首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A survey of the modern physical setting of Lake El’gygytgyn, northeastern Siberia, is presented here to facilitate interpretation of a 250,000-year climate record derived from sediment cores from the lake bottom. The lake lies inside a meteorite impact crater that is approximately 18 km in diameter, with a total watershed area of 293 km2, 110 km2 of which is lake surface. The only surface water entering the lake comes from the approximately 50 streams draining from within the crater rim; a numbering system for these inlet streams is adopted to facilitate scientific discussion. We created a digital elevation model for the watershed and used it to create hypsometries, channel networks, and drainage area statistics for each of the inlet streams. Many of the streams enter shallow lagoons dammed by gravel berms at the lakeshore; these lagoons may play a significant role in the thermal and biological dynamics of the lake due to their higher water temperatures (>6°C). The lake itself is approximately 12 km wide and 175 m deep, with a volume of 14.1 km3. Water temperature within a column of water near the center of this oligotrophic, monomictic lake never exceeded 4°C over a 2.5 year record, though the shallow shelves (<10 m) surrounding the lake can reach 5°C in summer. Though thermally stratified in winter, the water appears completely mixed shortly after lake ice breakup in July. Mean annual air temperature measured about 200 m from the lake was −10.3°C in 2002, and an unshielded rain gage there recorded 70 mm of rain in summer of 2002. End of winter snow water equivalent on the lake was approximately 110 mm in May 2002. Analysis of NCEP reanalysis air temperatures (1948–2002) reveals that the 8 warmest years and 10 warmest winters have occurred since 1989, with the number of days below −30°C dropping from a pre-1989 mean of 35 to near 0 in recent years. The crater region is windy as well as cold, with hourly wind speeds exceeding 13.4 m s−1 (30 mph) typically at least once each month and 17.8 m s−1 (40 mph) in winter months, with only a few calm days per month; wind may also play an important role in controlling the modern shape of the lake. Numerous lines of evidence suggest that the physical hydrology and limnology of the lake has changed substantially over the past 3.6 million years, and some of the implications of these changes on paleoclimate reconstructions are discussed. This is the second in a series of eleven papers published in this special issue dedicated to initial studies of El'gygytgyn Crater Lake and its catchment in NE Russia. Julie Brigham-Grette, Martin Melles, Pavel Minyuk were guest editors of this special issue.  相似文献   

2.
We present a Holocene record of climate and environmental change in central New York (USA) inferred using lithologic and stable isotope data from two sediment cores recovered in Cayuga Lake. The record was divided into three intervals: (1) early Holocene (~11.6–8.8 ka), (2) Hypsithermal (~8.8–4.4 ka), and (3) Neoglacial (~4.4 ka to present). The early Holocene began abruptly, with rising lake level and relatively deep water. Between ~10.8 and 9.2 ka, cool and dry conditions prevailed at a time of maximum solar insolation. This anomaly has been referred to as the “post-Younger Dryas climate interval” and lasted ~1,600 years, the approximate length of one “Bond cycle.” The Hypsithermal was the warmest, wettest and most biologically productive interval of the Holocene in central New York. The Hypsithermal was characterized by centennial to multi-centennial-scale variability. The 8.2 ka event is one such variation. The Neoglacial was an interval of generally cooler and dryer conditions, falling lake levels, and several prominent climate anomalies. At approximately 2.4 ka, δ13C of bulk organic matter increased abruptly by 5‰ as lake level declined, and the lake flora was dominated by Chara sp. during the coldest interval of the Neoglacial. Numerous sediment variables display increased variability ~2.0 ka, which continues today. Archaeological data from the literature suggest that Native American populations may have been large enough to impact land cover by about 2.4 ka and we hypothesize that the “Anthropocene” began at about that time in central New York. We also found paleolimnological evidence for the Medieval Warm Period (~1.4–0.5 ka), which was warmer and wetter than today, and for the Little Ice Age (~500–150 years ago), a period with temperatures colder than today.  相似文献   

