首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
龙门山造山带的早期活动及其对造山作用的启示   总被引:1,自引:0,他引:1  
郑勇  李海兵  王焕  张蕾  李成龙 《岩石学报》2017,33(12):3957-3972
2008年汶川地震后,在映秀-北川同震地表破裂带南段虹口乡八角庙地区发现有假玄武玻璃出露于~240m宽的断裂带内,代表了断裂带以往地震和断裂活动的直接产物。这套假玄武玻璃的高温熔融成因得到了元素地球化学和熔融结构的证实。玻璃基质、蚀变矿物和碎屑斑晶的化学分析显示假玄武玻璃继承了碎裂岩/超碎裂岩围岩的主要化学成分,除石英外,主要由长石和云母两种端员组分选择性熔融形成,并呈现出了化学组分分布的不均一性。假玄武玻璃的锆石U-Pb和玻璃基质~(40)Ar/~(39)Ar定年结果证实映秀-北川断裂的古地震发生于229~216Ma的中-晚三叠世,并具有11~14km的震源深度,表明映秀-北川断裂的早期活动始于印支期的造山运动。伴随着印支造山运动的发生,龙门山断裂带形成了其初始构造框架,并对之后的构造演化产生了深远的影响。  相似文献   

2.
LA-ICP-MS U-Pb analyses performed on zircon grains from the Lizio granite yielded an emplacement age of 316 ± 6 Ma. Typical S-C structures show that the Lizio granite was emplaced contemporaneously with dextral shearing along the northern branch of the South Armorican Shear Zone and that it was therefore active at that time. 40Ar/39Ar analyses performed on muscovite grains yielded plateau dates ranging between 311.5 and 308.2 Ma. Muscovite chemistry is typical of primary magmatic muscovite, which precludes a late fluids-induced resetting of the K-Ar isotopic system. 40Ar/39Ar dates thus likely correspond to the cooling ages below the argon closure temperature. Considering the uncertainties on the measured ages, we can propose that either the Lizio granite cooled down quickly in less than a million of years or that it remained in a hot environment for several millions of years after its emplacement. This latter scenario could have been sustained by shear heating during dextral shearing along the northern branch of the South Armorican Shear Zone.  相似文献   

3.
大兴安岭地区德尔布干断裂带北段构造年代学研究   总被引:16,自引:4,他引:12  
德尔布干断裂带是大兴安岭隆起西侧NE向的重要断裂带,处在海拉尔-拉布达林-根河盆地西缘,是著名德尔布干成矿区东南边界断裂带.为了确定德尔布干断裂带运动性质、活动时间,深入探讨该断裂带与中生代海拉尔-拉布达林-根河盆地及大兴安岭盆山格局、认识德尔布干断裂带多金属矿床成因等问题,本文应用锆石SHRIMP和云母40Ar/39Ar定年技术,分别对断裂带内的细粒黑云母花岗岩侵入体、韧性变形的花岗闪长质片麻岩、白云母石英片岩,进行了同位素年代学研究.其中花岗闪长质片麻岩岩浆型锆石SHRIMP谐和年龄300.6±9.3Ma,为花岗闪长质片麻岩海西期的侵位年龄;而花岗闪长质片麻岩中黑云母40Ar/39Ar坪年龄是130.9±1.4Ma,白云母石英片岩的白云母40Ar/39Ar坪年龄是115.6±1.6Ma,代表早白垩世伸展构造变形年龄;细粒黑云母花岗岩侵入体岩浆型锆石SHRIMP谐和年龄130.1±1.4Ma,为同伸展构造变形侵位的岩浆事件.上述地质年代说明德尔布干断裂带是早白垩世(110~130Ma)该区最年轻的重大伸展构造变形产物.控制NE向大兴安岭隆起和中生代海拉尔-拉布达林-根河等火山沉积盆地的发育格局、以及中生代以来的地壳演化与成矿类型.  相似文献   

