Porphyroblasts with inclusion trails commonly preserve evidence of reactivation of earlier foliations and therefore can be used to identify the presence of a deformation that has not been recognized by normal geometric methods, because of penetrative reactivation. Reactivation often reverses the asymmetry between pre-existing foliations and bedding on one limb of a later fold, leading to problems in the geometric analysis of an area when the location of early fold hinges is essential. The stretching lineation in a reactivated foliation can be radically reoriented, potentially causing major errors in determining movement directions in mylonitic schistosities in folded thrusts. Geometric relationships which result from reactivation of foliations around porphyroblasts can be used to aid determination of the timing of the growth of porphyroblasts relative to deformation events. Other aspects of reactivation, however, can lead to complications in timing of porphyroblast growth if the presence of this phenomenon is not recognized; for example, D2-grown porphyroblasts may be dissolved against reactivated S1 and hence appear to have grown syn-D1.  相似文献   

4.
Abstract Low-pressure prograde metamorphism of pelitic rocks in the Cooma Complex, south-east Australia, has produced cordierite-andalusite schists at intermediate grades. The first foliation (S1) is preserved largely as inclusion trails in cordierite porphyroblasts. Microstructural evidence indicates that the cordierite porphyroblasts grew during the early stages of development of a crenulation-foliation (S2) and that andalusite porphyroblasts grew during the development of a later crenulation-foliation (S3). Microstructural evidence also indicates that the andalusite was a product of the prograde reaction: cordierite + muscovite ± andalusite + biotite + quartz. The occurrence of the products of this reaction in 'beard'structures between cordierite microboudins formed by extension in S3 confirms that the andalusite grew during the development of S3. The investigation shows that porphyroblast-matrix relationships can preserve the orientation of an early S-surface that has been largely obliterated from the matrix, as well as providing relatively direct evidence of sequential mineral growth and metamorphic reactions.  相似文献   

5.
Two well-developed mesoscopic folds, D_2 and D_3, which postdate the middle amphibolite metamorphism, were recognized in the western hinterland zone of Pakistan. NW–SE trending D_2 folds developed during NE–SW horizontal bulk shortening followed by NE–SW trending D_3 folds, which developed during SE–NW shortening. Micro- to mesoscopically the NW–SE trending S2 crenulation cleavage, boudins and mineral stretching lineations are overprinted by D_3. The newly established NW–SE trending micro- to mesoscopic structures in Munda termed D_2, which postdated F_1/F_2, is synchronously developed with F3 structures in the western hinterland zone of Pakistan. We interpret that D_2 and D_3 folds are counterclockwise rotated in the tectonic event that has evolved the Hazara Kashmir Syntaxis after the main phase Indian plate and Kohistan Island Arc collision. Chlorite replacement by biotite in the main matrix crenulation cleavages indicates prograde metamorphism related with D_2. The inclusion of muscovite and biotite in garnet porphyroblasts and the presence of staurolite in these rocks indicate that the Barrovian metamorphic conditions predate D_2 and D_3. We interpret that garnet, staurolite and calcite porphyroblasts grew before D_2 because the well developed S2 crenulation cleavage wraps around these porphyroblasts.  相似文献   

6.
Rocks of the Snake Creek Anticline are mainly pelitic schists, psammitic schists and quartzites that were metamorphosed during multiple high‐T/low‐P events extending from D1 to D5, with the metamorphic peak occurring late to post‐D3. Albitites are widespread, but are concentrated in five areas. They are typically fine‐ to medium‐grained, and consist of albite, with or without combinations of quartz, biotite, staurolite, cordierite, garnet, andalusite, sillimanite, kyanite, gedrite and tourmaline. From the presence or absence of albite inclusions in porphyroblasts, the albitites are interpreted as forming early in the D3 event as a result of infiltration of external fluids. Psammitic schists and quartzites were preferentially altered, but pelitic schists were also albitized in localities where the alteration was more extreme, with the replacement of muscovite total and the replacement of quartz and biotite variable. Structural controls on albitization include fracturing and syn‐D3 shear zones in fold hinges. Biotite schists with abundant porphyroblasts (combinations of staurolite, garnet, andalusite and cordierite) occur adjacent to albitites, and it is argued that they formed by the addition of Fe and Mg sourced from the albitites. In several albitite‐rich areas, cordierite grew early in D3 and was partly or entirely replaced during or after D3 by combinations of biotite, andalusite, tourmaline, staurolite and sillimanite. A postulated P–T–d path involved an increase in pressure (with or without a decrease in temperature) subsequent to early D3 albitization, followed by an increase in temperature up to the metamorphic peak (late D3 to early D4. The metamorphism was contemporary in part with the emplacement of the Williams Batholith (c. 1550–1500 Ma), which probably supplied the Na‐rich fluids.  相似文献   

