首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ecosystems constantly adjust to altered biogeochemical inputs, changes in vegetation and climate, and previous physical disturbances. Such disturbances create overlapping ‘biogeochemical legacies’ affecting modern nutrient mass balances. To understand how ‘legacies’ affected watershed-ecosystem (WEC) biogeochemistry during five decades of studies within the Hubbard Brook Experimental Forest (HBEF), we extended biogeochemical trends and hydrologic fluxes back to 1900 to provide an historical framework for our long-term studies. This reconstruction showed acid rain peaking at HBEF in the late 1960s-early 1970s near the beginning of the Hubbard Brook Ecosystem Study (HBES). The long-term, parabolic arc in acid inputs to HBEF generated a corresponding arc in the ionic strength of stream water, with acid inputs generating increased losses of H+ and soil base cations between 1963 and 1969 and then decreased losses after 1970. Nitrate release after disturbance is coupled with previous N-deposition and storage, biological uptake, and hydrology. Sulfur was stored in soils from decades of acid deposition but is now nearly depleted. Total exports of base cations from the soil exchange pool represent one of the largest disturbances to forest and associated aquatic ecosystems at the HBEF since the Pleistocene glaciation. Because precipitation inputs of base cations currently are extremely small, such losses can only be replaced through the slow process of mineral weathering. Thus, the chemistry of stream water is extremely dilute and likely to become even more dilute than pre-Industrial Revolution estimates. The importance of calculating chemical fluxes is clearly demonstrated in reconstruction of acid rain impacts during the pre-measurement period. The aggregate impact of acid rain on WEC exports is far larger than historical forest harvest effects, and even larger than the most severe deforestation experiment (Watershed 2) at HBEF. A century of acid rain had a calcium stripping impact equivalent to two W2 experiments involving complete deforestation and herbicide applications.  相似文献   

2.
Uncertainty in the estimation of hydrologic export of solutes has never been fully evaluated at the scale of a small‐watershed ecosystem. We used data from the Gomadansan Experimental Forest, Japan, Hubbard Brook Experimental Forest, USA, and Coweeta Hydrologic Laboratory, USA, to evaluate many sources of uncertainty, including the precision and accuracy of measurements, selection of models, and spatial and temporal variation. Uncertainty in the analysis of stream chemistry samples was generally small but could be large in relative terms for solutes near detection limits, as is common for ammonium and phosphate in forested catchments. Instantaneous flow deviated from the theoretical curve relating height to discharge by up to 10% at Hubbard Brook, but the resulting corrections to the theoretical curve generally amounted to <0.5% of annual flows. Calibrations were limited to low flows; uncertainties at high flows were not evaluated because of the difficulties in performing calibrations during events. However, high flows likely contribute more uncertainty to annual flows because of the greater volume of water that is exported during these events. Uncertainty in catchment area was as much as 5%, based on a comparison of digital elevation maps with ground surveys. Three different interpolation methods are used at the three sites to combine periodic chemistry samples with streamflow to calculate fluxes. The three methods differed by <5% in annual export calculations for calcium, but up to 12% for nitrate exports, when applied to a stream at Hubbard Brook for 1997–2008; nitrate has higher weekly variation at this site. Natural variation was larger than most other sources of uncertainty. Specifically, coefficients of variation across streams or across years, within site, for runoff and weighted annual concentrations of calcium, magnesium, potassium, sodium, sulphate, chloride, and silicate ranged from 5 to 50% and were even higher for nitrate. Uncertainty analysis can be used to guide efforts to improve confidence in estimated stream fluxes and also to optimize design of monitoring programmes. © 2014 The Authors. Hydrological Processes published John Wiley & Sons, Ltd.  相似文献   

