首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract The chemical Th-U-total Pb isochron method (CHIME) was applied to determine the age of monazite and thorite in five gneisses and zircon in an ultra high-pressure (UHP) phengite schist from the Su-Lu region, eastern China. The CHIME ages and isotopic ages reported in the literature show that gneisses in the Su-Lu region are divided into middle Proterozoic (1500–1720 Ma) and Mesozoic (100–250 Ma) groups. The Proterozoic group includes paragneiss and orthogneiss of the amphibolite-granulite facies, and their protolith age is late Archean-early Proterozoic. The Mesozoic group is mainly composed of orthogneiss of the greenschist-epidote amphibolite facies, and the protolith age is Middle Paleozoic-Early Proterozoic. The Proterozoic and Mesozoic gneisses occupy northern and southern areas of the Su-Lu region, respectively, which are divided by a major Wulian-Qingdao-Yantai fault. Ultra high-pressure metamorphic rocks occur as blocks in the Mesozoic gneisses, and form a UHP complex.
The UHP phengite schist in the Mesozoic orthogneiss contains detrital zircons with late Proterozoic CHIME age ( ca 860 Ma). Age of the UHP metamorphism is late Proterozoic or younger, and protolith age of the UHP metamorphic rocks is probably different from that of the surrounding Mesozoic gneisses.  相似文献   

2.
Zircon U-Pb ages are reported for three samples of intrusive rocks in Khondalite series in the Sanggan area, North China craton. The age of meta-granite is dated as 2005∓9 Ma, implying that the sedimentary sequences in Khondalites series formed before 2.0Ga. The age of 1921 ∓ 1Ma for the meta-diorite constrain the age of granulite facies metamorphism younger than this date. The age of 1892 ∓ 10 Ma for garnet granite is obtained, but the granite crystallization age seems a little younger than the date considering the morphology of zircons. On the basis of these dates and of a concise review of previous age data, it is inferred that the Khondalite series was subjected to granulite facies metamorphism at about 1.87Ga together with tonalitic granulites and HP basic granulites in the Sanggan area.  相似文献   

3.
High-pressure mafic granulites occurring as lenticular bodies within garnet-amphibolites in Kangxiwar Fault have been first reported in this paper. The P-T conditions of two metamorphic stages were ob-tained using calibrated geothermal barometers and ThermoCalc Program. The peak metamorphic con-dition of these high-pressure granulites is about 760―820℃,1.0―1.2 GPa and the retrograde meta-morphic condition is about 620―720℃,0.7―0.8 GPa. The petrological studies show that they have a near-isobaric cooling P-T...  相似文献   

4.
Zircon U–Pb dating of the Tonaru metagabbro body in the Sanbagawa metamorphic belt, southwest Japan, suggests that igneous events at ca 200–180 Ma were involved in the protolith formation. The trace element compositions of the Tonaru zircons are enriched in U (a fluid‐mobile element) and Sc (an amphibole‐buffered element), and depleted in Nb (a fluid‐immobile element), suggesting that the parental magmas related to the Tonaru metagabbros formed in an arc setting. Integration of our results with previous studies of the metasedimentary rocks in the Tonaru body clearly indicates that the protoliths of the Tonaru body were produced by oceanic‐arc magmatism. With the previous geochronological and geological studies, the tectono‐magmatic–metamorphic history of the Tonaru and other mafic bodies in the Sanbagawa metamorphic belt may be summarized as follows: (i) the protolith formation by the oceanic‐arc magmatic event had occurred at 200–180 Ma; (ii) the protoliths were accreted in the trench at ca 130–120 Ma; and (iii) they were completely subducted into the depth of the eclogite‐facies condition after 120 Ma.  相似文献   

5.