3.
Climatic conditions are difficult to obtain in high mountain regions due to few meteorological stations and, if any, their poorly representative location designed for convenient operation. Fortunately, it has been shown that remote sensing data could be used to estimate near-surface air temperature (Ta) and other climatic conditions. This paper makes use of recorded meteorological data and MODIS data on land surface temperature (Ts) to estimate monthly mean air temperatures in the southeastern Tibetan Plateau and its neighboring areas. A total of 72 weather stations and 84 MODIS images for seven years (2001 to 2007) are used for analysis. Regression analysis and spatio-temporal analysis of monthly mean Ts vs. monthly mean Ta are carried out, showing that recorded Ta is closely related to MODIS Ts in the study region. The regression analysis of monthly mean Ts vs. Ta for every month of all stations shows that monthly mean Ts can be rather accurately used to estimate monthly mean Ta (R2 ranging from 0.62 to 0.90 and standard error between 2.25℃ and 3.23℃). Thirdly, the retrieved monthly mean Ta for the whole study area varies between 1.62℃ (in January, the coldest month) and 17.29℃ (in July, the warmest month), and for the warm season (May-September), it is from 13.1℃ to 17.29℃. Finally, the elevation of isotherms is higher in the central mountain ranges than in the outer margins; the 0℃ isotherm occurs at elevation of about 4500±500 m in October, dropping to 3500±500 m in January, and ascending back to 4500±500 m in May next year. This clearly shows that MODIS Ts data combining with observed data could be used to rather accurately estimate air temperature in mountain regions.  相似文献   

4.
Quantitative reconstructions of mean July temperatures (T jul) based on new and previously published pollen-stratigraphical data covering the last 2000 years from 11 lakes in northern Fennoscandia and the Kola Peninsula are presented. T jul values are based on a previously published pollen-climate transfer function for the region with a root-mean-square error of prediction (RMSEP) of 0.99°C. The most obvious trend in the inferred temperatures from all sites is the general decrease in T jul during the last 2000 years. Pollen-inferred T jul values on average 0.18 ± 0.56°C (n = 91) higher than present (where “present” refers to the last three decades based on pollen-inferred T jul in core-top samples) are indicated between 0 and 1100 AD (2000–850 cal year BP), and temperatures −0.2 ± 0.47°C (n = 78) below present are inferred between 1100 and 1900 AD (850–50 cal year BP). No consistent temperature peak is observed during the ‘Medieval Warm Period’, ca. 900–1200 AD (1100–750 cal year BP), but the cooler period between 1100 and 1900 AD (850–50 cal year BP) corresponds in general with the ‘Little Ice Age’ (LIA). Consistently with independent stable isotopic data, the composite pollen-based record suggests that the coldest periods of the LIA date to 1500–1600 AD (450–350 cal year BP) and 1800–1850 AD (150–100 cal year BP). An abrupt warming occurred at about 1900 AD and the twentieth century is the warmest century since about 1000 AD (950 cal year BP).
A. E. BjuneEmail:
  相似文献   

5.
We explored the potential for using Pediastrum (Meyen), a genus of green alga commonly found in palaeoecological studies, as a proxy for lake-level change in tropical South America. The study site, Laguna La Gaiba (LLG) (17°45′S, 57°40′W), is a broad, shallow lake located along the course of the Paraguay River in the Pantanal, a 135,000-km2 tropical wetland located mostly in western Brazil, but extending into eastern Bolivia. Fourteen surface sediment samples were taken from LLG across a range of lake depths (2–5.2 m) and analyzed for Pediastrum. We found seven species, of which P. musteri (Tell et Mataloni), P. argentiniense (Bourr. et Tell), and P. cf. angulosum (Ehrenb.) ex Menegh. were identified as potential indicators of lake level. Results of the modern dataset were applied to 31 fossil Pediastrum assemblages spanning the early Holocene (12.0 kyr BP) to present to infer past lake level changes qualitatively. Early Holocene (12.0–9.8 kyr BP) assemblages do not show a clear signal, though abundance of P. simplex (Meyen) suggests relatively high lake levels. Absence of P. musteri, characteristic of deep, open water, and abundance of macrophyte-associated taxa indicate lake levels were lowest from 9.8 to 3.0 kyr BP. A shift to wetter conditions began at 4.4 kyr BP, indicated by the appearance of P. musteri, though inferred lake levels did not reach modern values until 1.4 kyr BP. The Pediastrum-inferred mid-Holocene lowstand is consistent with lower precipitation, previously inferred using pollen from this site, and is also in agreement with evidence for widespread drought in the South American tropics during the middle Holocene. An inference for steadily increasing lake level from 4.4 kyr BP to present is consistent with diatom-inferred water level rise at Lake Titicaca, and demonstrates coherence with the broad pattern of increasing monsoon strength from the late Holocene until present in tropical South America.  相似文献   