3.
4.
This data note describes the Biscuit Brook and Neversink Reservoir watershed long-term monitoring data that includes: 1) stream discharge, (1983–2020 for Biscuit Brook and 1937–2020 for the Neversink Reservoir watershed), 2) stream water chemistry, 1983–2020, at 4 stations, 3) fish survey data from 16 locations in the watershed 1990–2019, 4) soil chemistry data from 2 headwater sub-watersheds, 1993–2012 and 5) periodic stream water chemistry sampling data from 364 locations throughout the watershed, 1983–2020. The Neversink Reservoir watershed in the Catskill Mountains of New York, USA drains an area of 172.5 km2. The watershed feeds one of six reservoirs in New York City's West of Hudson water supply, which accounts for about 90% of the city's water supply. Biscuit Brook is a 9.63 km2 tributary sub-watershed within the Neversink Reservoir watershed.  相似文献   

5.
6.
Stream solute monitoring has produced many insights into ecosystem and Earth system functions. Although new sensors have provided novel information about the fine-scale temporal variation of some stream water solutes, we lack adequate sensor technology to gain the same insights for many other solutes. We used two machine learning algorithms – Support Vector Machine and Random Forest – to predict concentrations at 15-min resolution for 10 solutes, of which eight lack specific sensors. The algorithms were trained with data from intensive stream sensing and manual stream sampling (weekly) for four full years in a hydrologic reference stream within the Hubbard Brook Experimental Forest in New Hampshire, USA. The Random Forest algorithm was slightly better at predicting solute concentrations than the Support Vector Machine algorithm (Nash-Sutcliffe efficiencies ranged from 0.35 to 0.78 for Random Forest compared to 0.29 to 0.79 for Support Vector Machine). Solute predictions were most sensitive to the removal of fluorescent dissolved organic matter, pH and specific conductance as independent variables for both algorithms, and least sensitive to dissolved oxygen and turbidity. The predicted concentrations of calcium and monomeric aluminium were used to estimate catchment solute yield, which changed most dramatically for aluminium because it concentrates with stream discharge. These results show great promise for using a combined approach of stream sensing and intensive stream discrete sampling to build information about the high-frequency variation of solutes for which an appropriate sensor or proxy is not available.  相似文献   

7.
The Turkey Lakes Watershed (TLW) study is a federal, interdepartmental study established in 1979 to investigate the effects of acid rain on terrestrial and aquatic ecosystems. The 10.5 km2 watershed, located in the Eastern Temperate Mixed Forest on the Canadian Shield, has been the site of multidisciplinary studies on biogeochemical and ecological processes conducted across plot to catchment scales. The whole-ecosystem investigative approach was adopted from the outset and has allowed research to evolve from its original (and continuing) acidification focus to include investigations on the effects of climate change, forest harvesting and other forest ecosystem perturbations. The extensive scientific and support infrastructure allows for collection of a comprehensive data record essential for understanding long-term environmental trends. Data include atmospheric deposition, meteorology, stream hydrology and chemistry, soil, pore and ground water properties, understory and overstory vegetation, lake and outflow physical and chemical properties, and aquatic macroinvertebrate and fish community composition and abundance. These data have contributed to over 400 published research papers and graduate theses. The watershed has also figured prominently in many continent-wide comparisons advancing fundamental watershed theory. The knowledge gained at TLW has influenced pollutant emission and natural resource management policies provincially, nationally and internationally.  相似文献   

8.
Catchments in the Luquillo Experimental Forest (LEF) of Puerto Rico are warm, wet and tropical with steep elevational relief creating gradients in temperature and rainfall. Long-term objectives of research at the site are to understand how changing climate and disturbance regimes alter hydrological and biogeochemical processes in the montane tropics and to provide information critical for managing and conserving tropical forest ecosystems globally. Measurements of hydrology and meteorology span decades, and currently include temperature, humidity, precipitation, cloud base level, throughfall, groundwater table elevation and stream discharge. The chemistry of rain, throughfall, and streams is measured weekly and lysimeters and wells are sampled monthly to quarterly. Multiple data sets document the effects of major hurricanes including Hugo (1989), Georges (1998) and Maria (2017) on vegetation, biota and catchment biogeochemistry and provide some of the longest available records of biogeochemical fluxes in tropical forests. Here we present an overview of the findings and the data sets that have been generated from the LEF, highlighting their importance for understanding montane tropical watersheds in the context of disturbance and global environmental change.  相似文献   