Zircon grains were selected from two types of ultrahigh-pressure (UHP) eclogites, coarse-grained phengite eclogite and fine-grained massive eclogite, in the Yukahe area, the western part of the North Qaidam UHP metamorphic belt. Most zircon grains show typical metamorphic origin with residual cores in some irregular grains and sector, planar or misty internal textures on the cathodoluminescence (CL) images. The contents of REE and HREE of the core parts of grains range from 173 to 1680 μg/g and 170 to 1634 μg/g, respectively, in phengite eclogite, and from 37 to 2640 μg/g and 25.7 to 1824 μg/g, respectively, in massive eclogite. The core parts exhibit HREE-enriched patterns, representing the residual zircons of protolith of the Yukahe eclogite. The contents of REE and HREE of the rim parts and the grains free of residual cores are much lower than those for the core parts. They vary from 13.1 to 89.5 μg/g and 12.5 to 85.7 μg/g, respectively, in phengite eclogite, and from 9.92 to 45.8 μg/g and 9.18 to 43.8 μg/g, respectively, in massive eclogite. Negative Eu anomalies and Th/U ratios decrease from core to rim. Positive Eu anomalies are shown in some grains. These indicate that the presence of garnet and the absence of plagioclase in the peak metamorphic mineral assemblage, and the zircons formed under eclogite facies conditions. LA-ICP-MS zircon U-Pb age data indicate that phengite eclogite and massive eclogite have similar metamorphic age of 436±3Ma and 431±4Ma in the early Paleozoic and magmatic protolith age of 783–793 Ma and 748–759 Ma in the Neo-proterozoic. The weighted mean age of the metamorphic ages (434±2 Ma) may represent the UHP metamorphic age of the Yukahe eclogites. The metamorphic age is well consistent with their direct country rocks of gneisses (431±3 Ma and 432±19 Ma) and coesite-bearing pelitic schist in the Yematan UHP eclogite section (423–440 Ma). These age data together with field observation and lithology, allow us to conclude that the Yukahe eclogites were Neo-proterozoic igneous rocks and may have experienced subduction and UHP metamorphism with continental crust at deep mantle during the early Paleozoic, therefore the metamorphic age of 434±2 Ma of the Yukahe eclogites probably represents the continental deep subduction time in this area.

  相似文献   

6.
Experiments were conducted to determine whether the rhyolites and basalts of the intraplate silica-saturated potassic suites could be genetically related through crystallization. Extreme crystallization (96–97%) of a high-MgO (10.62 wt%) olivine tholeiite from the Snake River Plain with an initial bulk water content of 0.4 wt% at a mid-crustal pressure of 4.3 kbar generated potassic rhyolitic liquids similar in major element chemistry to those found in the Quaternary rhyolite domes of the Snake River Plain and their plutonic equivalents in the Proterozoic Laramie Anorthosite Complex. Residual liquids comparable in composition to the bulk rock compositions of intermediate rocks found at the Craters of the Moon and Cedar Butte eruptive centers in the Snake River Plain are also generated along this crystallization path. This paper constitutes part of a special issue dedicated to Bill Bonnichsen on the petrogenesis and volcanology of anorogenic rhyolites.  相似文献   

7.
It is revealed by CL images that there are multi-stage growth internal structures of zircons in the Huangtuling granulite, including the inherited zircons, protolith zircons, sector and planar zone zircons and retrograde zircons. In-situ trace element compositions and Pb-Pb ages have been analyzed by LAM-ICP-MS. The sector and the planar zone domains show typical trace element characteristics of granulite zircon (low Th, U, Th/U, total REEs, clear negative Eu anomalies, relatively depleted HREE and small differential degree between MREE and HREE, etc.), indicating that they formed during granulite-facies metamorphism. The protolith zircons have trace element characteristics of crustal zircon (high Th, U, Th/U, total REEs and enriched HREEs, etc.). 12 analyzed spots on granulite-facies domains give a weighted mean 207Pb/206Pb age of (2154±26) Ma (MSWD = 3.8), which is the best estimated age of granulite-facies metamorphism of this sample. The weighted mean 207Pb/206Pb age of 5 analyzed spots on protolith zircon domains is (2714 ± 22) Ma (MSWD = 1.4), which represents the protolith forming time. The discovery of ca. 3.4 Ga inherited zircon indicates that there are Palaeoarchean continental materials in this area. The interpretation of formation conditions and the ages of zircons can be constrained by simultaneous in-situ analysis of trace elements and ages.  相似文献   

