首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
We propose and test new statistical tools to study the distribution of cosmic rays based on the use of the minimal spanning tree. The method described is particularly sensitive to filamentary structures, as those expected to arise from strong sources of charged cosmic rays which get deflected by intervening magnetic fields. We also test the method with data available from the AGASA and SUGAR surface detector arrays.  相似文献   

2.
A model is constructed for the magnetic field of the He-weak CP star HD 21699. This star has the field structure of a dipole displaced by 0.4 radii from the center perpendicular to its axis. The magnetic poles appear to be close to one another on the surface; they are separated by 55°, not by 180° as in the case of a central dipole. The phase dependences of the equivalent widths of He and Si lines have extrema at the phases corresponding to passage through the visible meridian of zero magnetic field between the magnetic poles. At the magnetic poles, the intensity of the helium lines is maximal and of the silicon lines, minimal. The silicon abundance is maximal in the regions where the magnetic field is predominantly tangential to the star’s surface. Because of averaging over the visible hemisphere and owing to the closeness of the magnetic poles, only one wave of variation in the intensity of the spectral lines of these chemical elements, one wave of photometric variability, and an average surface magnetic field Bs are observed. __________ Translated from Astrofizika, Vol. 50, No. 3, pp. 441–451 (August 2007).  相似文献   

3.
Observations from 560 weather stations in China show that sand–dust storms occur most frequently in April in north China. The region consists of Sub-dry Mid Temperate, Dry Mid Temperate, Sub-dry South Temperate and Dry South Temperate Zones and much of the land surface is desert or semi-desert: it is relatively dry with minimal rainfall and a high annual mean temperature. In most regions of China, the annual mean frequency of sand–dust events decreased sharply between 1980 and 1997 and then increased from 1997 to 2000. Statistical analyses demonstrate that the frequency of sand–dust storms correlates highly with wind speed, which in turn is strongly related to land surface features; on the other hand, a significant correlation between storm events and other atmospheric quantities such as precipitation and temperature was not observed. Accordingly, land surface cover characteristics (vegetation, snowfall and soil texture) may play a significant role in determining the occurrence of sand–dust storms in China. Analysis of Normalized Difference Vegetation Index derived from National Oceanic and Atmospheric Administration and Empirical Orthogonal Function show that since 1995 surface vegetation cover in large areas of Northern China has significantly deteriorated. Moreover, a high correlation is shown to exist among the annual occurrence of sand–dust storms, surface vegetation cover and snowfall. This suggests that the deterioration of surface vegetation cover may strongly influence the occurrence of sand–dust storms in China. Soils with coarse and medium textures are found to be more associated with sand–dust storms than other soils.  相似文献   

4.
During the few days centered about new Moon, the lunar surface is optically hidden from Earth-based observers. However, the Moon still offers an observable: an extended sodium tail. The lunar sodium tail is the escaping “hot” component of a coma-like exosphere of sodium generated by photon-stimulated desorption, solar wind sputtering and meteoroid impact. Neutral sodium atoms escaping lunar gravity experience solar radiation pressure that drives them into the anti-solar direction forming a comet-like tail. During new Moon time, the geometry of the Sun, Moon and Earth is such that the anti-sunward sodium flux is perturbed by the terrestrial gravitational field resulting in its focusing into a dense core that extends beyond the Earth. An all-sky camera situated at the El Leoncito Observatory (CASLEO) in Argentina has been successfully imaging this tail through a sodium filter at each lunation since April 2006. This paper reports on the results of the brightness of the lunar sodium tail spanning 31 lunations between April 2006 and September 2008. Brightness variability trends are compared with both sporadic and shower meteor activity, solar wind proton energy flux and solar near ultra violet (NUV) patterns for possible correlations. Results suggest minimal variability in the brightness of the observed lunar sodium tail, generally uncorrelated with any single source, yet consistent with a multi-year period of minimal solar activity and non-intense meteoric fluxes.  相似文献   

