首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Jackson  Bernard V.  Hick  P. Paul 《Solar physics》2002,211(1-2):345-356
The Air Force/NASA Solar Mass Ejection Imager (SMEI) will provide two-dimensional images of the sky in visible light with high (0.1%) photometric precision, and unprecedented sky coverage and cadence. To optimize the information available from these images they must be interpreted in three dimensions. We have developed a Computer Assisted Tomography (CAT) technique that fits a three-dimensional kinematic heliospheric model to remotely-sensed Thomson scattering observations. This technique is designed specifically to determine the corotating background solar wind component from data provided by instruments like SMEI. Here, we present results from this technique applied to the Helios spacecraft photometer observations. The tomography program iterates to a least-squares solution of observed brightnesses using solar rotation, spacecraft motion and solar wind outflow to provide perspective views of each point in space covered by the observations. The corotational tomography described here is essentially the same as used by Jackson et al. (1998) for the analysis of interplanetary scintillation (IPS) observations. While IPS observations are related indirectly to the solar wind density through an assumed (and uncertain) relationship between small-scale density fluctuations and density, Thomson scattering physics is more straightforward, i.e., the observed brightness depends linearly on the solar wind density everywhere in the heliosphere. Consequently, Thomson scattering tomography can use a more direct density-convergence criterion to match observed Helios photometer brightness to brightness calculated from the model density. The general similarities between results based on IPS and Thomson scattering tomography validate both techniques and confirm that both observe the same type of solar wind structures. We show results for Carrington rotation 1653 near solar minimum. We find that longitudinally segmented dense structures corotate with the Sun and emanate from near the solar equator. We discuss the locations of these dense structures with respect to the heliospheric current sheet and regions of activity on the solar surface.  相似文献   

2.
The observation of ions created by ionization of cometary gas, either by ground-based observations or byin situmeasurements can give us useful information about the gas production and composition of comets. However, due to the interaction of ions with the magnetized solar wind and their high chemical reactivity, it is not possible to relate measured ion densities (or column densities) directly to the parent gas densities. In order to quantitatively analyze measured ion abundances in cometary comae it is necessary to understand their dynamics and chemistry. We have developed a detailed ion–chemical network of cometary atmospheres. We include production of ions by photo- and electron impact-ionization of a background neutral atmosphere, charge exchange of solar wind ions with cometary atoms/molecules, reactions between ions and molecules, and dissociative recombination of molecular ions with thermal electrons. By combining the ion–chemical network with the three-dimensional plasma flow as computed by a new fully three-dimensional MHD model of cometary plasma environments (Gombosiet al.1996) we are able to compute the density of the major cometary ions everywhere in the coma. The input parameters for our model are the solar wind conditions (density, speed, temperature, magnetic field) and the composition and production rate of the gas. We applied our model to Comet P/Halley in early March 1986, for which the input parameters are reasonably well known. We compare the resulting column density of H2O+with ground-based observations of H2O+from DiSantiet al.(1990). The results of our model are in good agreement with both the spatial distribution and the absolute abundance of H2O+and with their variations with the changing overall water production rate between two days. The results are encouraging that it will be possible to obtain production rates of neutral cometary constituents from observations of their ion products.  相似文献   

3.
A zonal spottedness model proposed and developed by us to represent periodic brightness variations of dwarfs of the BY Dra type is applied to a sample of stars with long sequences of BVRI observations.Translated fromAstrofizika, Vol. 39, No. 1, pp. 67–89, January–March, 1995.  相似文献   

4.
Halo coronal mass ejections (HCMEs) are responsible of the most severe geomagnetic storms. A prediction of their geoeffectiveness and travel time to Earth’s vicinity is crucial to forecast space weather. Unfortunately, coronagraphic observations are subjected to projection effects and do not provide true characteristics of CMEs. Recently, Michalek (Solar Phys. 237, 101, 2006) developed an asymmetric cone model to obtain the space speed, width, and source location of HCMEs. We applied this technique to obtain the parameters of all front-sided HCMEs observed by the SOHO/LASCO experiment during a period from the beginning of 2001 until the end of 2002 (solar cycle 23). These parameters were applied for space weather forecasting. Our study finds that the space speeds are strongly correlated with the travel times of HCMEs to Earth’s vicinity and with the magnitudes related to geomagnetic disturbances.  相似文献   

