共查询到20条相似文献,搜索用时 15 毫秒
1.
Frederick J. Swanson Stanley V. Gregory Andres Iroumé Virginia Ruiz-Villanueva Ellen Wohl 《地球表面变化过程与地形》2021,46(1):55-66
Dynamics and functions of large wood have become integral considerations in the science and management of river systems. Study of large wood in rivers took place as monitoring of fish response to wooden structures placed in rivers in the central United States in the early 20th century, but did not begin in earnest until the 1970s. Research has increased in intensity and thematic scope ever since. A wide range of factors has prompted these research efforts, including basic understanding of stream systems, protection and restoration of aquatic ecosystems, and environmental hazards in mountain environments. Research and management have adopted perspectives from ecology, geomorphology, and engineering, using observational, experimental, and modelling approaches. Important advances have been made where practical information needs converge with institutional and science leadership capacities to undertake multi-pronged research programmes. Case studies include ecosystem research to inform regulations for forest management; storage and transport of large wood as a component in global carbon dynamics; and the role of wood transport in environmental hazards in mountain regions, including areas affected by severe landscape disturbances, such as volcanic eruptions. As the field of research has advanced, influences of large wood on river structures and processes have been merged with understanding of streamflow and sediment regimes, so river form and function are now viewed as involving the tripartite system of water, sediment, and wood. A growing community of researchers and river managers is extending understanding of large wood in rivers to climatic, forest, landform, and social contexts not previously investigated. © 2020 John Wiley & Sons, Ltd. 相似文献
2.
Brandon T. Overstreet Clifford S. Riebe John K. Wooster Leonard S. Sklar Dino Bellugi 《地球表面变化过程与地形》2016,41(1):130-142
We present a set of river management tools based on a recently developed method for estimating the amount of salmon spawning habitat in coarse‐bedded rivers. The method, which was developed from a mechanistic model of redd building by female salmon, combines empirical relationships between fish length, redd area, and the sizes of particles moved by fish during spawning. Model inputs are the grain‐size indices D50 and D84 and an estimate of female fish length, which is used to predict the size of the redd that they will build and the size of the largest particle that they can move on the bed. Outputs include predictions of the fraction of the bed that the fish can use for redd building and the number of redds that they can build within the useable area. We cast the model into easy‐to‐use look‐up tables, charts, an Excel worksheet, a JavaScript web applet, and a MATLAB user interface. We explain how these tools can be used in a new, mechanistic approach to assessing spawning substrates and optimizing gravel augmentation projects in coarse‐bedded rivers. © 2016 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd. 相似文献
3.
Fluvial processes strongly influence riparian forests through rapid and predictable shifts in dominant species, tree density and size that occur in the decades following large floods. Modelling riparian forest characteristics based on the age and evolution of floodplains is useful in predicting ecosystem functions that depend on the size and density of trees, including large wood delivered to river channels, forest biomass and habitat quality. We developed a dynamic model of riparian forest structure that predicts changes in tree size and density using floodplain age derived from air photos and historical maps. Using field data and a riparian forest chronosequence for the 160-km middle reach of the Sacramento River (California, USA), we fit Weibull diameter distributions with time-varying parameters to the empirical data. Species were stratified into early and late successional groups, each with time-varying functions of tree density and diameter distributions. From these, we modelled how the number and size of trees in a stand changed throughout forest succession, and evaluated the goodness-of-fit of model predictions. Model outputs for the early successional group, composed primarily of cottonwoods and willows, accounted for most of the stand basal area and large trees >10 cm DBH for the first 50 years. Post-pioneer species with slower growth had initially low densities that increased slowly from the time of floodplain creation. Within the first 100 years, early successional trees contributed the most large wood that could influence fluvial processes, carbon storage, and instream habitat. We applied the model to evaluate the potential large wood inputs to the middle Sacramento River under a range of historical bank migration rates. Going forward, this modelling approach can be used to predict how riparian forest structure and other ecosystem benefits such as carbon sequestration and habitat quality respond to different river management and restoration actions. 相似文献
4.