4.
Structural and thermochronological studies of the Kampa Dome provide constraints on timing and mechanisms of gneiss dome formation in southern Tibet. The core of Kampa Dome contains the Kampa Granite, a Cambrian orthogneiss that was deformed under high temperature (sub-solidus) conditions during Himalayan orogenesis. The Kampa Granite is intruded by syn-tectonic leucogranite dikes and sills of probable Oligocene to Miocene age. Overlying Paleozoic to Mesozoic metasedimentary rocks decrease in peak metamorphic grade from kyanite + staurolite grade at the base of the sequence to unmetamorphosed at the top. The Kampa Shear Zone traverses the Kampa Granite — metasediment contact and contains evidence for high-temperature to low-temperature ductile deformation and brittle faulting. The shear zone is interpreted to represent an exhumed portion of the South Tibetan Detachment System. Biotite and muscovite 40Ar/39Ar thermochronology from the metasedimentary sequence yields disturbed spectra with 14.22 ± 0.18 to 15.54 ± 0.39 Ma cooling ages and concordant spectra with 14.64 ± 0.15 to 14.68 ± 0.07 Ma cooling ages. Petrographic investigations suggest disturbed samples are associated with excess argon, intracrystalline deformation, mineral and fluid inclusions and/or chloritization that led to variations in argon systematics. We conclude that the entire metasedimentary sequence cooled rapidly through mica closure temperatures at  14.6 Ma. The Kampa Granite yields the youngest biotite 40Ar/39Ar ages of  13.7 Ma immediately below the granite–metasediment contact. We suggest that this age variation reflects either varying mica closure temperatures, re-heating of the Kampa Granite biotites above closure temperatures between 14.6 Ma and 13.7 Ma, or juxtaposition of rocks with different thermal histories. Our data do not corroborate the “inverse” mica cooling gradient observed in adjacent North Himalayan gneiss domes. Instead, we infer that mica cooling occurred in response to exhumation and conduction related to top-to-north normal faulting in the overlying sequence, top-to-south thrusting at depth, and coeval surface denudation.  相似文献   

5.
The amphibolite facies grade North Qinling metamorphic unit forms the centre of the Qinling orogenic belt. Results of LA-ICP-MS U-Pb zircon, 40Ar/39Ar amphibole and biotite dating reveal its Palaeozoic tectonic history. U-Pb zircon dating of migmatitic orthogneiss and granite dykes constrains the age of two possible stages of migmatization at 517 ± 14 Ma and 445 ± 4.6 Ma. A subsequent granite intrusion occurred at 417 ± 1.6 Ma. The 40Ar/39Ar plateau ages of amphibole ranging from 397 ± 33 Ma to 432 ± 3.4 Ma constrain the cooling of the Qinling complex below ca. 540 °C and biotite 40Ar/39Ar ages at about 330–368 Ma below ca. 300 °C. The ages are used to construct a cooling history with slow/non-exhumation during 517– 445 Ma, a time-integrated cooling at a rate < 2.5 °C/Ma during the period of 445–410 Ma, an acceleration of cooling at a rate of 8 °C/Ma from 397 Ma to 368 Ma, and subsequently slow/non-cooling from 368 to 330 Ma. The data show a significant delay in exhumation after peak metamorphic conditions and a long period of tectonic quiescence after the suturing of the North China and South China blocks along the Shangdan suture. These relationships exclude classical exhumation models of formation and exhumation of metamorphic cores in orogens, which all imply rapid cooling after peak conditions of metamorphism.  相似文献   

6.
40Ar/39Ar geochronology of muscovite and biotite grains genetically related to gold and Be–Ta–Li pegmatites from the Seridó Belt (Borborema province, NE Brazil) yield well-defined, reliable plateau ages. This information, combined with data about paragenetic and field relationships, reveals Cambro-Ordovician mineralization ages (520 and 500–506 Ma) for the orogenic gold deposits in the Seridó Belt. Biotite ages of 525±2 Ma, which represent the mean weighted results of the incremental heating analysis of six biotite single crystals, record the time of pegmatite emplacement and reactivation of Brasiliano/Pan-African strike-slip shear zones. These results, along with previous structural evolution studies, suggest that shear zones formed during the Brasiliano/Pan-African event were reactivated in the Upper Cambrian–Lower Ordovician. Mineralization occurs late in the history of the orogen.  相似文献   