5.
We describe a new method to derive the interplanetary magnetic field (IMF) out to 1 AU from photospheric magnetic field measurements. The method uses photospheric magnetograms to calculate a source surface magnetic field at 15R. Specifically, we use Wilcox Solar Observatory (WSO) magnetograms as input for the Stanford Current-Sheet Source-Surface (CSSS) model. Beyond the source surface the magnetic field is convected along velocity flow lines derived by a tomographic technique developed at UCSD and applied to interplanetary scintillation (IPS) observations. We compare the results with in situ data smoothed by an 18-h running mean. Radial and tangential magnetic field amplitudes fit well for the 20 Carrington rotations studied, which are largely from the active phase of the solar cycle. We show exemplary results for Carrington rotation 1965, which includes the Bastille Day event.  相似文献   

6.
Abstract— Visual photometry, which measures reflected solar radiation, can be combined with infrared radiometry, which measures absorbed and re‐radiated solar energy, to determine key properties of small solar system objects. This method can be applied via thermophysical model concepts not only for albedo and diameter determination, but also for studies of thermal parameters like thermal inertia, surface roughness or emissivity. Hence, a detailed analysis of the asteroid surface is possible and topics like surface mineralogy, the density of the regolith or the presence of a rocky surface, lightcurve influences due to shape or albedo, porosity of the surface material, etc. can be addressed. The “radiometric technique” based on a recently developed thermophysical model is presented. The model was extensively tested against observations from the infrared space observatory, including spectroscopic and photometric measurements at infrared wavelengths between 2 and 200 μm of more than 40 asteroids. The possible model applications are discussed in terms of the different levels of knowledge for individual asteroids. The effects of the thermal parameters are illustrated and methods are presented as to how to separate different aspects. Possibilities and limitations are evaluated for the possible transfer of this model to near‐Earth asteroids. In the long run, this kind of study of near‐Earth asteroids may provide answers to questions about their surface properties which are crucial to develop mitigation scenarios.  相似文献   

7.
We have applied detailed theories of gyro-synchrotron emission and absorption in a magnetoactive plasma, X-ray production by the bremsstrahlung of non-thermal electrons on ambient hydrogen, and electron relaxation in a partially ionized and magnetized gas to the solar flare burst phenomenon. The hard X-ray and microwave bursts are shown to be consistent with a single source of non-thermal electrons, where both emissions arise from electrons with energies < mc 2. Further-more, the experimental X-ray and microwave data allow us to deduce the properties of the electron distribution, and the values of the ambient magnetic field, the hydrogen density, and the size of the emitting region. The proposed model, although derived mostly from observations of the 7 July 1966 flare, is shown to be representative of this type of event.NAS-NRC Resident Research Associate.  相似文献   

8.
We present two dark energy (DE) models with an anisotropic fluid in Bianchi type-VI 0 space-time by considering time dependent deceleration parameter (DP). The equation of state (EoS) for dark energy ω is found to be time dependent and its existing range for derived models is in good agreement with the recent observations. Under the suitable condition, the anisotropic models approach to isotropic scenario. We also find that during the evolution of the universe, the EoS parameter for DE changes from ω>−1 to ω=−1 in first model whereas from ω>−1 to ω<−1 in second model which is consistent with recent observations. The cosmological constant Λ is found to be a positive decreasing function of time and it approaches a small positive value at late time (i.e. the present epoch) which is corroborated by results from recent type Ia supernovae observations. The cosmic jerk parameter in our derived models is also found to be in good agreement with the recent data of astrophysical observations. The physical and geometric aspects of both the models are also discussed in detail.  相似文献   

9.
We have studied a model of relativistic fireworks. In this model it is assumed that a series of explosions occur. In each explosion the fragments fly apart in arbitrary directions with a given velocity which is a parameter in the model.We have succeeded in obtaining an exact expression for the distribution of fragments in velocity space aftern explosions.We present an exact solution also in the limiting case of small velocity steps where the process turns into a diffusion in velocity space.The development in configuration space has been obtained through Monte-Carlo numerical simulations.The model has been applied to metagalactic cosmology. Although single explosions cannot reach the highest redshifts observed in the Hubble expansion the fireworks model offers a possibility to reach thesez-values in a few explosions.The model gives a density inhomogeneity of 20% over a tenth of the Hubble distance as seen from a typical position. Observations show a considerably greater irregular variation.The model gives a local velocity dispersion which is too great to comply with observations. A development of the model is suggested.  相似文献   