7.
Abstract In metapelitic schists of the north-eastern Weekeroo Inliers, Olary Block, Willyama Supergroup, South Australia, syn-S1 and syn-S2 assemblages involving staurolite, garnet, biotite and another mineral, most probably cordierite, were overgrown by large syn-S3 andalusite porphyroblasts, owing to isobaric heating from metamorphic conditions that existed during the development of S2. Conditions during the development of S3 probably just reached the andalusite—sillimanite transition. During the development of S4, at somewhat lower temperatures than those that accompanied the development of S3, the following reaction occurred:
staurolite + chlorite + muscovite ± biotite + andalusite + quartz + H2O.
The amount of retrogression is controlled primarily by the amount of H2O added by infiltration. As the syn-S3 matrix assemblage was stable during the development of S4, but the andalusite porphyroblasts were no longer stable with the matrix when H2O was added, the retrogression is focused in and around the porphyroblasts. With enough H2O available, and if quartz was consumed before biotite in a porphyroblast, then the following reaction occurred:
staurolite + chlorite + muscovite + corundum ± biotite + andalusite + H2O.
This reaction allowed corundum inclusions in the andalusite to grow, regardless of the presence of quartz in the matrix assemblage.  相似文献   

8.
New data strongly suggest that the classical spiral garnet porphyroblasts of south-east Vermont, USA, generally did not rotate, relative to geographical coordinates, throughout several stages of non-coaxial ductile deformation. The continuity of inclusion trails (Si) in these porphyroblasts is commonly disrupted by planar to weakly arcuate discontinuities, consisting of truncations and differentiation zones where quartz–graphite Si bend sharply into more graphitic Si. Discontinuous, tight microfold hinges with relatively straight axial planes are also present. These microstructures form part of a complete morphological gradation between near-orthogonally arranged, discontinuous inclusion segments and smoothly curving, continuous Si spirals. Some 2700 pitch measurements of well-developed inclusion discontinuities and discontinuous microfold axial planes were taken from several hundred vertically orientated thin sections of various strike, from specimens collected at 28 different locations around the Chester and Athens domes. The results indicate that the discontinuities have predominantly subvertical and subhorizontal orientations, irrespective of variations in the external foliation attitude, macrostructural geometry and apparent porphyroblast-matrix rotation angles. Combined with evidence for textural zoning, this supports the recent hypothesis that porphyroblasts grow incrementally during successive cycles of subvertical and subhorizontal crenulation cleavage development. Less common inclined discontinuities are interpreted as resulting from deflection of anastomosing matrix foliations around obliquely orientated crystal faces prior to inclusion. Most of the idioblastic garnet porphyroblasts have a preferred crystallographic orientation. Dimensionally elongate idioblasts also have a preferred shape orientation, with long axes orientated normal to the mica folia, within which epitaxial nucleation occurred. Truncations and differentiation zones result from the formation of differentiated crenulation cleavage seams against porphyroblast margins, in association with progressive and selective strain-induced dissolution of matrix minerals and locally also the porphyroblast margin. Non-rotation of porphyroblasts, relative to geographical coordinates, suggests that deformation at the microscale is heterogeneous and discontinuous in the presence of undeformed, relatively large and rigid heterogeneities, which cause the progressive shearing (rotational) component of deformation to partition around them. The spiral garnet porphyroblasts therefore preserve the most complete record of the complex, polyphase tectonic and metamorphic history experienced in this area, most of which was destroyed in the matrix by progressive foliation rotation and reactivation, together with recrystallization.  相似文献   