7.
Muscovite and biotite from a crustal-scale mylonite zone (Pogallo Shear Zone, southern Alps) were investigated using furnace step-heating and in-situ UV-laser ablation 40Ar/39Ar geochronology. Undeformed muscovite porphyroclasts yield 40Ar/39Ar plateau ages of 182.0ǃ.6 Ma, whereas in-situ UV-laser ablation 40Ar/39Ar dating and furnace step-heating of strongly deformed muscovite and biotite grains display a range of apparent ages that are systematically younger. The range of 40Ar/39Ar ages measured in the deformed muscovite and biotite is consistent with protracted cooling through argon closure in minerals that exhibit variably developed segmentation on the intra-grain scale. These microstructurally controlled segments are bound by either first-order lattice discontinuities, sub-microscopic structural defects and/or zones of high defect density, which create variable length-scales for intragranular argon diffusion. The observed deformational microstructures within muscovite and biotite acted as intra-grain fast diffusion pathways in the slowly cooled mylonitic rocks. Therefore, the high-spatial resolution 40Ar/39Ar data record the initial and final closure to argon diffusion over a time span of about 60 Ma.  相似文献   

8.
Four K-feldspar samples from the Yidun Arc, eastern Tibetan Plateau, were analysed by the 40Ar/39Ar method with the aim of recovering information on their thermal history using multiple diffusion domain (MDD) theory. Arrhenius plots for each of the samples reveal low retentivity early in the heating experiments, a property that is attributed to their recrystallised nature. This low argon retentivity appears to violate the MDD assumption that volume diffusion is the only mechanism for argon transport within the crystals, thus the thermal histories derived from these analyses are considered suspect. Nevertheless, the age spectra themselves suggest that the majority of samples had cooled below 200 °C prior to the Eocene collision of India with Asia. Thermal history modelling from apatite fission track analyses from the same and nearby samples shows slow cooling through the apatite fission track partial annealing zone during the Cenozoic in samples from the high elevation, low relief areas of the Yidun Arc, while samples from the major Jinsha River valley show rapid cooling through the partial annealing zone beginning in the Miocene. These results suggest that significant Cenozoic denudation has been localised and that most parts of the Yidun Arc have experienced very little denudation during the Cenozoic.  相似文献   

9.
The Neogene Yamadağ volcanics occupy a vast area between Sivas and Malatya in eastern Anatolia, Turkey. These volcanic rocks are characterized by pyroclastics comprising agglomerates, tuffs and some small outcrops of basaltic–andesitic–dacitic rocks, overlain upward by basaltic and dacitic rocks, and finally by basaltic lava flows in the Arapkir area, northern Malatya Province. The basaltic lava flows in the Arapkir area yield a 40Ar/39Ar age of 15.8 ± 0.2 Ma, whereas the dacitic lava flows give 40Ar/39Ar ages ranging from 17.6 through 14.7 ± 0.1 to 12.2 ± 0.2 Ma, corresponding to the Middle Miocene. These volcanic rocks have subalkaline basaltic, basaltic andesitic; alkaline basaltic trachyandesitic and dacitic chemical compositions. Some special textures, such as spongy-cellular, sieve and embayed textures; oscillatory zoning and glass inclusions in plagioclase phenocrysts; ghost amphiboles and fresh biotite flakes are attributable to disequilibrium crystallization related to magma mixing between coeval magmas. The main solidification processes consist of fractional crystallization and magma mixing which were operative during the soldification of these volcanic rocks. The dacitic rocks are enriched in LILE, LREE and Th, U type HFSE relative to the basaltic rocks. The basaltic rocks also show some marked differences in terms of trace-element and REE geochemistry; namely, the alkaline basaltic trachyandesites have pronounced higher HFSE, MREE and HREE contents relative to the subalkaline basalts. Trace and REE geochemical data reveal the existence of three distinct magma sources – one subalkaline basaltic trachyandesitic, one alkaline basaltic and one dacitic – in the genesis of the Yamadağ volcanics in the Arapkir region. The subalkaline basaltic and alkaline basaltic trachyandesitic magmas were derived from an E-MORB type enriched mantle source with a relatively high- and low-degree partial melting, respectively. The magmatic melt of dacitic rocks seem to be derived from an OIB-type enriched lithospheric mantle with a low proportion of partial melting. The enriched lithospheric mantle source reflect the metasomatism induced by earlier subduction-derived fluids. All these coeval magmas were generated in a post-collisional extensional geodynamic setting in Eastern Anatolia, Turkey.  相似文献   