5.
Abigail A. Fraeman 《Icarus》2010,210(1):43-57
We present a parameterized convection model of Mars by incorporating a new heat-flow scaling law for stagnant-lid convection, to better understand how the evolution of Mars may be affected by mantle melting. Melting in the mantle during convection leads to the formation of a compositionally buoyant lithosphere, which may also be intrinsically more viscous by dehydration. The consequences of these melting effects on the evolution of terrestrial planets have not been explored before. The temporal evolution of crust and lithospheric mantle is modeled in a self-consistent manner considering mantle melting, convective instability, and the rewetting of dehydrated lithosphere from below by hydrogen diffusion. Though the effect of compositional buoyancy turns out to be minimal, the introduction of viscosity contrast between wet and dry mantle can considerably slow mantle cooling and sometimes lead to non-monotonic core cooling. Furthermore, with or without dehydration stiffening, our model predicts that the martian mantle must have been degassed more extensively (>80%) than previously suggested (<10%); the loss of such a large amount of water from the mantle to surface has significant implications about the role of water in the early surface and climate evolution of Mars.  相似文献   

6.
Results from numerical simulations of jetstreams are used to discuss certain aspects of the dynamics of the rings of Saturn. The probable velocity distribution inside the ring system is strongly non-Maxwellian. For the rings to form and remain a minimal degree of inelasticity is required. The energy consumption decreases rapidly with decreasing thickness of the rings. As we expect the degree of inelasticity to decrease for very small impact velocities, a minimal thickness should be reached, somewhat lower than the observed value.  相似文献   

7.
Accreting black holes often show iron line emission in their X‐ray spectra. When this line emission is very broad or variable then it is likely to originate from close to the black hole. The theory and observations of such broad and variable iron lines are briefly reviewed here. In order for a clear broad line to be found, one or more of the following have to occur: high iron abundance, dense disk surface and minimal complex absorption. Several excellent examples are found from observations of Seyfert galaxies and Galactic Black Holes. In several cases there is strong evidence that the black hole is rapidly spinning. Further examples are expected as more long observations are made with XMM‐Newton, Chandra and Suzaku. Intriguing instances of rapid variability of some narrow iron lines, both emission and absorption, have been reported. These may reflect variations in the irradiation or motion of physical structures on the accretion disk. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Using the numerical code (`Scenario Machine') we study of number and physical properties of binary Be stars. Evolutionary tracks leading to a formation of the observational binary systems are presented. We conclude that synchronization must be taken into account when calculating binary Be star evolution and calculate the minimal orbital period for Be/evolved companion binary. The obtained distributions over orbital parameters are in good agreement with the observational lack of short-period Be/X-ray binaries. According to our calculations 70% of all Be stars must have a white dwarf. The white dwarfs in these systems should be hot enough with the surface temperature distribution peaking at 10000–20000 K. Their detection is possible during the period of the lack of Be star envelope by the detection of white dwarf extremely UV and soft X-ray emission. This method of registration appears to be particularly promising for `single' early-type Be stars because in these systems the white dwarfs must have a very high surface temperature. However, the loss of the Be disc-like envelope does not often occur and it is a rather rare event for many Be stars. The best possibility of white dwarf detection is given by the study of helium spectral lines found in emission from several Be stars. The ultraviolet continuum energy of these Be stars is found to be not enough to produce the observed helium emission. Besides, we also discuss the orbital properties of binary Be star systems with other evolved companions such as helium stars and neutron stars and give a possible explanation for the lack of Be/black hole binaries. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
The technique of photoclinometry has frequently been used to determine planetary topography without proper consideration of possible sources of error. Previous studies of error sources have been limited in extent and have overlooked the importance of factors such as atmospheric scattering and the choice of a surface photometric function. This paper adopts a thorough and more direct approach to error analysis, whereby known topography is compared with photoclinometric profiles derived from synthetic quantised reflectance scans.Instrumental and geometric sources of error are found to exert a minimal influence on profiles in practice, provided that sufficient care is taken in the selection of images and the extraction of scans from those images. Environmental factors — relating to the scattering properties of the surface and, if present, atmosphere — are far more important. It is found that a simple Lommel-Seeliger law is unlikely to be appropriate to the majority of planetary terrains, given its inability to model the effects of multiple scattering or unresolved macroscopic roughness. It is further demonstrated that a Minnaert function or combination of Lommel-Seeliger and Lambert laws may empirically compensate for the first of these phenomena but not the second; in this respect, Hapke's equation is a far superior model of surface optical properties. In the case of an atmosphere, the need to correct for scattering by aerosols or suspended dust becomes more acute as atmospheric opacity increases and as particle scattering becomes more forward-biased. To perform this correction, a model for the combined reflectance of surface and atmosphere must be used when deriving profiles.Two case studies — of a small impact crater on Triton and a dust-mantled basaltic lava flow on Mars - are presented here. Regarding the latter, the implications that errors in photoclinometric flow thickness measurements have for inferred lava rheology are examined. Conservative estimates of errors in yield strength and apparent viscosity easily exceed 100% when one of the simplest photometric models possible — a Lommel-Seeliger law — is used to derive a profile.In the light of these findings, strategies are suggested for improving the results obtained from photoclinometry in the future.  相似文献   