8.
The Hidaka Metamorphic Belt is a well-known example of island-arc crustal section, in which metamorphic grade increases westwards from unmetamorphosed sediment up to granulite facies. It is divided into lower (granulite to amphibolite facies) and upper (amphibolite to greenschist facies) metamorphic sequences. The metamorphic age of the belt was considered to be ~55 Ma, based on Rb – Sr whole-rock isochron ages for granulites and related S-type tonalities. However, zircons from the granulites in the lower sequence yield U – Pb ages of ~21 – 19 Ma, and a preliminary report on zircons from pelitic gneiss in the upper sequence gives a U – Pb age of ~40 Ma. In this paper we provide new zircon U – Pb ages from two pelitic gneisses in the upper sequence to assess the metamorphic age and also the maximum depositional age of the sedimentary protolith. The weighted mean 206Pb/238U ages from a biotite gneiss in the central area of the belt yield 39.6 ± 0.9 Ma for newly grown metamorphic rims and 53.1 ± 0.9 Ma for the youngest detrital cores. The ages of zircons from a cordierite–biotite gneiss in the southern area are 35.9 ± 0.7 Ma for metamorphic rims and 46.5 ± 2.8 Ma for the youngest detrital cores. These results indicate that metamorphism of the upper sequence took place at ~40 – 36 Ma, and that the sedimentary protolith was deposited after ~53 – 47 Ma. These metamorphic ages are consistent with the reported ages of ~37–36 Ma plutonic rocks in the upper sequence, but contrast with the ~21–19 Ma ages of metamorphic and plutonic rocks in the lower sequence. Therefore, we conclude that the upper and lower metamorphic sequences developed independently but coupled with each other before ~19 Ma as a result of dextral reverse tectonic movement.  相似文献   

9.
~~Metamorphic zircon from Xindian eclogite,Dabie Terrain: U-Pb age and oxygen isotope composition@E. Deloule$CRPG-CNRS Nancy,54501,France1. Vavra, G, Gebauer. D., Schmid. R. et al., Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Tri-assic metamorphism in granulites of the Ivrea Zone (Southern Alps): an ion microprobe (SHRIMP) study, Contrib. Mineral Petrol., 1996, 122:337-358 2. Vavra, G, Schmid, R., Gebauer, D., Internal morphology, ha…  相似文献   

10.
Zircon is an accessory mineral occurring in many types of rocks. For the rich content of U and low content of common Pb, it is the principal mineral used for U-Th-Pb dating. It can be sur-vived during weathering, transiting, high-grade metamorphism and ev…  相似文献   

