首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A U(1)-symmetric Yang-Mills-Higgs (i.e., an Abelian Higgs) sunspot's model is recognized to originate from a massless, complex-valued scalar field coupled minimally to electromagnetic gauge potentials in the background of a (globally)conformally symmetric semi-metric spacetime, whose metric structure is described by the generalized Einstein equations with nonvanishing (positive-valued) cosmological constant. It is shown, in particular, that non-linearity (selfcoupling) of the scalar field appears due to a non-zeroness of the cosmological term, whereas its non-zero vacuum amplitude is induced by the (Ricci scalar) curvature of the Sun's spacetime manifold.  相似文献   

2.
The scalar field theory on the background of cosmological models with n(n ≥ 1) spaces of constant curvature is considered. We take the integrable case of Ricci flat internal spaces. The coupling between the scalar and the gravitational fields includes the minimal coupling as well as the conformal case. In the ground state of the scalar field we find the conditions for vacuum instability realized for most of the possible solutions to Einstein's equations if the coupling parameter takes appropriate values. For the excited states of the scalar field we show the induction of massive modes and discuss their properties.  相似文献   

3.
Cosmological electrovac field equations are studied in Bertotti-Robinson-type space-time, and a class of cosmological solutions is obtained. The nature of the electromagnetic fields and singularities of the solution is studied. A technique is established to generate these solutions from a known vacuum solution with a non-zero cosmological constant.  相似文献   

4.
Plane-symmetric solutions of Einstein's field equations in vacuum, in the presence of electromagnetic fields and with cosmological constant are explored in null coordinates. The gravitational field of an infinite plane (uncharged and charged both) is thus obtained in a simple and systematic way. The method adopted for these solutions has possibilities of generalization.  相似文献   

5.
We review the possible mechanisms for the generation of cosmological magnetic fields, discuss their evolution in an expanding Universe filled with the cosmic plasma and provide a critical review of the literature on the subject. We put special emphasis on the prospects for observational tests of the proposed cosmological magnetogenesis scenarios using radio and gamma-ray astronomy and ultra-high-energy cosmic rays. We argue that primordial magnetic fields are observationally testable. They lead to magnetic fields in the intergalactic medium with magnetic field strength and correlation length in a well defined range.We also state the unsolved questions in this fascinating open problem of cosmology and propose future observations to address them.  相似文献   

6.
This short paper gives a brief overview of the manifestly covariant canonical gauge gravity (CCGG) that is rooted in the De Donder-Weyl Hamiltonian formulation of relativistic field theories, and the proven methodology of the canonical transformation theory. That framework derives, from a few basic physical and mathematical assumptions, equations describing generic matter and gravity dynamics with the spin connection emerging as a Yang Mills-type gauge field. While the interaction of any matter field with spacetime is fixed just by the transformation property of that field, a concrete gravity ansatz is introduced by the choice of the free (kinetic) gravity Hamiltonian. The key elements of this approach are discussed and its implications for particle dynamics and cosmology are presented. New insights: Anomalous Pauli coupling of spinors to curvature and torsion of spacetime, spacetime with (A)dS ground state, inertia, torsion and geometrical vacuum energy, Zero-energy balance of the Universe leading to a vanishing cosmological constant and torsional dark energy.  相似文献   

7.
We study a gravitational model in which scale transformations play the key role in obtaining dynamical G and Λ. We take a non-scale invariant gravitational action with a cosmological constant and a gravitational coupling constant. Then, by a scale transformation, through a dilaton field, we obtain a new action containing cosmological and gravitational coupling terms which are dynamically dependent on the dilaton field with Higgs type potential. The vacuum expectation value of this dilaton field, through spontaneous symmetry breaking on the basis of anthropic principle, determines the time variations of G and Λ. The relevance of these time variations to the current acceleration of the universe, coincidence problem, Mach’s cosmological coincidence and those problems of standard cosmology addressed by inflationary models, are discussed. The current acceleration of the universe is shown to be a result of phase transition from radiation toward matter dominated eras. No real coincidence problem between matter and vacuum energy densities exists in this model and this apparent coincidence together with Mach’s cosmological coincidence are shown to be simple consequences of a new kind of scale factor dependence of the energy momentum density as ρa −4. This model also provides the possibility for a super fast expansion of the scale factor at very early universe by introducing exotic type matter like cosmic strings.  相似文献   