6.
Sediments in Lower Murray Lake, northern Ellesmere Island, Nunavut Canada (81°21′ N, 69°32′ W) contain annual laminations (varves) that provide a record of sediment accumulation through the past 5000+ years. Annual mass accumulation was estimated based on measurements of varve thickness and sediment bulk density. Comparison of Lower Murray Lake mass accumulation with instrumental climate data, long-term records of climatic forcing mechanisms and other regional paleoclimate records suggests that lake sedimentation is positively correlated with regional melt season temperatures driven by radiative forcing. The temperature reconstruction suggests that recent temperatures are ~2.6°C higher than minimum temperatures observed during the Little Ice Age, maximum temperatures during the past 5200 years exceeded modern values by ~0.6°C, and that minimum temperatures observed approximately 2900 varve years BC were ~3.5°C colder than recent conditions. Recent temperatures were the warmest since the fourteenth century, but similar conditions existed intermittently during the period spanning ~4000–1000 varve years ago. A highly stable pattern of sedimentation throughout the period of record supports the use of annual mass accumulation in Lower Murray Lake as a reliable proxy indicator of local climatic conditions in the past.
Pierre FrancusEmail:
  相似文献   

7.
8.
河西地区近40a来气候变化与风沙活动   总被引:5,自引:3,他引:2  
杨建平  刘连友 《中国沙漠》2001,21(Z1):92-95
利用1951- 1990年14站的年平均气温、降水和大风日数资料,对近40 a来河西地区气候特征作了初步分析。结果表明, 50年代最暖, 60年代最冷, 70年代后气温开始回升但低于50年代的水平。河西地区40 a来是变冷的,全区年平均温度40 a下降了0.21℃,西部下降了0.27℃,东部下降了0.13℃。全区50年代雨量较多, 60年代是近40 a来的最干旱期, 70年代为最湿润期, 80年代又趋于干旱,总体上降水略有增加。最干旱期与最冷期对应,最多雨期并非最高温期,在温度开始回升时降水量最大,雨量与温度的变化并不同步,降水滞后于温度。40 a来河西西部大风日数是增加的,东部是减少的。高温少雨大风日数少,低温少雨大风日数较多,温度开始回升降水达到最大时,大风日数最多。春季大风日数最多,夏季次之,秋冬相差不大。  相似文献   

9.
Fossil assemblages of chironomid larvae (non-biting midges) preserved in lake sediments are well-established paleothermometers in north-temperate and boreal regions, but their potential for temperature reconstruction in tropical regions has never before been assessed. In this study, we surveyed sub-fossil chironomid assemblages in the surface sediments of 65 lakes and permanent pools in southwestern Uganda (including the Rwenzori Mountains) and central and southern Kenya (including Mount Kenya) to document the modern distribution of African chironomid communities along the regional temperature gradient covered by lakes situated between 489 and 4,575 m above sea level (a.s.l). We then combined these faunal data with linked Surface-Water Temperature (SWTemp: range 2.1–28.1°C) and Mean Annual Air Temperature (MATemp: range 1.1–24.9°C) data to develop inference models for quantitative paleotemperature reconstruction. Here we compare and discuss the performance of models based on different numerical techniques [weighted-averaging (WA), weighted-averaging partial-least-squares (WA-PLS) and a weighted modern analogue technique (WMAT)], and on subsets of lakes with varying gradient lengths of temperature and other environmental variables. All inference models calibrated against MATemp have a high coefficient of determination ( r\textjack2 r_{\text{jack}}^{2}  = 0.81–0.97), low maximum bias (0.84–2.59°C), and low root-mean-squared error of prediction (RMSEP = 0.61–1.50°C). The statistical power of SWTemp models is generally weaker ( r\textjack2 r_{\text{jack}}^{2}  = 0.77–0.95; maximum bias 1.55–3.73°C; RMSEP = 1.39–1.98°C), likely because the surface-water temperature data are spot measurements failing to catch significant daily and seasonal variation. Models based on calibration over the full temperature gradient suffer slightly from the limited number of study sites at intermediate elevation (2,000–3,000 m), and from the presence of morphologically indistinguishable but ecologically distinct taxa. Calibration confined to high-elevation sites (>3,000 m) has poorer error statistics, but is less susceptible to biogeographical and taxonomic complexities. Our results compare favourably with chironomid-based temperature inferences in temperate regions, indicating that chironomid-based temperature reconstruction in tropical Africa can be achieved.  相似文献   