9.
Abstract In the Fleur de Lys Supergroup, western Newfoundland, inclusion trails in garnet and albite porphyroblasts indicate that porphyroblasts overgrew a crenulation foliation, without rotation, probably during the deformation event that produced the crenulations. Further deformation of the matrix resulted in strong re-orientation and retrograde metamorphism of the matrix foliation, which is consequently highly oblique to the crenulation foliation preserved in the porphyroblasts. The resulting matrix foliation locally preserves relics of the early crenulations, and also has itself been crenulated later in places. Thus the porphyroblasts grew before the later stages of deformation, rather than during the final stage, as had been suggested previously. The new interpretation is consistent with available 40Ar/39Ar cooling ages which indicate a late Ordovician-early Silurian metamorphic peak, rather than the Devonian peak suggested by previous workers. The inclusion patterns and microprobe data indicate normal outward growth of garnet porphyroblasts from a central nucleus, rather than as a series of veins as proposed by de Wit (1976a, b). However, the observations presented here support growth of porphyroblasts without rotation, which is implied by the de Wit model.  相似文献   

10.
Kyanite replaces andalusite in a belt of Ordovician and Silurian pelitic rocks that form a narrow synform pinched between high-grade antiforms in NW Variscan Iberia. Kyanite occurs across the belt in Al-rich, black pelites in assemblages I: kyanite–chloritoid–chlorite–muscovite and II: kyanite–staurolite– chlorite–muscovite. In I, kyanite occurs in the matrix and in kyanite–muscovite aggregates that pseudomorph earlier andalusite porphyroblasts. The aggregates are found across the belt and can still be recognized in assemblage II and even in III: andalusite–staurolite–biotite–muscovite, this latter being a hornfelsic Silurian schist where kyanite is relic and staurolite occurs in the matrix, and is resorbed inside new massive pleochroic andalusite. KFMASH and MnKFMASH pseudosections have been constructed using Thermocalc for Al-rich and Al-poorer compositions from the belt. Chloritoid zoning in Al-rich rocks containing assemblage I, plus chloritoid–chlorite thermometry complemented with garnet–chlorite thermometry in Al-poorer lithologies, mean that the path is one of increasing pressure and temperature. Conditions prior to assemblage I, with earlier andalusite stable, are those of the andalusite–chloritoid– chlorite field as testified by chloritoid enclosed in andalusite porphyroblast rims. The passage from assemblage I to II implies a prograde path within the kyanite field. Assemblage III represents peak conditions, indicating a prograde staurolite-consuming reaction across a KFMASH field, leading eventually to a locally found andalusite–biotite–muscovite hornfels. The lowest pressure stages are recorded by cordierite–biotite in Al-poor pelites. Garnet-bearing MnKFMASH assemblages in Al-poorer pelites record conditions similar to assemblages II and III. The replacement of andalusite by kyanite in assemblage I is attributed to downdragging of andalusite-bearing rocks into a synform as testified by the strained andalusite porphyroblasts affected by a subvertical crenulation cleavage. Prograde metamorphism in the eastern contact of the belt is due to heat transferred to the belt from the ascending high grade antiform across the Vivero fault.  相似文献   

11.
Inclusion – porphyroblast and porphyroblast – porphyroblast relationships show that abundant albite in mica schists in the Caledonides of the SW Scottish Highlands are part of the Barrovian metamorphic assemblage. Growth early in the D2 deformational phase of porphyroblast cores followed the growth of Mn‐rich garnet but preceded the growth of porphyroblasts of the index mineral almandine. Two sets of inclusion trails in the albite correspond to the regionally expressed S1 and S2. Straight trails of muscovite, chlorite, quartz, epidote and the earliest growth of biotite make up S1. Crenulated trails express deformation of S1 early in D2 with muscovite, chlorite, biotite, quartz, epidote and the Mn‐rich garnet associated with the development of S2 crenulation cleavage. The geometries of these trails uniquely record early stages of D2 deformational history. An 0?3 growth is related to the temporal coincidence of the formation of S1–S2 crenulation cleavage hinges as favourable sites for nucleation and the release of large amounts of water from prograde reactions during tectonothermal reconstitution of first cycle immature sediments with a volcanic component. The main characteristics of the regionally expressed D2 schistosity were developed during the major grain coarsening that followed both albite and almandine porphyroblast growth. Essentially inclusion‐free An 4?19 rims grew on the inclusion‐containing cores in the almandine zone in the later stages of schistosity growth and unoriented porphyroblasts of muscovite, biotite and chlorite indicate that mineral growth extended from the later stages of D2 to post‐D2. Previous interpretations of the albite porphyroblast growth having been during D4 to post‐D4 contemporaneous with retrogression are inconsistent with the microstructural evidence.  相似文献   