11.
Rhyolites occur as a subordinate component of the basalt-dominated Eastern Snake River Plain volcanic field. The basalt-dominated volcanic field spatially overlaps and post-dates voluminous late Miocene to Pliocene rhyolites of the Yellowstone–Snake River Plain hotspot track. In some areas the basalt lavas are intruded, interlayered or overlain by ~15 km3 of cryptodomes, domes and flows of high-silica rhyolite. These post-hotspot rhyolites have distinctive A-type geochemical signatures including high whole-rock FeOtot/(FeOtot+MgO), high Rb/Sr, low Sr (0.5–10 ppm) and are either aphyric, or contain an anhydrous phenocryst assemblage of sodic sanidine ± plagioclase + quartz > fayalite + ferroaugite > magnetite > ilmenite + accessory zircon + apatite + chevkinite. Nd- and Sr-isotopic compositions overlap with coeval olivine tholeiites (ɛNd = −4 to −6; 87Sr/86Sri = 0.7080–0.7102) and contrast markedly with isotopically evolved Archean country rocks. In at least two cases, the rhyolite lavas occur as cogenetic parts of compositionally zoned (~55–75% SiO2) shield volcanoes. Both consist dominantly of intermediate composition lavas and have cumulative volumes of several 10’s of km3 each. They exhibit two distinct, systematic and continuous types of compositional trends: (1) At Cedar Butte (0.4 Ma) the volcanic rocks are characterized by prominent curvilinear patterns of whole-rock chemical covariation. Whole-rock compositions correlate systematically with changes in phenocryst compositions and assemblages. (2) At Unnamed Butte (1.4 Ma) the lavas are dominated by linear patterns of whole-rock chemical covariation, disequilibrium phenocryst assemblages, and magmatic enclaves. Intermediate compositions in this group resulted from variable amounts of mixing and hybridization of olivine tholeiite and rhyolite parent magmas. Interestingly, models of rhyolite genesis that involve large degrees of melting of Archean crust or previously consolidated mafic or silicic Tertiary intrusions do not produce observed ranges of Nd- and Sr-isotopes, extreme depletions in Sr-concentration, and cogenetic spectra of intermediate rock compositions for both groups. Instead, least-squares mass-balance, energy-constrained assimilation and fractional crystallization modeling, and mineral thermobarometry can explain rhyolite production by 77% low-pressure fractional crystallization of a basaltic trachyandesite parent magma (~55% SiO2), accompanied by minor (0.03–7%) assimilation of Archean upper crust. We present a physical model that links the rhyolites and parental intermediate magmas to primitive olivine tholeiite by fractional crystallization. Assimilation, recharge, mixing and fractional melting occur to limited degrees, but are not essential parts of the rhyolite formation process. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. This paper constitutes part of a special issue dedicated to Bill Bonnichsen on the petrogenesis and volcanology of anorogenic rhyolites.  相似文献   

12.
Mafic granulite xenoliths have been discovered in many volcanoes (especially alkali basalt and kimberlite) all over the world. They formed generally in lower crust, and recorded lots of in- formation on the lithosphere formation and crust-mantle interacti…  相似文献   

13.
A model involving buoyancy, wedging and thermal doming is postulated to explain the differential exhumation of ultrahigh-pressure (UHP) metamorphic rocks in the Dabie Mountains, China, with an emphasis on the exhumation of the UHP rocks from the base of the crust to the upper crust by opposite wedging of the North China Block (NCB). The Yangtze Block was subducted northward under the NCB and Northern Dabie microblock, forming UHP metamorphic rocks in the Triassic (240–220 Ma). After delamination of the subduction wedge, the UHP rocks were exhumed rapidly to the base of the crust by buoyancy (220–200 Ma). Subsequently, when the left-lateral Tan–Lu transform fault began to be activated, continuous north–south compression and uplifting of the orogen forced the NCB to be subducted southward under the Dabie Orogen (`opposite subduction'). Opposite subduction and wedging of the North China continental crust is responsible for the rapid exhumation of the UHP and South Dabie Block units during the Early Jurassic, at ca 200–180 Ma at a rate of ∼ 3.0 mm/year. The UHP eclogite suffered retrograde metamorphism to greenschist facies. Rapid exhumation of the North Dabie Block (NDB) occurred during 135–120 Ma because of thermal doming and granitoid formation during extension of continental margin of the Eurasia. Amphibolite facies rocks from NDB suffered retrograde metamorphism to greenschist facies. Different unit(s) and terrane(s) were welded together by granites and the wedging ceased. Since 120–110 Ma, slow uplift of the entire Dabie terrane is caused by gravitational equilibrium.  相似文献   

14.
Pei  XianZhi  Ding  SaPing  Zhang  GuoWei  Liu  HuiBin  Li  ZuoChen  Li  GaoYang  Liu  ZhanQing  Meng  Yong 《中国科学:地球科学(英文版)》2007,50(2):264-276