10.
This study uses 239+240Pu-dated varved sediments from Big Round Lake, a proglacial lake on northeast Baffin Island, Arctic Canada to generate a 1000-year-long, annual-resolution record of past climate. Varve thickness is positively correlated with July–August–September temperature measured at Clyde River, 70 km to the north of the lake (r = 0.46, p < 0.001). We therefore interpret the variability and trends in varve thickness to partially represent summer temperature. The coolest Little Ice Age temperatures occurred in this record from 1575 to 1760 AD and were approximately 1.5°C cooler than today (average from 1995 to 2005 AD) and 0.2°C cooler than the last millennium (average from 1000 to 2000 AD). Pre-twentieth-century warmth occurred during two intervals, 970–1150 AD and 1375–1575 AD; temperatures were approximately 1.2°C cooler than today, but 0.1°C warmer than the last millennium. The Big Round Lake varve-thickness record contains features similar to that reconstructed elsewhere in the eastern Canadian Arctic. This high-resolution quantitative record expands our understanding of arctic climate during the past millennium.
Elizabeth K. ThomasEmail:
  相似文献   

11.
《极地研究》1995,6(2):76-81
AnnualvariationsinthemeteorologicalparametersatJinnahStation,EastAntarcticaTariqMasoodAliKhan;D.A.RazzaqandM.M.Rabbani(Nation...  相似文献   

12.
The Qinling Mountain Range (33°–34°30′N, 107°–111°E; 3,767 m a.s.l.) lies south of the Chinese Loess Plateau and functions as the boundary between ‘north’ and ‘south’ China. Taibai Mountain (33°41′–34°10′N, 107°19′–107°58′E; 3,767 m a.s.l.) is the central massif and highest part of the range and is the highest mountain in eastern and central China, east of 105°E. It is also one of two mountains higher than the modern climatic timberline and the only one where high alpine lakes (>2,500 m a.s.l.) exist in eastern and central China. Sediments were recovered from Foye Chi (33°57′N, 107°44′E; 3,410 m a.s.l.), a small lake on the southern slope of the mountain, and measured for magnetic properties. Chronological control was achieved with AMS 14C dating. Combined with analyses of particle-size, TOC, C/N, δ13Corg and pollen in these sediments, and magnetic properties of catchment soils, the mineral-magnetic data reveal late Holocene palaeoenvironmental changes on the high-altitude southern slope of Taibai Mountain. Climate gradually ameliorated about 2,300 cal yr BP and warm and wet conditions occurred afterwards, culminating from 1,700 to 1,510 cal yr BP. The climate began to deteriorate at 1,510 cal yr BP, but was still warmer and wetter than present until ~663 cal yr BP. Cool, arid conditions peaked and were cooler and drier than the present at 663–290 cal yr BP, coincident with the Little Ice Age. Climate became warmer and more humid again after 290 cal yr BP. Data from these less anthropologically-disturbed alpine-lake sediments provide a record of late Holocene palaeoenvironmental change that supplements information from historical documents and literature for eastern and central China.  相似文献   

13.
This study investigated the potential global distributional shifts of poikilothermic invasive crop pest species associated with climate change, aiming to understand if their overall global distributions will expand or contract, and how the species distributions will vary across different regions. An ecological niche modelling analysis was conducted for 76 species. The potential distributional changes of the species in 2050 and 2070 were scrutinized for two climate change scenarios, which were further examined across different temperature and precipitation ranges. Results showed that averages of the mean probabilities of presence of the 76 crop pest species were predicted to increase. Higher species turnovers were predicted mostly to occur in areas with increasing predicted species richness. Lower species turnovers, however, were predicted mostly to occur in areas with decreasing predicted species richness. Species richness increases were predicted to occur more often in currently lower temperature (annual mean temperature approximately < 21 °C) or lower precipitation (annual precipitation approximately < 1100 mm) regions. Areas with the current annual mean temperatures at around 27 °C and 7.5 °C, respectively, were predicted to experience the highest decrease and increase in species richness as the climate warms. In conclusion, climate change is likely to expand the pest species’ overall distribution across the globe. It could have more profound impacts on the species distributions of those regions where species richness increases are expected, by altering the species’ community compositions.  相似文献   

