首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A set of three nonlinearly coupled equations governing the interaction between electromagnetic ion-cyclotron and magnetosonic waves is derived. In appropriate limiting cases, the set yields simplified equations. On the other hand, the full set of equations is used to derive a general dispersion relation for the parametric interaction of electromagnetically modulated ion-cyclotron wave packets. An analytical expression for the growth rate of the electromagnetic modulational instability is presented. The relevance of our investigation to non-thermal electromagnetic fluctuations in astrophysical and cometary plasmas is pointed out.  相似文献   

2.
Using the rectangular equations of motion for the restricted three-body problem a comparison is made of the integration of these equations by the Encke method and by a set of perturbational equations. Each set of differential equations is integrated using Taylor series expansions where the coefficients of the powers of time are determined by recurrence relations. It is shown that for very small perturbations the use of the perturbational equations is more efficient than the use of the Encke method. A discussion is also given of when Cowell's method is more efficient than either of these techniques.  相似文献   

3.
The rotational dynamics of a small solar system body subject to solar radiation torques is investigated. A set of averaged evolutionary equations are derived as an analytic function of a set of spherical harmonic coefficients that describe the torque acting on the body due to solar radiation. The analysis also includes the effect of thermal inertia. The resulting equations are studied and a set of possible dynamical outcomes for the rotation rate and obliquity of a small body are found and characterized.  相似文献   

4.
本文推导了天体运动方程的数值解对积分初始条件、天体质量等动力系统参数的偏导数所满足的微分方程和初始条件。  相似文献   

5.
We have studied a set of equations with nonlinear and nonadiabatic terms which describes a simple oscillator. The equations have only one fixed point located at the origin. It is found that the oscillator shows the sequence of the period-doubling for the change of a parameter and results in chaotic oscillation. We illustrated the behaviour of the oscillator for several set of parameters and showed that the equations of the oscillator can be reduced to the one-zone model of stellar pulsation with simple nonlinear terms. It is suggested that the stellar irregular variability is resulted from the chaotic motion due to the nonlinear effect.  相似文献   

6.
The general-relativistic equations of hydrodynamics for a nonideal fluid are derived in the modified Lagrangian form. Together with the zeroth and first moment equations of radiative transfer derived by Morita and Kaneko (1986), the equations provide a complete set of the modified Lagrangian equations of radiation hydrodynamics. The equations of hydrodynamics are specialized for a thermally conducting, Newtonian viscous fluid in the modified Lagrangian form, which are the generalization of the specialrelativistic equations of hydrodynamics derived by Greenberg (1975).  相似文献   

7.
An extensive set of realistic equations of state for superdense matter with a quark phase transition is derived on the basis of the three equations of state for neutron matter and the eight variants of strange quark-gluon plasmas in the MIT quark bag model. The characteristics of the phase transitions are described and the calculated equations of state with a density jump are studied in detail.  相似文献   

8.
Equilibrium conditions for a mutually attracting general mass distribution and point mass are derived and their stability computed. The equilibrium conditions can be reduced to six equations in six unknowns, plus the existence of four integrals of motion consisting of the total angular momentum and energy of the system. The equilibrium conditions are further reduced to two independent equations, and their theoretical properties are studied. We derive three distinct conditions for a relative equilibrium which can be used to derive robust algorithms for solving these problems for non-symmetric gravity fields: a set of necessary conditions, a set of sufficient conditions, and a set of necessary and sufficient conditions. Each of these conditions is well suited for the computation of certain classes of equilibria. These equations are solved for non-symmetric gravity fields of interest, using a real asteroid shape model for the general gravity fields. Explicit conditions for the spectral and energetic stability of the resulting equilibria are also derived and computed for the shape of interest.  相似文献   

9.
Models of neutron stars with a quark core are calculated on the basis of an extensive set of equations of state for superdense matter. The possible existence of a new branch of stable layered neutron stars is revealed for some realistic equations of state of neutron matter.  相似文献   

10.
A set of differential equations is derived that has a number of advantages in special perturbation work. In particular, the equations remain valid for all values of the orbital eccentricity and inclination including zero. They are therefore applicable to parabolic- and hyperbolic-type orbits as well as elliptic-type; a scheme for use when the orbit is rectilinear or nearly so is provided. The equations are also much simpler in form than the Lagrange planetary equations and the transformations of the osculating elements to and from the rectangular coordinates are straightforward.  相似文献   