10.
Analytical expressions were derived for the expectation of the autocorrelation function (ACF) corresponding to lowfrequency least squares fits and deviations from them in the case of a limited number of observations N. A vector of values of the autocovariation function may be obtained by multiplication of a N . N matrix Z (dependent on concrete basic functions used for trend determination) by a vector of the unbiased ACF. Because much computational time is needed to obtain such a matrix, its components are to be computed once for concrete N and basic functions, and then stored as a file. An algorithm is proposed for determining the contribution of the correlated signal to the ‘signal+noise’. The expressions are written for general form of the ACF, and illustrated by the application to autoregressive models. The statistical properties of the model parameters are studied. The method is applied to cataclysmic binaries AM Her and TT Ari. The precise expressions allow us to obtain reliable results and to avoid misinterpretation being possible when using the approximate methods.  相似文献   

11.
A global 3-D simulation of interplanetary dynamics in June 1991   总被引:3,自引:0,他引:3  
The global dynamics of the solar wind and interplanetary magnetic field in June 1991 is simulated based on a fully three-dimensional, time-dependent numerical MHD model. The numerical simulation includes eight transient disturbances associated with the major solar flares of June 1991. The unique features of the present simulation are: (i) the disturbances are originated at the coronal base (1R s) and their propagation through inhomogeneous ambient solar wind is simulated out to 1.5 AU; (ii) as a background for the transients, the global steady-state solar wind structure inferred from the 3-D steady-state model (Usmanov, 1993c) is used. The parameters of the initial pulses are prescribed in terms of the near-Sun shock velocities (as inferred from the metric Type II radio burst observations) relative to the preshock steady-state flow parameters at the flare sites. The computed parameters at the Earth's location for the period 1–18 June, 1991 are compared with the available observations of the interplanetary magnetic field, solar wind velocity, density, and with variation of the geomagnetic activityK pindex.  相似文献   

12.
The coronal hole observed on May 31, 1973 is studied using extreme ultraviolet and radio observations. The EUV line is the Fe xv at = 284 Å and the radio frequencies are 169 and 408 MHz. An unsuccessful attempt to deduce an homogeneous model of the hole from these observations, shows that EUV and radio observations are inconsistent if interpreted in such a frame and if the EUV line intensity measurements in the hole are reliable.Inhomogeneities are therefore required to account for both observations. An inhomogeneous model consisting of hot (T2×106K) elements covering 10% of the hole surface surrounded by regions of colder gas (T8×105K) is able to explain both observations.  相似文献   

13.
In the bookHistoria Coelestis Brittannica, John Flamsteed (1725) lists his daily solar observations from 1676 onwards. Coupled with his comments in thePhilosophical Transactions of the Royal Society and his letters to William Derham in the Cambridge University Library, it is possible to reconstruct a daily chronology of his solar and sunspot observations from 1676 to 1700. These observations are important because, coupled with daily logs of observations by Picard, La Hire, Eimmart, and others, a detailed record of the observations during a portion of the Maunder Minimum can be constructed. For example, for 1691, a typical year, the longest gap between observations is only four days. Flamsteed's observations are also important because they add to the data gathered by Wolf, Spoerer, Maunder, Eddy, and others in their study of solar activity in the seventeenth century. Flamsteed's observations are summarized here and a sample of his observations is presented.  相似文献   

14.
Durrant  C.J.  Wilson  P.R. 《Solar physics》2003,214(1):23-39
We have used observations obtained by the National Solar Observatory at Kitt Peak to study the reversals of the polar magnetic fields in Cycle 23. We have compared them with corresponding data obtained by the Mt. Wilson Observatory, when these are available, testing both data sets against the locations of H filaments. Because of the unreliability of the data at extreme latitudes and because the apparent time of reversal varies with the degree of smoothing applied to the data, it is difficult to determine precise reversal time in each hemisphere from direct observations. However, we show that it is possible to obtain a better-defined and more precise reversal time using polar maps derived from simulations of the synoptic fields. These indirect values, however, depend critically on the diffusivity used in the simulations. We applied various tests to confirm an empirical value for the diffusivity parameter of about 600 km 2 s –1 and hence determined empirical reversal times of CR 1976 in the northern hemisphere and CR 1981 in the south.  相似文献   

15.
Photometric observations carried out from October to November 1991 of the symbiotic system EG Andromedae are here presented. The secondary minimum has been repeated with a period of about 480 days, as inferred from the orbital elements (P = 482 days, Skopalet al., 1991). The light curve shape led us to suggest a model in which two hot spots result through evaporation from a low mass red giant by a compact object.  相似文献   