Baihua meta-igneous complex consists mainly of pyroxenite-gabbro(diorite)-diorite-quartz diorite. They form a complete comagmatic evolutionary series. The geochemical characteristics of basic-intermediate basic igneous rocks indicate that they belong to a tholeiite suite. The REE distribution pattern is nearly flat type and LREE is slightly enriched type, and their primitive mantle-normalized and MORB-normalized trace element spider diagrams are generally similar; the LIL elements (LILE) Cs, Ba, Sr, Th and U are enriched, but Rb, K and the HFSEs Nb, P, Zr, Sm, Ti and Y are relatively depleted. All these show comagmatic evolution and origin characteristics. The tectonics environment discrimination of trace element reveals that these igneous complexes formed in an island-arc setting. The LA-ICP-MS single-zircons U-Pb age of Baihua basic igneous complex is 434.6±1.5 Ma (MSWD = 1.3), which proves that the formation time of the island-arc type magmatite in the northern zone of West Qinling is Late Ordovician or Early Silurian, also reveals that the timing of subduction of paleo-ocean basin represented by the Guanzizhen ophiolite and resulting island-arc-type magmatic activities is probably Middle-Late Ordovician to Early Silurian.

  相似文献   

15.
Granulites in the Dabie Mountains are mainly ob-served in northern Dabie complex zone. Huangtuling intermediate-acid granulites and Huilanshan mafic granulites in the Luotian dome are two famous out-crops (Fig. 1)[1]. It is important to know the genesis and metamorphic age of these granulites for under-standing tectonic evolution and exhumation history of the Dabie Mountains. Previous geochemical and geo-chronological work[2―8]1) on the Huangtuling granu-lites indicates that their protoli…  相似文献   

16.
Lower Proterozoic sapphirine-bearing and associated granulites from Central Australia exhibit the greatest range of present-day143Nd/144Nd ratios (∈Nd(O)= ?26.5 to +112.3) yet reported for rocks believed to be cogenetic. The Nd isotopic data and REE abundances of these rocks demonstrate extreme fractionation of the rare earths during the formation of stratiform CuPbZn sulfide deposits with which they are closely associated. Field relationships, petrography and chemistry of the sapphirine granulites suggest that their protoliths comprised chlorite-rich rocks which were generated by hydrothermal alteration of a range of rock types prior to metamorphism; calculations employing REE abundances of the sapphirine granulites and associated rocks, combined with bulk solid-fluid distribution coefficient data yield high fluid/rock ratios, consistent with a pre-metamorphic hydrothermal origin for the unusual REE patterns. The SmNd data for these rocks define an age of 1760±75Ma, which is significantly younger than the crust formation age of the terrain ( 2070±125Ma) but indistinguishable from the RbSr whole rock age for granulite facies metamorphism (1790±35Ma). These data are interpreted in terms of major hydrothermal fractionation of the rare earths shortly (perhaps tens of millions of years) before granulite facies metamorphism, followed by redistribution of Nd isotopes or small fractionations of the Sm/Nd ratio during the granulite facies event, and possibly also during intense retrogression which reset RbSr whole rock and UPb zircon and monazite systematics at about 1700 Ma.  相似文献   

17.
Petrological, volcanological and geochronological data collected at Mathews Tuya together provide constraints on paleoclimate conditions during formation of the edifice. The basaltic tuya was produced via Pleistocene glaciovolcanism in northern British Columbia, Canada, and is located within the Tuya volcanic field (59.195°N/130.434°W), which is part of the northern Cordilleran volcanic province (NCVP). The edifice comprises a variety of lithofacies, including columnar-jointed lava, pillow lava, massive dikes, and volcaniclastic rocks. Collectively these deposits record the transition from an explosive subaqueous to an effusive subaerial eruption environment dominated by Pleistocene ice. As is typical for tuyas, the volcaniclastic facies record multiple fragmentation processes including explosive, quench and mechanical fragmentation. All samples from Mathews Tuya are olivine-plagioclase porphyritic alkali olivine basalts. They are mineralogically and geochemically similar to nearby glaciovolcanic centers from the southeastern part of the Tuya volcanic field (e.g., Ash Mountain, South Tuya, Tuya Butte) as well as the dominant NCVP rock type. Crystallization scenarios calculated with MELTS account for variations between whole rock and glass compositions via low pressure fractionation. The presence of olivine microphenocrysts and the absence of pyroxene phenocrysts constrain initial crystallization pressures to less than 0.6 GPa. The eruption of Mathews Tuya occurred between 0.718 ± 0.054 Ma and 0.742 ± 0.081 Ma based on 40Ar/39Ar geochronology (weighted mean age of 0.730 Ma). The age determinations provide the first firm documentation for large (>700 m thick), pre-Fraser/Wisconsin glaciers in north-central British Columbia ~0.730 Ma, and correlate in age with glaciovolcanic deposits in Russia (e.g., Komatsu et al. Geomorph 88: 352-366, 2007) and with marine isotopic evidence for large global ice volumes ~0.730 Ma.  相似文献   