9.
A number of watershed‐scale hydrological models include Richards' equation (RE) solutions, but the literature is sparse on information as to the appropriate application of RE at the watershed scale. In most published applications of RE in distributed watershed‐scale hydrological modelling, coarse vertical resolutions are used to decrease the computational burden. Compared to point‐ or field‐scale studies, application at the watershed scale is complicated by diverse runoff production mechanisms, groundwater effects on runoff production, runon phenomena and heterogeneous watershed characteristics. An essential element of the numerical solution of RE is that the solution converges as the spatial resolution increases. Spatial convergence studies can be used to identify the proper resolution that accurately describes the solution with maximum computational efficiency, when using physically realistic parameter values. In this study, spatial convergence studies are conducted using the two‐dimensional, distributed‐parameter, gridded surface subsurface hydrological analysis (GSSHA) model, which solves RE to simulate vadose zone fluxes. Tests to determine if the required discretization is strongly a function of dominant runoff production mechanism are conducted using data from two very different watersheds, the Hortonian Goodwin Creek Experimental Watershed and the non‐Hortonian Muddy Brook watershed. Total infiltration, stream flow and evapotranspiration for the entire simulation period are used to compute comparison statistics. The influences of upper and lower boundary conditions on the solution accuracy are also explored. Results indicate that to simulate hydrological fluxes accurately at both watersheds small vertical cell sizes, of the order of 1 cm, are required near the soil surface, but not throughout the soil column. The appropriate choice of approximations for calculating the near soil‐surface unsaturated hydraulic conductivity can yield modest increases in the required cell size. Results for both watersheds are quite similar, even though the soils and runoff production mechanisms differ greatly between the two catchments. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
River water temperature is an important water quality parameter that also influences most aquatic life. Physical processes influencing water temperature in rivers are highly complex. This is especially true for the estimation of river heat exchange processes that are highly dependent on good estimates of radiation fluxes. Furthermore, very few studies were found within the stream temperature dynamic literature where the different radiation components have been measured and compared at the stream level (at microclimate conditions). Therefore, this study presents results on hydrometeorological conditions for a small tributary within Catamaran Brook (part of the Miramichi River system, New Brunswick, Canada) with the following specific objectives: (1) to compare between stream microclimate and remote meteorological conditions, (2) to compare measured long‐wave radiation data with those calculated from an analytical model, and (3), to calculate the corresponding river heat fluxes. The most salient findings of this study are (1) solar radiation and wind speed are parameters that are highly site specific within the river environment and play an important role in the estimation of river heat fluxes; (2) the incoming, outgoing, and net long‐wave radiation within the stream environment (under the forest canopy) can be effectively calculated using empirical formula; (3) at the study site more than 80% of the incoming long‐wave radiation was coming from the forest; (4) total energy gains were dominated by solar radiation flux (for all the study periods) followed by the net long‐wave radiation (during some periods) whereas energy losses were coming from both the net long‐wave radiation and evaporation. Conductive heat fluxes have a minor contribution from the overall heat budget (<3·5%); (5) the reflected short‐wave radiation at the water surface was calculated on average as 3·2%, which is consistent with literature values. Results of this study contribute towards a better understanding of river heat fluxes and water temperature models as well as for more effective aquatic resources and fisheries management. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
How much stream temperatures increase within riparian canopy openings and whether stream temperatures cool downstream of these openings both have important policy implications. Past studies of stream cooling downstream of riparian openings have found mixed results including rapid, slow, and no cooling. We collected longitudinal profiles of stream temperatures above, within, and below riparian forest openings along stream segments within otherwise forested riparian conditions to evaluate how sensitivity of stream temperatures to riparian conditions varied across landscape factors. We conducted these temperature surveys across openings in 12 wadeable streams within and near the Upper Little Tennessee River Basin in western North Carolina and northeastern Georgia. Basin areas ranged from 74 to 6,913 ha, and bankfull channel widths varied from 3.4 to 16.4 m. Stream temperatures were collected every 15 min using HOBO® data loggers for 2 weeks in each stream, repeated later in summer in some streams. Reference temperatures were highest in stream reaches at low elevations and with large drainage areas. Stream temperature increases in the middle of riparian gaps were highest when streams drained small high-elevation watersheds, and increases at the end of openings were highest when the opening length was large relative to watershed size. Downstream from openings, cooling rates were greatest in small, high-elevation headwater streams and also increased with larger increases in canopy cover. Stream segments that warmed the most within openings also featured higher cooling rates downstream. The data show that stream temperature sensitivity to canopy change is highly dependent on network position and watershed size. A better understanding of stream temperature responses to riparian vegetation may be useful to land managers and landowners prioritizing riparian forest restoration.  相似文献   