14.
A 12.87-m-long sediment core was retrieved from closed-basin Lake Daihai in the monsoon–arid transition zone of north-central China. Oxides of major elements and their ratios normalized to Al in the AMS-14C-dated core were employed to evaluate chemical weathering intensity (CWI) in the lake drainage basin, which reflects hydrothermal conditions in the study area. Lower CWI periods occurred prior to 14.5 ka BP, and during the intervals ca. 11.7–10.3, 3.5–3.2, 2.6–1.7 ka BP, and 1.2–0 ka BP, indicating relatively low temperatures and moisture availability. Greater CWI during the intervening periods ca. 14.5–11.7, 10.3–9.0, 3.2–2.6, and 1.7–1.2 ka BP, with the maximum CWI at ca. 6.7–3.5 ka BP, imply ameliorated hydrothermal conditions in the lake basin, i.e. higher temperatures and precipitation. Exceptionally low CWI, associated with high CaO/MgO ratio during ca. 9.0–6.7 ka BP, suggests higher evaporation rates in the area under warmer temperature. Overall, CWI displays in-phase variations with changes in organic matter (TOC, TN), carbonate (CaCO3) and pollen assemblages, all of which are related to variations in monsoon effective precipitation. High CWI indicates strong monsoon-induced precipitation, whereas low CWI reflects a weak precipitation regime. The optimum hydrothermal status, recorded by the strongest CWI and maximum monsoon effective precipitation during ca. 6.7–3.5 ka BP defines the Holocene climate optimum (HCO) in the Lake Daihai region. These results indicate that the HCO prevails after the early Holocene in the monsoon–arid transition zone of north-central China. Temperature and precipitation variations during most of the Holocene, inferred from the lake sediments, are due largely to insolation forcing. Dry but warm conditions ca. 9.0–6.7 ka BP, however, probably reflect the complex interactions between insolation and geography (e.g. altitude and local topography).  相似文献   

15.
Knowledge of paleoclimates and past climate change is important to put recent and future climate change in perspective. In the absence of well-developed methodology to reconstruct paleoprecipitation the majority of climate reconstructions focus on temperature, whereas precipitation is an equally important climate parameter. This paper explores the possibility of inferring paleoprecipitation from lake-level records by inverse hydrological modelling. Pollen spectra of a lacustrine sediment core were used to infer changes in past temperatures and lake levels during the past 14,000 years. A hydrological model that calculates lake levels using meteorological parameters and a digital terrain model were developed for the catchment area of Lake La Cocha. After calibration the model accurately simulated modern lake levels. A sensitivity analysis shows that the model results are most sensitive to temperature and precipitation. This hydrological model was subsequently used to estimate mean annual precipitation needed to reproduce the pollen-based reconstructed lake levels (inverse modelling). The lake currently discharges through the permanent Guamués River, with a modelled mean annual discharge of 3.6 m3 s?1. However, past lake levels and hydrological modelling results suggest that Lake La Cocha has been free of discharge during most of the Holocene, and after an intermittent phase only recently started discharging permanently. The uncertainty in the inferred precipitation during the discharge-free period is estimated at ~22 mm. Quasi stable lake levels seem to justify using equilibrium conditions when reconstructing precipitation. Early Holocene lake levels were ~10 m lower than modern values, implying that precipitation must have been 30–40 % less than today.  相似文献   