8.
Exact solutions of the semi-classical Einstein equations for conformally invariant free quantum fields in an homogeneous and isotropic space-time, with cosmological constant and containing a classical scalar field, dust matter, an unquantised Dirac field and electromagnetic radiation are found. The initial behaviour of the semiclassical models is investigated. Some of the solutions found avoid the singularity and do not have particle horizons. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Non-static inhomogeneous cosmological models are obtained in general relativity for the case of a plane symmetric massless scalar field with cosmological constant A,when the source of the gravitational field is a viscous fluid.Some physical and geometrical behaviors of the solutions are also discussed.  相似文献   

10.
Bianchi type V cosmological models are studied that contain a relativistic ideal Boltzmann gas. The effect of a cosmological constant upon the space-time geometry is also considered. In both high and low temperature limit the general solution of the Einstein gravitational field equations can be expressed in an exact closed parametric form. At final stages, depending on the presence or absence of the cosmological constant, cosmologies are driven to an isotropic inflationary open de Sitter type Universe or to an isotropic open Friedmann era.  相似文献   

11.
In this paper we have investigated the effect of magnetic field on an orthogonal Bianchi type-I inflationary cosmological model using the concept of Higgs field. It has been investigated that the expansion and inflation in the model increases as the magnetic field increases. To get inflationary model we have assumed a mass less scalar field with flat potential V(φ)that has flat region. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Space distribution of an ideal cluster of galaxies in steady state for various negative cosmological constants is solved numerically. The galaxy members in the ideal cluster are considered point objects with equal masses. This is an extension of the classical LANE-EMDEN isothermal sphere to negative cosmological constant.  相似文献   

13.
Bianchi type I cosmological models are studied that contain a nonbarotropic relativistic Boltzmann gas. The effect of a cosmological constant is considered too. In the limit of small temperatures the general solution of the Einstein gravitational field equations can be expressed in an exact closed parametrical form. At final stages, depending on the presence or absence of the cosmological constant, cosmologies are driven to an isotropic inflationary de Sitter Universe or to an isotropic Friedmann era. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Einstein field equations with variable gravitational and cosmological constants are considered in the presence of perfect fluid for Robertson-Walker universe by assuming the cosmological term proportional to the Hubble parameter. This variation law for vacuum density has recently been proposed by Schützhold on the basis of quantum field estimations in the curved and expanding background. The cosmological term tends asymptotically to a genuine cosmological constant and the model tends to a deSitter universe. We obtain that the present universe is accelerating with a large fraction of cosmological density in the form of cosmological term.  相似文献   

15.
The gravitational field equations in Dunn's scalar-tensor theory of gravitation are generalized by including a cosmological constant. The resulting equations are solved for a Robertson-Walker line-element with flat three-space. The solution represents a cosmological model that develops into an inflationary era.  相似文献   

16.
Cosmological solutions are examined in the proper representation of the JBD theory with a dominant nonminimally coupled scalar field. It is shown that only the introduction of a cosmological scalar that transforms to the ordinary cosmological constant in the Einstein representation enables a phase of evolution with a uniform and then an accelerated expansion of the universe over cosmological time scales. __________ Translated from Astrofizika, Vol. 48, No. 4, pp. 633–640 (November 2005).  相似文献   

17.
Einstein field equations with variable gravitational and cosmological constants are considered in the presence of perfect fluid for Bianchi type-I universe by assuming the cosmological term proportional to the Hubble parameter. This variation law for vacuum density has recently been proposed by Schützhold on the basis of quantum field estimations in the curved and expanding background. The model obtained approaches isotropy. The cosmological term tends asymptotically to a genuine cosmological constant, and the model tends to a deSitter universe. We obtain that the present universe is accelerating with a large fraction of cosmological density in the form of cosmological term.  相似文献   

18.
Homogeneous cosmological models are investigated within the framework of low- energy string gravitation with loop corrections. Various conformai representations of the effective action are considered. Without specifying the correction functions in the Lagrangian, cosmological solutions are found with an arbitrary curvature and with dilaton fields, moduli fields, and Kalb- Ramond fields corresponding to a source with an extremely stiff equation of state. They generalize previously known solutions of the tree approximation. The behavior of the solutions in different asymptotic domains is investigated. Translated from Astrofizika, Vol. 41, No. 2, pp. 277–295, April-June, 1998.  相似文献   

19.
Einstein's field equations with variable gravitational and cosmological constants are considered in the presence of perfect fluid for a Robertson-Walker universe by assuming the cosmological term to be proportional to R-m(R is a scale factor and m is a constant).A variety of solutions is presented.The physical significance of the cosmological models has also been discussed.  相似文献   

20.
Einstein's field equations with variable gravitational and cosmological constants are considered in the presence of perfect fluid for the Bianchi type-Ⅰ universe by assuming that the cosmological term is proportional to R-m(R is a scale factor and m is a constant).A variety of solutions are presented.The physical significance of the respective cosmological models are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号