16.
The field equations of the generalized field theory constructed by Mikhail and Wanas have been applied to a well-established geometrical structure given earlier by H. P. Robertson in connection with the cosmological problem. A unique solution, representing a specified expanding Universe (withq 0=0, 0=0.75,k=–1) has been obtained. The model obtained has been compared with cosmological observations and with FRW-models of relativistic cosmology. It has been shown that the suggested model is free of particle horizons. The existence of singularities has been discussed.The two cases, when the associated Riemannian-space has a definite or indefinite metric are considered. The case of indefinite metric with signature (+ – – –) is found to be characterized byk=–1, while the case of +ve definite metric is characterized byk=+1. Apart from that difference, the two cases give rise to the same cosmological parameters. It has been shown that energy conditions are satisfied by the material contents in both cases.  相似文献   

17.
We present the results of a detailed analysis of RXTE observations of classω (Klein-Woltet al. 2002) which show an unusual state transition between high-soft and low-soft states in the Galactic microquasar GRS 1915 + 105. Out of about 600 pointed RXTE observations, the source was found to exhibit such state transition only on 16 occasions. An examination of the RXTE/ASM data in conjunction with the pointed observations reveals that these events appeared as a series of quasi-regular dips in two stretches of long duration (about 20 days during each occasion) when hard X-ray and radio flux were very low. The X-ray light curve and colour-colour diagram of the source during these observations are found to be different from any reported so far. The duration of these dips is found to be of the order of a few tens of seconds with a repetition time of a few hundred seconds. The transition between these dips and non-dips which differ in intensity by a factor of ∼ 3.5, is observed to be very fast (∼ a few seconds). It is observed that the low-frequency narrow QPOs are absent in the power density spectrum (PDS) of the dip and non-dip regions of classω and the PDS is a power law in the 0.1–10 Hz frequency range. There is a remarkable similarity in the spectral and timing properties of the source during the dip and non-dip regions in this set of observations. These properties of the source are distinctly different from those seen in the observations of other classes. This indicates that the basic accretion disk structure during both dip and non-dip regions of classω is similar, but differ only in intensity. To explain these observations, we invoke a model in which the viscosity is very close to critical viscosity and the shock wave is weak or absent.  相似文献   

18.
The problem of predicting the radio emission from the quiet Sun for meter and decameter waves may be formulated in terms of a standard radiative transfer problem with conservative scattering. One may therefore avoid the numerical complications involved in using a ray-tracing approach which incorporates a Monte-Carlo routine for representing scattering. The brightness and extent of the radio Sun are calculated for several values of the electron temperature and scattering parameter of Steinberg et al. (1971). It is concluded that the temperature and density model of Newkirk (1967) for solar maximum reasonably represents the observations. However, some observations appear to be inconsistent with scattering models and further observations are needed. It is shown (in Appendix B) that the standard ray-tracing technique incorporating a Monte-Carlo routine for the scattering may be replaced by a diffusion approximation.  相似文献   

19.
There is a large, diverse and rapidly growing body of OH observations from regions associated with star formation, the physical conditions of which are of great interest. To interpret these observations we need to calculate the populations of the OH energy levels using as accurate a model as is feasible. We have developed a large velocity gradient (LVG) model using the lowest 48 hyperfine states of OH and including the phenomenon of far-infrared line overlap using a new theory which treats all thermal and velocity overlaps. If we use a theory of maser propagation (Field and Gray, 1988) we are then able to see how competing maser lines develop.The generic behaviour which we find is in good agreement with the extensive maser observations of Gaume and Mutel 1987 and our calculations allow us to associate general physical conditions with the four ground state maser frequencies. In addition we are able to present preliminary results of the interpretation of the OH absorption observations of Guilloteauet al. (1984) and Walmsleyet al. (1986) for the compactHII region DR21.Paper presented at the 11th European Regional Astronomical Meetings of the IAU on New Windows to the Universe, held 3–8 July, 1989, Tenerife, Canary Islands, Spain  相似文献   

20.
To model and study local magnetic-field enhancements in a solar flux rope we consider the magnetic field in its interior as a superposition of two linear (constant α) force-free magnetic-field distributions, viz. a global one, which is locally similar to a part of the cylinder, and a local torus-shaped magnetic distribution. The newly derived solution for a toroid with an aspect ratio close to unity is applied. The symmetry axis of the toroid and that of the cylinder may or may not coincide. Both the large and small radii of the toroid are set equal to the cylinder’s radius. The total magnetic field distribution yields a flux tube which has a variable diameter with local minima and maxima. In principle, this approach can be used for the interpretation and analysis of solar-limb observations of coronal loops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号