10.
Adam P. Showman  Lijie Han 《Icarus》2005,177(2):425-437
Europa's surface exhibits numerous pits, uplifts, and disrupted chaos terrains that have been suggested to result from convection in the ice shell. To test this hypothesis, we present numerical simulations of convection in an ice shell including the effects of plasticity, which provides a simple continuum representation for brittle or semibrittle deformation along discrete fractures. Plastic deformation occurs when stresses reach a specified yield stress; at lower stresses, the fluid flow follows a Newtonian, temperature-dependent viscosity. Four distinct modes of behavior can occur. For yield stresses exceeding ∼1 bar, plastic effects are negligible and stagnant-lid convection, with no surface motion and minimal topography, results. At intermediate yield stresses, a stagnant lid forms but deforms plastically, leading to surface velocities up to several millimeters per year. Slightly smaller yield stresses allow episodic, catastrophic overturns of the upper conductive lid, with (transient) stagnant lids forming in between overturn events. The smallest yield stresses allow continual recycling of the upper lid, with simultaneous, gradual ascent of warm ice to the surface and descent of cold, near-surface ice into the interior. The exact yield stresses over which each regime occurs depend on the ice-shell thickness, melting-temperature viscosity, and activation energy for viscous creep. To form hummocky matrix and translate chaos plates by several kilometers, substantial surface strain must accompany chaos formation, and the three plasticity-dominated convection modes described here can provide such deformation. Our simulations suggest that, if yield stresses of ∼0.2-1 bar are relevant to Europa, then convection in Europa's ice shell can produce chaos-like structures at the surface. However, our simulations have difficulty explaining Europa's numerous pits and uplifts. When plasticity forces the upper lid to participate in the convection, dynamic topography of ∼50-100-m amplitude results, but the topographic structures generally have diameters of 30-100 km, an order of magnitude wider than typical pits and uplifts. None of our simulations produced isolated pits or uplifts of any diameter.  相似文献   

11.
Space weathering and the interpretation of asteroid reflectance spectra   总被引:1,自引:0,他引:1  
Michael J. Gaffey 《Icarus》2010,209(2):564-574
Lunar-style space weathering is well understood, but cannot be extended to asteroids in general. The two best studied Asteroids (433 Eros and 243 Ida) exhibit quite different space weathering styles, and neither exhibits lunar-style space weathering. It must be concluded that at this time the diversity and mechanisms of asteroid space weathering are poorly understood. This introduces a significant unconstrained variable into the problem of analyzing asteroid spectral data. The sensitivity of asteroid surface material characterizations to space weathering effects - whatever their nature - is strongly dependent upon the choice of remote sensing methodology. The effects of space weathering on some methodologies such as curve matching are potentially devastating and at the present time essentially unmitigated. On other methodologies such as parametric analysis (e.g., analyses based on band centers and band area ratios) the effects are minimal. By choosing the appropriate methodology(ies) applied to high quality spectral data, robust characterizations of asteroid surface mineralogy can be obtained almost irrespective of space weathering. This permits sophisticated assessments of the geologic history of the asteroid parent bodies and of their relationships to the meteorites. Investigations of the diversity of space weathering processes on asteroid surfaces should be a fruitful area for future efforts.  相似文献   

12.
Because of the relatively low number densities found in typical interstellar clouds, molecules observed there must be produced by a combination of both two-body gas-phase reactions and surface reactions. The latter type includes various catalytic reactions, such as the formation of H2 on transition metal grains. These reactions are very temperature dependent, the grain temperature appearing in the exponential of the rate equations. Because of the small heat capacities of the grains due to their small sizes, they may be subject to considerable fluctuations in temperature. This problem is examined for iron grains and found to be minimal for sizes greater than 100 Å. Steady-state equilibrium temperatures are then calculated for a size distribution of iron particles ranging from 103 to 109 atoms per grain by a refined method of an earlier work by one of us (RGT). The results are that iron grain temperatures are significantly greater than those of dielectric grains of comparable size in the same radiation field.  相似文献   