12.
Measurements of soil water potential and water table fluctuations suggest that morphologically distinct soils in a headwater catchment at the Hubbard Brook Experimental Forest in New Hampshire formed as a result of variations in saturated and unsaturated hydrologic fluxes in the mineral soil. Previous work showed that each group of these soils had distinct water table fluctuations in response to precipitation; however, observed variations in soil morphology also occurred above the maximum height of observed saturation. Variations in unsaturated fluxes have been hypothesized to explain differences in soil horizon thickness and presence/absence of specific horizons but have not been explicitly investigated. We examined tensiometer and shallow groundwater well records to identify differences in unsaturated water fluxes among podzols that show distinct morphological and chemical differences. The lack of vertical hydraulic gradients at the study sites suggests that lateral unsaturated flow occurs in several of the soil units. We propose that the variations in soil horizon thickness and presence/absence observed at the site are due in part to slope‐parallel water flux in the unsaturated portion of the solum. In addition, unsaturated flow may be involved in the translocation of spodic material that primes those areas to contribute water with distinct chemistry to the stream network and represents a potential source/sink of organometallic compounds in the landscape.  相似文献   

13.
Summer stream water quality was monitored before and following the logging of 50% of the boreal forest within three small watersheds (<50 ha) nested in the ‘Ruisseau des Eaux‐Volées’ Experimental Watershed, Montmorency Forest (Québec, Canada). Logging was conducted in winter, on snow cover according to recommended best management practices (BMPs) to minimize soil disturbance and protect advance growth. A 20‐m forest buffer was maintained along perennial streams. In watershed 7·2, cut‐blocks were located near the stream network and logging was partially allowed within the riparian buffer zone. In watersheds 7·5 and 7·7, logging occurred farther away from the stream network. Observations were also made for watershed 7·3 that collected the runoff from watersheds 7·2 and 7·5, and watershed 7·6, the uproad portion of watershed 7·7. The control watershed 0·2 was contiguous to the impacted watersheds and remained undisturbed. Following clearcutting, changes in summer daily maximum and minimum stream temperatures remained within ± 1 °C while changes in diurnal variation did not decrease by more than 0·5 °C. Concentrations of NO3? greatly increased by up to 6000% and concentrations of K+ increased by up to 300% during the second summer after logging. Smaller increases were observed for Fetotal (up to 71%), specific conductance (up to 26%), and Mg2+ (up to 19%). Post‐logging pH decreased slightly by no more than 7% while PO43? concentration remained relatively constant. Suspended sediment concentrations appeared to increase during post‐logging, but there was not enough pre‐logging data to statistically confirm this result. Logging of moderate intensity and respecting established BMPs may account for the limited changes of water quality parameters and the low exceedances of the criteria for the protection of aquatic life. The proximity of the cutover to the stream network and logging within the riparian zone did not appear to affect water quality. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
The potential for increased loads of dissolved organic carbon (DOC) in streams and rivers is a concern for regulating the water quality in water supply watersheds. With increasing hydroclimatic variability related to global warming and shifts in forest ecosystem community and structure, understanding and predicting the magnitude and variability of watershed supply and transport of DOC over multiple time scales have become important research and management goals. In this study, we use a distributed process‐based ecohydrological model (Regional Hydro‐Ecological Simulation System [RHESSys]) to explore controls and predict streamflow DOC loads in Biscuit Brook. Biscuit Brook is a forested headwater catchment of the Neversink Reservoir, part of the New York City water supply system in the Catskill Mountains. Three different model structures of RHESSys were proposed to explore and evaluate hypotheses addressing how vegetation phenology and hydrologic connectivity between deep groundwater and riparian zones influence streamflow and DOC loads. Model results showed that incorporating dynamic phenology improved model agreement with measured streamflow in spring, summer, and fall and fall DOC concentration, compared with a static phenology. Additionally, the connectivity of deep groundwater flux through riparian zones with dynamic phenology improved streamflow and DOC flux in low flow conditions. Therefore, this study suggests the importance of inter‐annual vegetation phenology and the connectivity of deep groundwater drainage through riparian zones in the hydrology and stream DOC loading in this forested watershed and the ability of process‐based ecohydrological models to simulate these dynamics. The advantage of a process‐based modelling approach is specifically seen in the sensitivity to forest ecosystem dynamics and the interactions of hydroclimate variability with ecosystem processes controlling the supply and distribution of DOC. These models will be useful to evaluate different forest management approaches toward mitigating water quality concerns.  相似文献   