12.
The amphibolite facies Puolankajärvi Formation (PjF) occupies the western margin of the Early Proterozoic Kainuu Schist Belt (KSB) of northern Finland. The lower and middle parts of the PjF consist of turbiditic psammites and pelites and tempestitic semipelites. This report concentrates on the pelitic lithologies which include quartz–two-mica–plagioclase schists with variable amounts of garnet, staurolite, andalusite and biotite porphyroblasts as well as sillimanite and cordierite segregations. The KSB forms a major north–south-trending synclinorium between two Archaean blocks. It contains both autochthonous and allochthonous units and is cut by faults and shear zones. The PjF lies on the western side of the KSB and is probably allochthonous. The formation has undergone six major deformation phases (D1, D2, D3a, D3b, D4 and D5). During D3a-D5 the maximum principal stress (σ1) changed in a clockwise direction from south-west to north-east. Between D2 and D3 the intermediate principal stress (σ2) changed from horizontal to vertical and the interval between D2 and D3 marks a transition from thrust to strike-slip tectonics. Relict structures in the porphyroblasts indicate the following mineral growth–deformation evolution in the PjF. (1) Throughout the PjF there was a successive crystallization of garnet (syn-D1), poryphyroblastic biotite (inter-D3/4) and staurolite (inter-D3/4) during the pre-D4 stage. (2) A syn-D4-inter-D4/5 crystallization of kyanite, sillimanite (fibrolite), porphyroblastic tourmaline, magnetite, rutile, cordierite and muscovite–biotite–plagioclase pseudomorphs after staurolite was most localized at and near D4 shear zones. (3) A syn- to post-D5 generation of andalusite, ilmenohematite and sheet silicates after staurolite and after cordierite occurred near D5 faults. The evolution outlined here permits the relative dating of the PjF parageneses, which is used in the second part of the study (Tuisku & Laajoki, 1990), and, together with the knowledge of the pressure–temperature conditions during various growth events, makes it possible to compile pressure–temperature–deformation paths for the PjF.  相似文献   

13.
The staurolite–biotite–garnet–cordierite–andalusite–plagioclase–muscovite–quartz metapelitic mineral assemblage has been frequently interpreted in the literature as a result of superimposition of various metamorphic events, for example, in polymetamorphic sequences. The assemblage was identified in schists from the Ancasti metamorphic complex (Sierras Pampeanas of Argentina) where previous authors have favoured the polymetamorphic genetic interpretation. A pseudosection in the MnNCKFMASH system for the analysed XRF bulk composition predicts the stability of the sub‐assemblage staurolite–biotite–garnet–plagioclase–muscovite–quartz, and the compositional isopleths also agree with measured mineral compositions. Nevertheless, the XRF pseudosection does not predict any field with staurolite, andalusite and cordierite being stable together. As a result of more detailed modelling making use of the effective bulk composition concept, our interpretation is that the staurolite–biotite–garnet–plagioclase–muscovite–quartz sub‐assemblage was present at peak metamorphic conditions, 590 °C and 5.2 kbar, but that andalusite and cordierite grew later along a continuous P–T path. These minerals are not in mutual contact and are observed in separate microstructural domains with different proportions of staurolite. These domains are explained as a result of local reaction equilibrium subsystems developed during decompression and influenced by the previous peak crystal size and local modal distribution of staurolite porphyroblasts that have remained metastable. Thus, andalusite and cordierite grew synchronously, although in separate microdomains, and represent the decompression stage at 565 °C and 3.5 kbar.  相似文献   