13.
The positive identification of the Rock Elm impact structure (Wisconsin, USA) and the Upheaval Dome (Utah, USA) as impact craters was complicated by a lack of distinctive shock features in the record. Low‐impedance surface layers over high‐impedance bedrock affect energy coupling and shock effects in the substrate; in both cases, removal of surface sediments erased most of the original impact structures, thereby making identification of the impact origin difficult. In this study, a combination of laboratory and 3‐D numerical experiments reveals the underlying processes controlling subsurface deformation and demonstrates that a low‐impedance layer can reduce expression of peak shock pressures left in the rock record, as at the Rock Elm and the Upheaval Dome impact sites. 3‐D CTH models of the Rock Elm impact structure predict that peak shock pressures should fall below the hugoniot elastic limit of quartz in the basement rocks, yet still induce permanent deformation. The model predicts peak pressures around 5–10 GPa, levels consistent with field observations of shocked quartz from both Rock Elm and the Upheaval Dome. Consequently, other impact sites exhibiting minimal shock features might be explained.  相似文献   

14.
Methane hydrate dissociation due to obliquity-driven temperature change has been suggested as a potential source of atmospheric methane plumes recently observed on Mars. This work uses both equilibrium and time-dependent models to determine how geothermal gradients change on Mars as a result of obliquity and predict how these changes affect gas hydrate stability zones (HSZs). The models predict that the depth to the HSZ decreases with increasing latitude for both CO2 and CH4 hydrate, with CO2 hydrate occurring at shallower depths than CH4 hydrate over all latitudes. The depth of the HSZ increases as surface temperatures warm and decreases as surface temperatures cool with changing obliquity, with the largest change in HSZ volume predicted near the equator and the poles. Therefore, changes in the depth to the HSZ may cause hydrate dissociation near the equator and poles as the geothermal gradient moves in and out of the hydrate stability field over hundreds of thousands of years. Sublimation of overlying ice containing diffused methane could account for recent observations of seasonal methane plumes on Mars. In addition, near-surface gas hydrate reservoirs may be preserved at mid-latitudes due to minimal changes in surface temperature with obliquity over geologic time scales. Comparisons of the predicted changes in the HSZ with hydrate dissociation and diffusion rates reveal that metastable hydrate may also remain in the near subsurface, especially at high latitudes, for millions to billions of years. The presence of methane hydrate in the near subsurface at midlatitudes could be an important analytical target for future Mars missions, as well as serving as a source of fuel for future spacecraft.  相似文献   

15.
In the Xanthe Terra region of Mars, two forms of flow fields are observed on the walls of Mojave Crater, a fresh impact site with a maximum age of Late Hesperian. Flow fields with steep, lobate margins are consistent with emplacement of a highly viscous medium. The focus of this report is on fan-shaped landforms that share many morphologic attributes in common with terrestrial alluvial fans, including a semi-conical form, branching tributary networks, distributary channels and incised channels. Collectively, these sub-kilometer-scale landforms have attributes consistent with overland flow of fluids and formation of fans by water and gravity-driven alluvial sedimentation. Superposition and cross-cutting relationships indicate that fan formation occurred in multiple phases that may have been a single event or multiple, temporally distinct episodes. Many aspects of the fan formation are ill-constrained, including the amount and source of fluid as well as the duration of fan formation and modification. Fans are concentrated on the crater walls and the ejecta blanket shows minimal evidence of fluvial erosion. Similar fan-shaped landforms to those in Mojave Crater are extremely rare on Mars. The localization of fans to Mojave Crater implies that the impact event played a role in the formation of these sub-kilometer fans. This is the first geologic evidence on Mars that tentatively supports a link between impact crater events and the liberation of water for surface runoff.  相似文献   

16.
Tobias Owen 《Icarus》1976,29(1):159-163
A brief review of the history of Jovian satellite nomenclature is given to indicate the background for the names proposed for the numbered satellites. The new names are consistent with established tradition and should cause minimal confusion with other named objects in the solar system.  相似文献   