15.
The Buck Creek-Boreas River Adirondack Watershed Monitoring Program, located in the Adirondack region of New York State, United States, combines the monitoring of headwater streams, soils, and vegetation based on a watershed design. Continuous monitoring of six watersheds is linked to the sampling of more than 400 additional Adirondack streams between 2003 and 2019 for chemical analysis of 14 constituents throughout the highly valued Adirondack ecoregion that covers an area of more than 24 000 km2. Much of this landscape has a low capacity for acid buffering, but due to spatial variation in geologic features, some areas are moderately to well acid buffered. This program includes data that extends back to the early 1980s and is ongoing. The focus of the program is on the watersheds of headwater Adirondack streams. Soil, vegetation and stream data are used to better understand environmental effects on the linkages of these ecosystem components. Documentation of the long-term responses of Adirondack ecosystems to environmental disturbances such as acid rain, climate change and other unforeseen factors is the primary objective of the program.  相似文献   

16.
The H. J. Andrews Experimental Forest (HJA) encompasses the 6400 ha Lookout Creek watershed in western Oregon, USA. Hydrologic, chemistry and precipitation data have been collected, curated, and archived for up to 70 years. The HJA was established in 1948 to study the effects of harvest of old-growth conifer forest and logging-road construction on water quality, quantity and vegetation succession. Over time, research questions have expanded to include terrestrial and aquatic species, communities and ecosystem dynamics. There are nine small experimental watersheds and 10 gaging stations in the HJA, including both reference and experimentally treated watersheds. Gaged watershed areas range from 8.5 to 6242 ha. All gaging stations record stage height, water conductivity, water temperature and above-stream air temperature. At nine of the gage sites, flow-proportional water samples are collected and composited over 3-week intervals for chemical analysis. Analysis of stream and precipitation chemistry began in 1968. Analytes include dissolved and particulate species of nitrogen and phosphorus, dissolved organic carbon, pH, specific conductance, suspended sediment, alkalinity, and major cations and anions. Supporting climate measurements began in the 1950s in association with the first small watershed experiments. Over time, and following the initiation of the Long Term Ecological Research (LTER) grant in 1980, infrastructure expanded to include a set of benchmark and secondary meteorological stations located in clearings spanning the elevation range within the Lookout Creek watershed, as well as a large number of forest understory temperature stations. Extensive metadata on sensor configurations, changes in methods over time, sensor accuracy and precision, and data quality control flags are associated with the HJA data.  相似文献   