10.
Sung Won Kim   《Gondwana Research》2005,8(3):385-402
An understanding of the Okcheon Metamorphic Belt (OMB) in South Korea is central to unraveling the tectono-metamorphic evolution of East Asia. Amphibole-bearing rocks in the OMB occur as calcsilicate layers and lenses in psammitic rocks, in the psammitic rocks themselves, and in the mafic volcanic layers and intrusives. Most amphiboles fail to show 40Ar/39Ar plateau ages; those that do have ages ranging from 132 to 975 Ma. The disturbed age pattern and wide variation in 40Ar/39Ar ages can be related to metamorphic grade, retrograde chemical reactions, excess Ar and amphibole composition. The oldest age (975 Ma) can be interpreted either as an old igneous or metamorphic age predating sedimentation or a false age caused by excess Ar. The youngest age of 132 Ma and the disturbed age pattern found in amphiboles from rocks located close to Jurassic granitoids are the result of retrograde thermal metamorphic effects accompanying intrusion of the granitoids. Some medium- or coarse-grained amphiboles in the calcsilicates are aggregates of fine-grained crystals. As a result, they are heterogeneous and prove to be readily affected by excess Ar. A disturbed age pattern in amphiboles from the calcsilicates occurring in the high-grade metamorphic zone may also be the product of excess Ar. On the other hand, the disturbed pattern of amphiboles present in the calcsilicates from the low-grade metamorphic zone could arise from both excess Ar and mixed ages. However, amphiboles from psammitic rocks and some calcsilicates in the high-grade metamorphic zone and in intrusive metabasites display real plateau ages of 237 to 261 Ma. The temperature conditions in the high-grade metamorphic zone were higher than the argon closing temperature for amphibole, and the amphiboles in this zone give plateau ages only when they are homogeneous in composition, lack excess Ar, and have not been thermally affected by intrusion of the granitoids. The unmodified 40Ar/39Ar ages prove rather younger than the age of the Late Paleozoic metamorphic event of 280 to 300 Ma, but they are close to muscovite K-Ar ages of 263 to 277 Ma. These 40Ar/39Ar amphibole ages are interpreted as the time of cooling that followed the main regional, intermediate-P/T metamorphic climax. The results demonstrate that interpretation of 40Ar/39Ar amphibole ages in an area subjected to several metamorphic events can be accomplished only by undertaking a thorough tectono-metamorphic study, accompanied by detailed chemical analysis of the amphiboles.  相似文献   