16.
In 1999, the large surface-rupturing earthquakes of Izmit and Duzce completed a 60-year cycle that included a westward migration of nine consecutive large earthquake failures (>50 km surface rupture), which started with the 1939 Erzincan earthquake in eastern Turkey. In this study, we focused on seismic cycles and seismic risk predictability along the North Anatolian Fault (NAF). Toward the west end of the NAF (26°E–32°E, i.e. Bolu), large earthquake frequency is measured from either historic earthquake catalogs, or geologic records from isolated outcrops and marine sediment cores from the Marmara Sea. In comparison, the eastern part of the NAF zone (32°E–42°E) is less well documented by palaeo-seismologic archives. Thus, the sediment records of lake basins located on the eastern NAF zone constitute a unique opportunity for testing a new palaeo-seismologic approach. To this end, we used a diverse array of complementary methods involving: (1) a 600-km transect of fault-related lakes, (2) sedimentologic observations on cores from six lakes, and (3) a comparison between records of catastrophic sediment transfers in lakes (i.e. radionuclide chronomarkers and erosion tracers) and historic earthquake reports. Our study indicates that lakes along the NAF are sensitive geologic recorders of large surface-rupturing earthquakes (surface-wave magnitude (M s) ≥ 6.9); smaller intensities are not recorded. The most responsive lake systems exhibit increases in sediment accumulation by a factor of >40 for a >3-m strike-slip displacement (M s ≥ 7). However, based on results from the 1939 Erzincan earthquake (M s = 7.8) chronostratigraphic marker, large surface-rupturing earthquakes are detected only by certain lake records and not by others. Matching multiple lake records along the NAF provides information both on the location of a surface rupture of a paleo-earthquake as well as its magnitude. Finally, the shallow lake basins along the NAF could potentially document cycles of large seismic events for at least the late Holocene.  相似文献   

17.
Geochemical data obtained from X-ray fluorescence, physical properties, total organic and inorganic carbon content (TOC/TIC), and diatom analysis from a 6.61-m-long sedimentary sequence near the modern northern shore of Lake Zirahuen (101° 44′ W, 19° 26′ N, 2000 m asl) provide a reconstruction of lacustrine sedimentation during the last approximately 17 cal kyr BP. A time scale is based on ten AMS 14C dates and by tephra layers from Jorullo (AD 1759-1764) and Paricutin (AD 1943-1952) volcanoes. The multiproxy analyses presented in this study reveal abrupt changes in environmental and climatic conditions. The results are compared to the paleo-record from nearby Lake Patzcuaro. Dry conditions and low lake level are inferred in the late Pleistocene until ca. 15 cal kyr BP, followed by a slight but sustained increase in lake level, as well as a higher productivity, peaking at ca. 12.1 cal kyr BP. This interpretation is consistent with several regional climatic reconstructions in central Mexico, but it is in opposition to record from Lake Patzcuaro. A sediment hiatus bracketed between 12.1 and 7.2 cal kyr BP suggests a drop in lake level in response to a dry early Holocene. A deeper, more eutrophic and turbid lake is recorded after 7.2 cal kyr BP. Lake level at the coring site during the mid Holocene is considered the highest for the past 17 cal kyr BP. The emplacement of the La Magueyera lava flows (LMLF), dated by thermoluminiscence at 6560 ± 950 year, may have reduced basin volume and contributed to the relative deepening of the lake after 7.2 cal kyr BP. The late Holocene (after 3.9 cal kyr BP) climate is characterized by high instability. Extensive erosion, lower lake levels, dry conditions and pulses of high sediment influx due to high rainfall are inferred for this time. Further decrease in lake level and increased erosion are recorded after ca. AD 1050, at the peak of Purepechas occupation (AD 1300–1521), and until the eighteenth century. Few lacustrine records extend back to the late Pleistocene—early Holocene in central Mexico; this paper contributes to the understanding of late Pleistocene-Holocene paleoclimates in this region.  相似文献   

18.
Antarctic climate changes influence environmental changes at both regional and local scales. Here we report Holocene paleolimnological changes in lake sediment core Sk4C-02 (length 378.0 cm) from Lake Skallen Oike in the Soya Kaigan region of East Antarctica inferred from analyses of sedimentary facies, a range of organic components, isotope ratios of organic carbon and nitrogen, and carbon-14 dating by Tandetron accelerator mass spectrometry. The sediment core was composed of clayish mud (378.0–152.5 cm) overlain by organic sediments (152.5 cm-surface). The age of the surface and the core bottom were 150 (AD1950-1640) and ca. 7,030 ± 73 calibrated years before present (cal BP), respectively, and the mean sedimentation rate was estimated to be 0.55 mm/year. Multi-proxy analyses revealed that the principal environmental change in the core is a transition from marine to lacustrine environments which occurred at a depth of 152.5 cm (ca. 3,590 cal BP). This was caused by relative sea level change brought about by ongoing retreat of glaciers during the mid-Holocene warming of Antarctica, and ongoing isostatic uplift which outpaced changes in global (eustatic) sea level. The mean isostatic uplift rate was calculated to be 2.8 mm/year. The coastal marine period (378.0–152.5 cm, ca. 7,030–3,590 cal BP) was characterized by low biological production with the predominance of diatoms. During the transition period from marine to freshwater conditions (152.5-approximately 135 cm, ca. 3,590–3,290 cal BP) the lake was stratified with marine water overlain by freshwater, with a chemocline and an anoxic (sulfidic) layer in the bottom of the photic zone. Green sulfur bacteria and Cryptophyta were the major photosynthetic organisms. The Cryptophyta appeared to be tolerant of the moderate salinity and stratified water conditions. The lacustrine period (approximately 135 cm-surface, ca. 3,290 cal BP-present) was characterized by high biological production by green algae (e.g. Comarium clepsydra and Oedegonium spp.) with some contributions from cyanobacteria and diatoms. Biological production during this period was 8.7 times higher than during the coastal marine period.  相似文献   