17.
F. Roig  R. Duffard  D. Lazzaro 《Icarus》2003,165(2):355-370
A simple mechanical model is formulated to study the dynamics of rubble-pile asteroids, formed by the gravitational re-accumulation of fragments after the collisional breakup of a parent body. In this model, a rubble-pile consists of N interacting fragments represented by rigid ellipsoids, and the equations of motion explicitly incorporate the minimal degrees of freedom necessary to describe the attitude and rotational state of each fragment. In spite of its simplicity, our numerical examples indicate that the overall behavior of our model is in line with several known properties of collisional events, like the energy and angular momentum partition during high velocity impacts. Therefore, it may be considered as a well defined minimal model.  相似文献   

18.
The Konigl inhomogeneous jet model can successfully reproduce most observa-tional features of jets in active galactic nuclei (AGN), when suitable physical parameters are adopted. We improve Konigl's calculations on the core emission from the jet with a small viewing angle θ0~ψ (ψ is half opening angle of the conical jet). The proper motion of the jet component provides a constraint on the jet kinematics. Based on the inhomogeneous jet model, we use the proper motion data of the jet component to calculate the minimal kinetic luminosity of the jet required to reproduce the core emission measured by the very-long-baseline intefferometry (VLBI) for a sample of BL Lac objects. Our results show that the minimal kinetic luminosity is slightly higher than the bolometric luminosity for most sources in the sample, which implies that radiatively inefficient accretion flows (RIAFs) may be in those BL Lac objects, or/and the properties of their broad-line regions (BLRs) are signifi-cantly different from flat-spectrum radio-loud quasars.  相似文献   

19.
A.P. Johnson  L.M. Pratt  S. Tronick 《Icarus》2011,211(2):1162-1178
Recent orbital and landed missions have provided substantial evidence for ancient liquid water on the martian surface as well as evidence of more recent sedimentary deposits formed by water and/or ice. These observations raise serious questions regarding an independent origin and evolution of life on Mars. Future missions seek to identify signs of extinct martian biota in the form of biomarkers or morphological characteristics, but the inherent danger of spacecraft-borne terrestrial life makes the possibility of forward contamination a serious threat not only to the life detection experiments, but also to any extant martian ecosystem. A variety of cold and desiccation-tolerant organisms were exposed to 40 days of simulated martian surface conditions while embedded within several centimeters of regolith simulant in order to ascertain the plausibility of such organisms’ survival as a function of environmental parameters and burial depth. Relevant amino acid biomarkers associated with terrestrial life were also analyzed in order to understand the feasibility of detecting chemical evidence for previous biological activity. Results indicate that stresses due to desiccation and oxidation were the primary deterrent to organism survival, and that the effects of UV-associated damage, diurnal temperature variations, and reactive atmospheric species were minimal. Organisms with resistance to desiccation and radiation environments showed increased levels of survival after the experiment compared to organisms characterized as psychrotolerant. Amino acid analysis indicated the presence of an oxidation mechanism that migrated downward through the samples during the course of the experiment and likely represents the formation of various oxidizing species at mineral surfaces as water vapor diffused through the regolith. Current sterilization protocols may specifically select for organisms best adapted to survival at the martian surface, namely species that show tolerance to radical-induced oxidative damage and low water activity environments. Additionally, any hypothetical martian ecosystems may have evolved similar physiological traits that allow sporadic metabolism during periods of increased water activity.  相似文献   

20.
The relative importance of surface mass fluxes and ice flow in shaping the north polar layered deposits (NPLD), now or in the past, remains a fundamental and open question. Motivated by observation of an apparent ice divide on Gemina Lingula (also known as Titania Lobe), we propose a two-stage evolution leading to the present-day topography on that lobe of the NPLD. Ice flow approximately balances surface mass fluxes in the first stage, but in the second stage ice flow has minimal influence and topography is modified predominantly by the formation of troughs. We focus here on evidence for the first stage, by testing the fit of topography between troughs to an ice-flow model. We find that independent model fits on distinct flow paths closely match inter-trough topography, uniformly over a broad region on Gemina Lingula, with mutually consistent and physically reasonable fitting parameters. However, our model requires ice to occupy and flow in spaces where troughs currently incise the ice. We therefore infer that the troughs (and the distribution of mass balance that caused them) post-date deposition of the inter-trough material and its modification by flow. Because trough formation has apparently altered inter-trough topography very little, we infer that trough formation must have been rapid in comparison to the (still unknown) time-scale of flow since troughs began to form. We view the evidence for past flow as strong, but we do not think that topographic evidence alone can be conclusive. Observations of englacial stratigraphy using orbital sounding radars will yield conclusive tests of our inferred mechanism for the formation of inter-trough topography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号