11.
ABSTRACT

The West Junggar Metallogenic Belt (WJMB) is located between the Tianshan fault system and the Ertix fault system in the western part of the Central Asian Metallogenic Domain (CAMD). The belt features widespread late Palaeozoic granitic plutons, strike-slip faults, and porphyry copper and orogenic gold deposits. We collected nine molybdenite samples from the Baogutu III–IV Cu–Mo deposit and the Suyunhe Mo–W deposit, and 12 granitoid samples from the Jiaman, Kangde, Kulumusu, Bieluagaxi, Hatu, Akbastau, Miaoergou, Baogutu, Karamay, and Hongshan plutons in the WJMB. Molybdenite Re–Os dating gives metallogenesis ages of 312.7 and 299.7 Ma for the Baogutu III–IV and Suyunhe deposits, respectively. 40Ar/39Ar thermochronology yields biotite ages ranging from 326 to 302 Ma and K-feldspar ages from 297 to 264 Ma, indicating a regional medium-temperature cooling history in the WJMB during the late Carboniferous to middle Permian. By integrating these data with previous zircon U–Pb, amphibole 40Ar/39Ar, and zircon and apatite fission-track ages, we reconstruct the whole thermal history of the WJMB, which includes late Palaeozoic intrusive magmatism, porphyry Cu and W–Mo mineralization, and late Mesozoic tectonic uplift and exhumation of the WJMB. The regional 40Ar/39Ar cooling ages are consistent with the timing of regional sinistral strike-slip faulting, thereby indicating the tectonic significance of the cooling ages. We suggest that the biotite 40Ar/39Ar ages represent the static cooling of the granitic plutons after emplacement, since the ages are consistent with the U–Pb ages of the plutons. Thereafter, the oldest K-feldspar 40Ar/39Ar age may record the initiation of sinistral strike-slip movement on the Darabut, Mayile, and Baerluke faults. The regional faulting resulted in significant uplift of the WJMB during the early and middle Permian.  相似文献   

12.
The abundance and lithic content of ice rafted detritus in glacial North Atlantic sediment cores vary abruptly on millennial time scales that have been correlated to Dansgaard-Oeschger cycles in the Greenland ice cores. There is growing evidence that various ice sheet outlets contributed increased iceberg fluxes at multiple discrete intervals, and the relative timing of iceberg discharges from different sources is important for understanding interactions between oceans and ice sheets. We present a provenance study based on 40Ar/39Ar dates of individual hornblende grains from 20 samples taken at 600 to 700 yr spacing between 10,500 and 22,000 yr B.P., from Orphan Knoll core EW9303-GGC31. Heinrich layers are characterized by a dominant Paleoproterozoic hornblende provenance consistent with published studies. A change in provenance between Heinrich events H2 and H1 indicates contributions of iceberg calving from the Newfoundland and southern Labrador margins. Between H1 and the Younger Dryas interval, Paleoproterozoic ice rafted grains remained dominant. The dominance of Baffin Island (or Greenland?) sources to the ice rafted detritus is ascribed to the retreat of the southern Laurentide ice sheet at about the time of H1—a retreat that isolated Newfoundland and southern Labrador ice from the shelf-slope boundary.  相似文献   

13.
The 40Ar/39Ar method using a laser probe opened the door to microscale measurements and diffusion profiles frozen in samples. In the first decade since the initial application of a laser for 40Ar/39Ar dating in 1973, practical applications have been few. This is due not only to the fact that the laser and vacuum technologies were immature but that mass spectrometry was also in its infancy. In those days, the sensitivity of a mass spectrometer was generally insufficient to measure the small amount of argon degassed from a geological sample by a laser. These problems have subsequently been solved by new technologies. To understand their current status, a brief history of their development is outlined. This outline focuses on the required detection limit in micro scale measurement, practical approaches for accurate measurement are explained through examples in our laboratory specifically relating to the technical aspects of 40Ar/39Ar dating.  相似文献   