14.
We describe strain localization by a mixed process of reaction and microstructural softening in a lower greenschist facies ductile fault zone that transposes and replaces middle to upper amphibolite facies fabrics and mineral assemblages in the host schist of the Littleton Formation near Claremont, New Hampshire. Here, Na‐poor muscovite and chlorite progressively replace first staurolite, then garnet, and finally biotite porphyroblasts as the core of the fault zone is approached. Across the transect, higher grade fabric‐forming Na‐rich muscovite is also progressively replaced by fabric‐forming Na‐poor muscovite. The mineralogy of the new phyllonitic fault‐rock produced is dominated by Na‐poor muscovite and chlorite together with late albite porphyroblasts. The replacement of the amphibolite facies porphyroblasts by muscovite and chlorite is pseudomorphic in some samples and shows that the chemical metastability of the porphyroblasts is sufficient to drive replacement. In contrast, element mapping shows that fabric‐forming Na‐rich muscovite is selectively replaced at high‐strain microstructural sites, indicating that strain energy played an important role in activating the dissolution of the compositionally metastable muscovite. The replacement of strong, high‐grade porphyroblasts by weaker Na‐poor muscovite and chlorite constitutes reaction softening. The crystallization of parallel and contiguous mica in the retrograde foliation at the expense of the earlier and locally crenulated Na‐rich muscovite‐defined foliation destroys not only the metastable high‐grade mineralogy, but also its stronger geometry. This process constitutes both reaction and microstructural softening. The deformation mechanism here was thus one of dissolution–precipitation creep, activated at considerably lower stresses than might be predicted in quartzofeldspathic rocks at the same lower greenschist facies conditions.  相似文献   

15.
Schists from the foothills of the Central Sierra Nevada contain one dominant matrix foliation and yet four phases of growth of both cordierite and andalusite porphyroblasts can be distinguished. These occurred early during four separate deformation events that formed successive steep and shallow foliations. A fifth deformation event pre-dates the growth of all porphyroblasts studied. The multiple phases of porphyroblast growth allow correlation of structures across and along the region. A repeated pattern of deformation, in terms of the curvature of earlier foliations against the overprinting one, allows samples containing porphyroblasts with simpler inclusion trail geometries to be interpreted with confidence. The large-scale fold structures in this region formed before or during the second of the five deformation events recorded by the porphyroblasts. However, the matrix foliation is predominantly a product of the fourth deformation, which has commonly reactivated or re-used older foliations, and is dominated by east-side-up shear. The intervening third deformation produced locally intense foliations and was accompanied by top-to-the-east shear. The very weak fifth deformation produced weak crenulations with subhorizontal axial planes and was coaxial. Multiple phases of episodic but synchronous growth of cordierite and andalusite were produced by the KFMASH univariant equilibrium Ms+Chl+Qtz=And+Crd+Bt+H2O. The rocks crossed this reaction at a pressure just below the intersection with the KFMASH divariant equilibrium Ms+Chl+Qtz=Crd+Bt+H2O; the latter being overstepped in favour of the former as there is no evidence for cordierite growth prior to andalusite in these rocks. Subsequent multiple episodes of synchronous growth of cordierite and andalusite indicate that the possible variation in P–T during subsequent deformations was not large. This requires the high-amplitude macroscopic fold to form prior to porphyroblast growth and then be simply tightened and modified by the younger deformations.  相似文献   

16.
A characteristic domainal configuration is reported for both micro-structures and c-axis fabrics in the Cap de Creus pure quartz mylonites as displayed in 50 samples from the centres of different shear zones. Three types of domains are found a, b and c. Each domain has a distinct c-axis orientation pattern. These three fabric elements, also labelled a, b and c make up the total fabric. c-axis fabrics are symmetric or asymmetric with respect to the main mylonitic foliation depending on the presence or absence of the b domain and its fabric element. The boundaries of the domains are parallel to the main mylonitic foliation. Two domain types, a and b display an internal foliation defined by preferred grain boundary alignment parallel to the direction of optical orientation within the domain. The internal foliations are oblique to the main mylonitic foliation in two different senses giving the sample a herring-bone appearance. These internal foliations are shown to be related to extensional crenulations. Domains are not produced by host-controlled recrystallization. The fabric elements and corresponding domains are the expression of kinematic heterogeneities on the scale of the thin section.  相似文献   

17.
Abstract The formation of spiral-shaped inclusion trails (SSITs) is problematical, and the two viable models for their formation involve opposite shear senses along the foliation in which the porphyroblasts are growing. One model argues for porphyroblast rotation, with respect to a geographically fixed reference frame, whereas the other argues for no such porphyroblast rotation, but instead rotation of the matrix foliation around the porphyroblast. Thus, porphyroblasts with SSITs cannot be used as shear-sense indicators until it is conclusively determined which model best explains them.
Any successful model must explain features associated with SSITs, including: (1) foliation truncation zones, (2) smoothly curving SSITs, (3) millipede microstructure, (4) total inclusion-trail curvature in median sections, (5) porphyroblasts with SSITs that have grown together, (6) evidence for relative porphyroblast displacements, (7) shear-sense indicators inside and outside porphyroblasts; (8) crenulations associated with porphyroblasts and (9) geometries in sections subparallel to spiral axes (axes of rotation). A detailed study of these features suggests that most, if not all, can be explained by both the rotational and non-rotational models, in spite of these models involving diametrically opposed movement senses. Therefore, geometrical analysis of individual porphyroblast microstructures may not determine which model best explains SSITs until the kinematics required to form these microstructures are better understood, in particular the sense of shear along a developing crenulation cleavage. Specific tests for determining the shear sense along crenulation cleavages are proposed, and results of such tests may conclusively resolve the debate over how SSITs form.  相似文献   