17.
Daniel Caissie 《水文研究》2016,30(12):1872-1883
Stream temperature plays an important role in many biotic and abiotic processes, as it influences many physical, chemical and biological properties in rivers. As such, a good understanding of the thermal regime of rivers is essential for effective fisheries management and the protection aquatic habitats. Moreover, a thorough understanding of underlying physical processes and river heat fluxes is essential in the development of better and more adaptive water temperature models. Very few studies have measured river evaporation and condensation and subsequently calculated corresponding heat fluxes in small tributary streams, mainly because microclimate data (data collected within the stream environment) are essential and rarely available. As such, the present study will address these issues by measuring river evaporation and condensation in tributary 1 (Trib 1, a small tributary within Catamaran Brook) using floating minipans. The latent heat flux and other important fluxes were calculated. Results showed that evaporation was low within the small Trib 1 of Catamaran Brook, less than 0.07 mm day?1. Results showed that condensation played an important role in the latent heat flux. In fact, condensation was present during 34 of 92 days (37%) during the summer, which occurred when air temperature was greater than water temperature by 4–6 °C. Heat fluxes within this small stream showed that solar radiation dominated the heat gains and long‐wave radiation dominated the heat losses. © 2015 Her Majesty the Queen in Right of Canada. Hydrological Processes. © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Watershed structure influences the timing, magnitude, and spatial location of water and solute entry to stream networks. In turn, stream reach transport velocities and stream network geometry (travel distances) further influence the timing of export from watersheds. Here, we examine how watershed and stream network organization can affect travel times of water from delivery to the stream network to arrival at the watershed outlet. We analysed watershed structure and network geometry and quantified the relationship between stream discharge and solute velocity across six study watersheds (11.4 to 62.8 km2) located in the Sawtooth Mountains of central Idaho, USA. Based on these analyses, we developed stream network travel time functions for each watershed. We found that watershed structure, stream network geometry, and the variable magnitude of inputs across the network can have a pronounced affect on water travel distances and velocities within a stream network. Accordingly, a sample taken at the watershed outlet is composed of water and solutes sourced from across the watershed that experienced a range of travel times in the stream network. We suggest that understanding and quantifying stream network travel time distributions are valuable for deconvolving signals observed at watershed outlets into their spatial and temporal sources, and separating terrestrial and in‐channel hydrological, biogeochemical, and ecological influences on in‐stream observations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
The Bear Brook Watershed in Maine (BBWM) is a long-term research site established to study the response of forest ecosystem function to environmental disturbances of chronic acidic deposition and ecosystem nitrogen enrichment. Starting in 1989, the West Bear (treated) watershed received bimonthly applications of ammonium sulfate [(NH4)2SO4] fertilizer from above the canopy, whereas East Bear (reference) received ambient deposition. The treatments were stopped in 2016, marking the beginning of the recovery phase. Research at the site has focused on soils, streams, and vegetation. Here, we describe data collected over three decades at the BBWM—input and stream output nutrient fluxes, quantitative soil pits and soil chemistry, and soil temperature and moisture.  相似文献   

20.
Physiography and land cover determine the hydrologic response of watersheds to climatic events. However, vast differences in climate regimes and variation of landscape attributes among watersheds (including size) have prevented the establishment of general relationships between land cover and runoff patterns across broad scales. This paper addresses these difficulties by using power spectral analysis to characterize area‐normalized runoff patterns and then compare these patterns with landscape features among watersheds within the same physiographic region. We assembled long‐term precipitation and runoff data for 87 watersheds (first to seventh order) within the eastern Piedmont (USA) that contained a wide variety of land cover types, collected environmental data for each watershed, and compared the datasets using a variety of statistical measures. The effect of land cover on runoff patterns was confirmed. Urban‐dominated watersheds were flashier and had less hydrologic memory compared with forest‐dominated watersheds, whereas watersheds with high wetland coverage had greater hydrologic memory. We also detected a 10–15% urban threshold above which urban coverage became the dominant control on runoff patterns. When spectral properties of runoff were compared across stream orders, a threshold after the third order was detected at which watershed processes became dominant over precipitation regime in determining runoff patterns. Finally, we present a matrix that characterizes the hydrologic signatures of rivers based on precipitation versus landscape effects and low‐frequency versus high‐frequency events. The concepts and methods presented can be generally applied to all river systems to characterize multiscale patterns of watershed runoff. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号