14.
The epithermal El Peñon gold–silver deposit consists of quartz–adularia veins emplaced within a late Upper Paleocene rhyolitic dome complex, located in the Paleocene–Lower Eocene Au–Ag belt of northern Chile. Detailed K–Ar and 40Ar/39Ar geochronology on volcano–plutonic rocks and hydrothermal minerals were carried out to constrain magmatic and hydrothermal events. The Paleocene to Lower Eocene magmatism in the El Peñon area is confined to a rhomb-shaped basin, which was controlled by N–S trending normal faults and both NE- and NW-trending transtensional fault systems. The earliest products of the basin-filling sequences comprise of Middle to Upper Paleocene (~59–55 Ma) welded rhyolitic ignimbrites and andesitic to dacitic lavas, with occasional dacitic dome complexes. Later, rhyolitic and dacitic dome complexes (~55–52 Ma) represent the waning stages of volcanism during the latest Upper Paleocene and the earliest Eocene. Lower Eocene porphyry intrusives (~48–43 Ma) mark the end of the magmatism in the basin and a change to a compressive tectonomagmatic regime. 40Ar/39Ar geochronology of hydrothermal adularia from the El Peñon deposit yields ages between 51.0±0.6 and 53.1±0.5 Ma. These results suggest that mineralization occurred slightly after the emplacement of the El Peñon rhyolitic dome at 54.5±0.6 Ma (40Ar/39Ar age) and was closely tied to later dacitic–rhyodacitic bodies of 52 to 53 Ma (K–Ar ages), probably as short-lived pulses related to single volcanic events.  相似文献   

15.
Supergene Mn-oxide deposits are widely distributed in Guangxi, Guangdong, Yunnan, and Hunan Provinces, South China, accounting for 18% of the total Mn reserves in the country. Direct dating of supergene Mn enrichment, however, is lacking. In this paper, we present high-resolution 40Ar/39Ar ages of Mn oxides from the Xinrong Mn deposit, western Guangdong, to place numerical constraints on the timing and duration of supergene Mn enrichment. A total of ten cryptomelane samples, spanning a vertical extent of 67 m, were dated using the 40Ar/39Ar laser incremental heating technique, with seven samples yielding well-defined plateau or pseudo-plateau ages ranging from 23.48 ± 0.91 to 2.06 ± 0.05 Ma (2σ). One sample yields a staircase spectrum that does not reach a plateau; the spectrum, however, indicates the presence of two or more generations of Mn oxides in the sample, whose ages are best estimated at 22.34 ± 0.31 and 10.2 ± 0.86 Ma, respectively. The remaining two samples gave meaningless or uninterpretable results due to significant 39Ar recoil and contamination by old phases. The 40Ar/39Ar data thus reveal a protracted history of weathering and supergene Mn enrichment that started at least in the end of the Oligocene or beginning of Miocene and extending into the latest Pliocene. Staircase-apparent age spectra, resulting from banded or botryoidal samples, yield an average growth rate of Mn oxides at 0.6–0.7 × 10−3 mm kyr−1. The values indicate that a 1-mm grain of Mn oxides may host minerals precipitated during a time span of ca. 1.5 m.y., and accumulation of Mn oxides to form economic deposits under weathering environments may take millions of years. The distribution of weathering ages shows that the oldest Mn oxides occur on the top of the profile, whereas the youngest minerals are found at the bottom, suggesting downward propagation of weathering fronts. However, two samples located at the intermediate depths of the profile yield ages comparable with those occurring at the highest elevations. Such a complexity of age distribution is interpreted in terms of preferential penetration of Mn-rich weathering solutions along more permeable fault zones, or as a result of multi stages of dissolution and re-precipitation of Mn oxides. A synthesis of geochronological and geological data suggests that formation of the Xinrong deposit was a consequence of a combination of favorable lithological, climatic, and structural conditions. Because the climatic and structural conditions are similar among the provinces of South China during the Cenozoic, the geochronological results obtained at Xinrong may also have implications for the timing of supergene Mn enrichment throughout South China.  相似文献   