18.
《Journal of Structural Geology》2002,24(6-7):1139-1156
In metapelitic rocks of western Maine, a pluton-related M3 metamorphic gradient ranging in grade from garnet to upper sillimanite zone was superposed on a fairly uniform M2 regional metamorphic terrain characterized by the assemblage andalusite+staurolite+biotite+/−garnet. As a result, M2 assemblages re-equilibrated to the P, T, and aH2O conditions of M3, and both prograde and retrograde pseudomorphism of M2 porphyroblasts occurred. The type of pseudomorph and degree of development is directly related to the rock's position within the M3 metamorphic gradient, a function of its proximity to the Mooselookmeguntic pluton. Several ‘hinge’ zones occur in which the M3 minerals that pseudomorphed a particular M2 phase change. For example, M2 garnet was replaced by M3 chlorite or biotite, depending on its position within the M3 gradient. Similarly, in a transition zone between M3 upper staurolite and lower sillimanite zones, M2 staurolite was stable and shows M3 growth rims. Downgrade from this transition zone, staurolite was pseudomorphed by chlorite and muscovite, whereas upgrade, the pseudomorphs contain muscovite and some biotite. M3 pseudomorphs commonly retain crystal shapes of the original M2 porphyroblasts, reflecting relatively low regional deviatoric stress during and after M3. Although evidence for textural disequilibrium is common, chemical equilibrium was closely approached during M3. This study demonstrates for M3 that: (1) the pseudomorphic replacement was a constant volume process, and (2) fabrics produced by tectonic events can be erased by subsequent deformation and/or sufficiently intense subsequent recrystallization.  相似文献   

19.
Two sets of crenulations are associated with a major, Alleghanian, dextral shear zone which deformed stratigraphic and structural boundaries in the eastern Piedmont of South Carolina. Both sets of crenulation planes are oblique to the boundaries of the shear zone. The morphologies and orientations of the crenulation sets and their spatial distributions indicate that they are related to slip along foliation planes, and that they serve to compensate for displacement components of foliation slip normal to the overall movement direction in the shear zone. The crenulations act to maintain the initial thickness of the shear zone. Our evaluation of the recent literature on shear zones suggests that crenulations related to foliation slip are abundant and constitute a reliable sense of shear indicator.  相似文献   

20.
Greenschist facies schist which hosts the Macraes Mine in East Otago, New Zealand has been pervasively altered by post-metamorphic (lower greenschist facies) fluids over a 120 m thick section perpendicular to foliation. Metamorphic titanite has been replaced by rutile, and epidote has been replaced by a variety of metamorphic minerals including siderite, chlorite, muscovite and calcite. The early stages of this alteration occurred during development of a ductile cleavage associated with kilometre scale recumbent folding. The cleavage was widely overprinted by a subparallel set of spaced (mm scale) microshears which are locally enriched in rutile and hydrothermal graphite. Strain was then concentrated into narrow (m scale) zones where more intensely deformed portions of the rock are crossed and highly disrupted by closely spaced (100 μm scale) microshears. The highly strained rocks show a combination of mylonitic and cataclastic microstructures, including crystal-plastic grain size reduction and recrystallization of micas to form a new foliation. Muscovite has grown at the expense of albite in the mylonitic cataclasites. Hydrothermal alteration was accompanied by addition of pyrite, arsenopyrite and gold without development of quartz veins. Gold precipitated with sulphides during reduction of the fluid by hydrothermal graphite. The whole altered rock sequence was later cut sporadically by mesothermal quartz veins which contain gold, scheelite, rutile, pyrite and arsenopyrite. This deposit displays a continuum of post-metamorphic processes and hydrothermal fluid flow which occurred during uplift of the schist belt. Received: 4 December 1997 / Accepted: 21 September 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号