18.
Laser Raman spectroscopy and cathodoluminescence (CL) image reveal that zircons separated from paragneisses in the southwestern Sulu terrane (eastern China) preserve multi-stage mineral assemblages in different zircon domains. In the same paragneiss zircon sample, some zircon grains retain inherited (detrital) cores with abundant low-pressure mineral inclusions of Qtz + Phe + Ap + impurities and Qtz + Phe + impurities. The ultrahigh-pressure (UHP) metamorphic overgrowths mantles of these zircons preserve Coe, Coe + Phe and other UHP mineral inclusions, indicating that these inherited (detrital) zircons from protoliths experienced metamorphic recrystallization during the Sulu UHP metamorphic event. However, other zircon grains preserve UHP mineral inclusions of Coe, Coe + Ap and Coe + Phe in the cores and mantles, whereas the outmost rims contain quartz (Qtz) and other low-pressure mineral inclusions. These phenomena prove that the second group zircons were crystallized at UHP metamorphic stage and overpr  相似文献   

19.
De-Ru  Xu  Bin  Xia  Peng-Chun  Li  Guang-Hao  Chen  Ci  Ma  Yu-Quan  Zhang 《Island Arc》2007,16(4):575-597
Abstract Metabasites within the Paleozoic volcanic‐clastic sedimentary sequences in Hainan Island, South China, show large differences not only in the nature of protoliths, but also in zircon U‐Pb sensitive high mass‐resolution ion microprobe (SHRIMP) ages. The protoliths for the Tunchang area metabasites have intraoceanic arc geochemical affinities. In the east‐central island gabbroic to diabasic rocks and pillow lavas are also present, while the Bangxi area metabasites with back‐arc geochemical affinities in the northwest island consist of basaltic, gabbroic and/or picritic rocks. Three types of zircon domains/crystals in the Tunchang area metabasites are defined. Type 1 is comagmatic and yields concordant to approximately concordant 206 Pb/238 U ages ranging from 442.1 ± 13.7 Ma to 514.3 ± 30.2 Ma with a weighted U‐Pb mean age of 445 ± 10 Ma. Type 2 is inherited and yields a weighted 207 Pb/206 Pb mean age of 2488.1 ± 8.3 Ma. Type 3 is magmatic with a 207 Pb/206 Pb age of ca 1450 Ma. Magmatic zircons in the Bangxi area metabasites yield a weighted U‐Pb mean age of 269 ± 4 Ma. We suggest 450 Ma is the minimum age for crystallization of protoliths of the Tunchang area metabasites, because the age range of ca 440–514 Ma probably corresponds to both the time of igneous crystallization and the high‐temperature overprint. The presence of abundant inherited zircons strongly favors derivation of these rocks from a NMORB‐like mantle proximal to continental crust. A protolith age of ca 270 Ma for the Bangxi area metabasites probably records expansion of an epircontinental back‐arc basin and subsequent generation of a small oceanic basin. The presence of ophiolitic rocks with an age of ca 450 Ma, not only in Hainan Island, but also in the Yangtze block, highlights the fact that the South China Caledonian Orogeny was not intracontinental in nature, but characterized by an ocean‐related event.  相似文献   

20.
The Yixian Formation at Sihetun in western Liao- ning Province has attracted considerable attention over the last two decades due to discovery of a wide range of well-preserved ‘feathered’ dinosaurs and primitive bird fossils[1―4]. This formation is dominated by vol- canic rocks, with fossil-bearing lacustrine sedimentary rocks at the upper part of the section[4]. The sedimen- tary rocks contain thin layers of tuff. According to previous studies[4], the total thickness of the Yixian Form…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号