16.
The 40Ar/39Ar dating technique is based on the knowledge of the age of neutron fluence monitors (standards). Recent investigations have improved the accuracy and precision of the ages of most of the Phanerozoic-aged standards (e.g. Fish Canyon Tuff sanidine (FCs), Alder Creek sanidine, GA1550 biotite and LP-6 biotite); however, no specific study has been undertaken on the older standards (i.e. Hb3gr hornblende and NL-25 hornblende) generally used to date Precambrian, high Ca/K, and/or meteoritic rocks.In this study, we show that Hb3gr hornblende is relatively homogenous in age, composition (Ca/K) and atmospheric contamination at the single grain level. The mean standard deviation of the 40Ar?/39ArK (F-value) derived from this study is 0.49%, comparable to the most homogeneous standards. The intercalibration factor (which allows direct comparison between standards) between Hb3gr and FCs is RFCsHb3gr = 51.945 ± 0.167. Using an age of 28.02 Ma for FCs, the age of Hb3gr derived from the R-value is 1073.6 ± 5.3 Ma (1σ; internal error only) and ± 8.8 Ma (including all sources of error). This age is indistinguishable within uncertainty from the K/Ar age previously reported at 1072 ± 11 Ma [Turner G., Huneke, J.C., Podosek, F.A., Wasserburg, G.J., 1971. 40Ar-39Ar ages and cosmic ray exposure ages of Apollo 14 samples. Earth Planet. Sci. Lett. 12, 19-35].The R-value determined in this study can also be used to intercalibrate FCs if we consider the K/Ar date of 1072 Ma as a reference age for Hb3gr. We derive an age of 27.95 ± 0.19 Ma (1σ; internal error only) for FCs which is in agreement with the previous determinations. Altogether, this shows that Hb3gr is a suitable standard for 40Ar/39Ar geochronology.  相似文献   

17.
18.
Qiu and Wijbrans [Qiu H.-N. and Wijbrans J. R. (2006) Paleozoic ages and excess 40Ar in garnets from the Bixiling eclogite in Dabieshan, China: new insights from 40Ar/39Ar dating by stepwise crushing. Geochim. Cosmochim. Acta70, 2354-2370] present three Ar-Ar age spectra for fluid inclusions in garnet from eclogite at Bixiling in the Dabie orogen, east-central China. These Paleozoic ages of 427 ± 20 to 444 ± 10 Ma are interpreted to represent the first formation of Dabie ultrahigh-pressure (UHP) eclogite and thus require subduction of Yangtze crust to have started much earlier than previously accepted. However, no petrographic evidence, such as mineral inclusions in the garnet relating to the particular metamorphic conditions, is presented to substantiate the proposed UHP metamorphic event. Because garnet growth is not uniquely responsible for UHP eclogite-facies metamorphism, a distinction between UHP and high-pressure (HP) metamorphic events must be made in the interpretation of geochronological results. Available data from mineral Sm-Nd and zircon U-Pb dating of eclogites from the same area have firmly established that the UHP eclogite-facies metamorphism took place at Triassic. Neither the age of UHP metamorphism nor the timing of continental collision is reliably constrained by their presented data; the fluid inclusions in garnet must contain inherited 40Ar from UHP eclogite precursor, without considerable resetting of the Ar-Ar isotopic system during Triassic UHP metamorphism. Therefore, their data are either meaningless, or at best viewed as the age of garnet growth by low-T/HP blueschist/eclogite-facies metamorphism of the UHP eclogite precursor during arc-continent collision in the early Paleozoic. Furthermore, it is critical for metamorphic geochronology to substantiate the timing of UHP metamorphic event by means of zircon U-Pb in situ dating on coesite-bearing domains of metamorphically grown zircon.  相似文献   