19.
We developed an inference model to infer dissolved organic carbon (DOC) in lakewater from lake sediments using visible-near-infrared spectroscopy (VNIRS). The inference model used surface sediment samples collected from 160 Arctic Canada lakes, covering broad latitudinal (60–83°N), longitudinal (71–138°W) and environmental gradients, with a DOC range of 0.6–39.6 mg L−1. The model was applied to Holocene lake sediment cores from Sweden and Canada and our inferences are compared to results from previous multiproxy paleolimnological investigations at these two sites. The inferred Swedish and Canadian DOC profiles are compared, respectively, to inferences from a Swedish-based VNIRS-total organic carbon (TOC) model and a Canadian-based diatom-inferred (Di-DOC) model from the same sediment records. The 5-component Partial Least Squares (PLS) model yields a cross-validated (CV) RCV2 R_{CV}^{2}  = 0.61 and a root mean squared error of prediction (RMSEP CV ) = 4.4 mg L−1 (11% of DOC gradient). The trends inferred for the two lakes were remarkably similar to the VNIRS-TOC and the Di-DOC inferred profiles and consistent with the other paleolimnological proxies, although absolute values differed. Differences in the calibration set gradients and lack of analogous VNIRS signatures in the modern datasets may explain this discrepancy. Our results corroborate previous geographically independent studies on the potential of using VNIRS to reconstruct past trends in lakewater DOC concentrations rapidly.  相似文献   

20.
The oxygen isotope ratios of diatoms (δ18Odiatom), and the oxygen and hydrogen isotope ratios of lake water (δW) of lakes in south Alaska provide insight into past changes in atmospheric circulation. Lake water was collected from 31 lakes along an elevation transect and diatoms were isolated from lake sediment from one lake (Mica Lake) in south Alaska. In general, δW values from coastal lakes overlap the global meteoric water line (GMWL). δW values from interior lakes do not lie on the GMWL; they fall on a local evaporation line trajectory suggesting source isotopes are depleted with respect to maritime lakes. Sediment cores were recovered from 58 m depth in Mica Lake (60.96° N, 148.15° W; 100 m asl), an evaporation-insensitive lake in the western Prince William Sound. Thirteen calibrated 14C ages on terrestrial macrofossil samples were used to construct an age-depth model for core MC-2, which spans 9910 cal years. Diatoms from 46, 0.5-cm-thick samples were isolated and analyzed for their oxygen isotope ratios. The analyses employed a newly designed, stepwise fluorination technique, which uses a CO2 laser-ablation system, coupled to a mass spectrometer, and has an external reproducibility of ±0.2‰. δ18Odiatom values from Mica Lake sediment range between 25.2 and 29.8‰. δ18Odiatom values are relatively uniform between 9.6 and 2.6 ka, but exhibit a four-fold increase in variability since 2.6 ka. High-resolution sampling and analyses of the top 100 cm of our lake cores suggest large climate variability during the last 2000 years. The 20th century shows a +4.0‰ increase of δ18Odiatom values. Shifts of δ18Odiatom values are likely not related to changes in diatom taxa or dissolution effects. Late Holocene excursions to lower δ18Odiatom values suggest a reduction of south-to-north storm trajectories delivered by meridional flow, which likely corresponds to prolonged intervals when the Aleutian Low pressure system weakened. Comparisons with isotope records of precipitation (δP) from the region support the storm-track hypothesis, and add to evidence for variability in North Pacific atmospheric circulation during the Holocene.
Zachary SharpEmail:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号