11.
The aim of this work is to study the effects of an external magnetic field generated by a magnetized compact star on the outflows of its accretion disc. For this purpose, we solve a set of magneto-hydrodynamic (MHD) equations for an accretion disc in spherical coordinates to consider the disc structure along the θ-direction. We also consider the magnetic field of a compact star beyond its surface as a dipolar field, producing a toroidal magnetic field inside the disc. We convert the equations to a set of ordinary differential equations (ODEs) as a function of the θ only by applying self-similar assumptions in the radial direction. Then, this set of equations is solved under symmetrical boundary conditions in the equatorial plane to obtain the velocity field. The results are considered in the gas-pressure-dominated (GPD) region and radiation-pressure-dominated (RPD) region as well. The dipolar field of the compact stars can significantly enhance the speed of outflows. It also can change the structure of the disc. The results of this work would be useful in the study of X-ray binaries, the origin of ultra-relativistic outflows, and jet formation around the compact stars.  相似文献   

12.
This paper deals with the mathematical treatment of special models of hydromagnetic dynamos. For the models considered here the conducting medium occupies a spherical region surrounded by vacuum. Both laminar and turbulent dynamos are included. The partial vector differential equations governing the models are transformed into an infinite set of differential equations for scalar functions by applying a method previously used by BULLARD and GELLMAN and on the basis of a representation of vector fields as a sum of a poloidal and a toroidal part. The scalar functions depend only on a radial coordinate and possibly on the time. In both the stationary and the periodic case, an infinite set of ordinary differential equations results which may be treated numerically. A series of relations for computing various dynamo models is prepared.  相似文献   

13.
The Eulerian equations are set up for a model subject to homoaxial rotation and suitable for simulation of a non-uniformly rotating star. These equations are formulated in a non-inertial frame of reference, rotating uniformly (i.e., rigidly) with respect to the inertial common frame.  相似文献   

14.
We have obtained a complete set of the zeroth-order equations for a force-free field at large magnetic Reynolds numbers. One of the equations has often been overlooked in previous works. We discuss the question of uniqueness of solution of the Cauchy problem and outline a general method of solution in the plane and axisymmetric cases.  相似文献   

15.
The problem of the complete set of perturbation equations of celestial mechanics in application to the Poynting-Robertson effect is discussed. Differential equations and initial conditions for them are justified. Sudden beginning of operation of the Poynting-Robertson effect (e.g., sudden release of dust particle from comet) is taken into account.  相似文献   

16.
A set of fluid type equations is derived to describe the macroscopic behaviour of a plasma consisting of a mixture of matter and antimatter. The equations are written in a form which displays the full symmetry of the medium with respect to particle charge and mass, a symmetry absent in normal plasmas. This symmetry of the equations facilitates their manipulation and solution, and by way of illustration the equations are used to analyze the propagation of electromagnetic and acoustic waves through a matter-antimatter plasma. Some differences from the propagation of such waves in a normal plasma are noted.  相似文献   

17.
In this paper, the classical and generalized Sundman time transformations are used to establish new generating set of differential equations of motion in terms of the Eulerian redundant parameters. The implementation of this set on digital computers for the commonly used independent variables is developed once and for all. Motion prediction algorithms based on these equations are developed in a recursive manner for the motions in the Earth's gravitational field with axial symmetry whatever the number of the zonal harmonic terms may be. Applications for the two types of short and long term predictions are considered for the perturbed motion in the Earth's gravitational field with axial symmetry with zonal harmonic terms up to J 36 . Numerical results proved the very high efficiency and flexibility of the developed equations.  相似文献   

18.
We develop a theoretical formulation for the large-scale dynamics of galaxy clusters involving two spherical ‘isothermal fluids‘ coupled by their mutual gravity and derive asymptotic similarity solutions analytically. One of the fluids roughly approximates the massive dark matter halo, while the other describes the hot gas, the relatively small mass contribution from the galaxies being subsumed in the gas. By properly choosing the self-similar variables, it is possible to consistently transform the set of time-dependent two-fluid equations of spherical symmetry with serf-gravity into a set of coupled nonlinear ordinary differential equations (ODEs). We focus on the analytical analysis and discuss applications of the solutions to galaxy clusters.  相似文献   

19.
The set of equations describing the time evolution ofHii regions, accounting for collisional ionization, are presented. Differential forms of these equations are deduced, and it is shown that it is not necessary within this context to consider changes in the potential energy due to ionization of the gas.  相似文献   

20.
The equilibrium configurations of close binary systems are analyzed. The autogravitational, centrifugal and tidal potentials are expanded in Clairaut's coordinates. From the set of the total potential angular terms an integral equations system is derived. The reduction of them to ordinary differential equations and the determination of the boundary conditions allow a formulation of the problem in terms of a single variable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号