19.
Potassium-Ar and Rb-Sr dating of minerals was fundamental in early efforts to date magmatic and metamorphic processes and paved the way for geochronology to become an important discipline within the earth sciences. Although K-Ar and, in particular, 40Ar/39Ar dating of micas is still widely applied, Rb-Sr dating of micas has declined in use, even though numerous studies demonstrated that tri-octahedral mica yields geologically realistic, and more reliable and reproducible Rb-Sr ages than the K-Ar or 40Ar/39Ar system. Moreover, a reduction of uncertainties typically reported for Rb-Sr ages (ca. 1%) can now be achieved by application of multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS) rubidium isotope dilution measurements (<0.3%). Replicate Rb-Sr biotite ages from the Oslo rift, Norway, yield an external reproducibility of ±0.3% (n=4) and an analytical error of ±0.8 Ma for individual ages that vary between 276.9 and 275.5 Ma. Conventional thermal ionisation mass spectrometry (TIMS) Rb analysis on the same mineral separates yields ages between 276.1 and 271.7 Ma, three times the spread compared to Rb MC-ICPMS data. Biotite and phlogopite from the central Nagssugtoqidian orogen, West Greenland, yield 40Ar/39Ar plateau ages (ca. 1700 Ma) with a spread of ±150 Ma, while Rb-Sr ages on either biotite or phlogopite separates have a much narrower range of ±10 Ma. This comparison of Rb-Sr and 40Ar/39Ar ages demonstrates the robustness of the Rb-Sr system in tri-octahedral micas and cautions against the sole use of 40Ar/39Ar tri-octahedral mica ages to date geological events. Analytical errors of 16 Ma for these Rb-Sr mica ages determined by TIMS are reduced to <±5 Ma when the Rb concentration is determined by MC-ICPMS. All the TIMS and MC-ICPMS data from the Nagssugtoqidian orogen agree within assigned analytical uncertainties. However, high precision Rb-Sr dating by MC-ICPMS can resolve geological information obscured by TIMS age determinations. TIMS data for seven phlogopite samples form an isochron age of 1645±6 Ma, and thus, no differentiation in age between the different samples can be made. In contrast, MC-ICPMS Rb measurements on the same samples reveal two distinct populations with ages of 1633±3 or 1652±5 Ma.Combining the mica Rb-Sr geochronological data with the well-constrained thermal history of this ancient orogen, we estimate the closure temperature of the Rb-Sr system in 1-2 mm slowly cooled phlogopite crystals, occurring in a matrix of calcite and plagioclase to be ∼435 °C, and at least 50 °C above that of biotite.  相似文献   

20.
Geotectonically the Fengyang and Zhangbaling regions belong to the North China craton and the Dabie-Sulu oragene, respectively. Neo-Archean gneiss and amphibolite and metamor-phosed sea-facies sodic volcanic rocks axe the main outcrops in the two regions, respectively. The Zhangbaling terrane strike-skipped along the Tancheng-Lujiang fault zone in Mesozoic and Cenozo-ic eras and got close to the Fengyang terrane. Mesozoic Yanshanian intrusions occur broadly in thetwo regions. Gold-beating quartz veins occur in the metamorphic rocks in the Fengyang region and in the granodiorite and metamorphosed sea-facies sodic volcanic rocks in the Zhanghaling region.Generally, the formation of the auriferous quartz veins involved three stages. At the first stage,gold-poor sulfide quartz veins were formed; at the second stage gold-rich quartz sulfide veins wereformed; and at the third stage gold-poor barite and/or carbonate veins were formed. The 40^Ar/29^Ar step-heating plateau ages of the first-stage and the second-stage quartz aggregates from the Zhuding, Maoshan and Shangeheng gold deposits range between 116.1 0.6 Ma and 118.3 0.5 Ma and are pretty close to their least apparent ages and isoehronal ages, respectively. All plat-eau, least apparent and isoehronal ages range between 113.4 0.4 Ma and 118.3 0.5 Ma,which are considered as the formation age range of the quartz. It is reasonable and reliable to takethe 40^Ar/39^Ar age range of the quartz as the formation age range of gold-bearing quartz veins onthe basis of spatial relationship between gold-bearing quartz veins and their country rocks. Thegold deposits in the two regions were formed in Aptian, Cretaceous, when the Tancheng-Lujiangfault zone moved as a normal fault with slightly right-lateral strike-skip, was extensional and expe-rienced very strong magnmtic process. It is shown that the magnmtic hydrothermal fluid is a veryimportant part of the gold ore-forming hydrothermal fluid in the Fengyang and Zhanghaling re-gions. The formation of the gold ore deposits in the Fengyang and Zhanghaling regions had genetic relations with the extensional movement of the Tancheng-Lujiang fault zone and magmatic activities and took place under the extensional dynamic condition in Late Cretaceous. Therefore, the exten-sional movement of the Tancheng-Lujiang fault zone presented the energy and space for magmatic and gold ore-forming processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号