Tomáš Galia Tereza Macurová Leonidas Vardakas Václav Škarpich Tereza Matušková Eleni Kalogianni 《地球表面变化过程与地形》2020,45(9):2048-2062
Although in-channel and floodplain large wood (LW) has been recognized as an important component of lotic ecosystems, there is still limited knowledge on the recruitment, mobility and retention of LW in rivers with an intermittent hydrological regime. In this study, we analysed the LW characteristics and related reach-scale variables of 22 reaches in a Mediterranean intermittent river (Evrotas, Greece) in order to identify predictors of in-channel and floodplain LW distribution. Our results indicated high downstream variation in LW volumes in the fluvial corridor (0.05–25.51 m3/ha for in-channel LW and 0–30.88 m3/ha for floodplain LW). In-channel and floodplain LW retention was primarily driven by the hydrological regime of the studied reaches (i.e. perennial or non-perennial) with higher volumes of LW observed in perennial sections. The width of the riparian corridor was an important predictor of LW storage at the reach scale. Non-perennial reaches had a disproportionally larger number of relatively small-diameter living trees at the expense of mature trees with larger diameters typical for riparian stands functioning as LW recruitment areas in perennial reaches. The smaller dimensions of in-channel LW in non-perennial reaches, coupled with the dominance of loose LW pieces, implies frequent LW transport during ordinary flood events. Nevertheless, overall low LW retention in the fluvial corridor under non-perennial flow regime predicts low volumes of mobilized LW. In contrast, the recruitment of relatively long and large-diameter LW from mature riparian stands in perennial reaches, together with additional LW stabilization by banks, bed sediments, living trees or other LW pieces decreases the potential for further LW transport. © 2020 John Wiley & Sons, Ltd. 相似文献
5.
Reintroduced large wood modifies fine sediment transport and storage in a lowland river channel 下载免费PDF全文
This paper explores changes in suspended sediment transport and fine sediment storage at the reach and patch scale associated with the reintroduction of partial large wood (LW) jams in an artificially over‐widened lowland river. The field site incorporates two adjacent reaches: a downstream section where LW jams were reintroduced in 2010 and a reach immediately upstream where no LW was introduced. LW pieces were organized into ‘partial’ jams incorporating several ‘key pieces’ which were later colonized by substantial stands of aquatic and wetland plants. Reach‐scale suspended sediment transport was investigated using arrays of time‐integrated suspended sediment samplers. Patch‐scale suspended sediment transport was explored experimentally using turbidity sensors to track the magnitude and velocity of artificially generated sediment plumes. Fine sediment storage was quantified at both reach and patch scales by repeat surveys of fine sediment depth. The results show that partial LW jams influence fine sediment dynamics at both the patch and reach scale. At the patch‐scale, introduction of LW led to a reduction in the concentration and increase in the time lag of released sediment plumes within the LW, indicating increased diffusion of plumes. This contrasted with higher concentrations and lower time lags in areas adjacent to the LW; indicating more effective advection processes. This led to increased fine sediment storage within the LW compared with areas adjacent to the LW. At the reach‐scale there was a greater increase in fine sediment storage through time within the restored reach relative to the unrestored reach, although the changes in sediment transport responsible for this were not evident from time‐integrated suspended sediment data. The results of the study have been used to develop a conceptual model which may inform restoration design. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
6.
This study discusses the reproducibility of a numerical model for simulating the morphodynamics involved in the transport of large pieces of wood in a braided river, considering the root wad effect and jam formation. The developed numerical model can simulate the behaviour of large pieces of wood using a two-dimensional depth-averaged Eulerian flow model that calculates the water flow and bed morphology. A Lagrange-type wood transport model is used herein, and the applicability of the combined model is discussed through a comparison with obtained experimental results. From the simulation results, we calculate the total braiding index and estimate the deposition patterns of wood pieces for comparison with the experimental results. We then analyse the bed morphology responses and wood deposition patterns in terms of the root wad effect and input supply. Moreover, we discuss the advantages and limitations of the proposed model to predict the large wood dynamics considering the bed morphology. © 2019 John Wiley & Sons, Ltd. 相似文献
7.
Estimation of large wood budgets in a watershed and river corridor at interdecadal to interannual scales in a cold‐temperate fluvial system 下载免费PDF全文
Large wood (LW) is a ubiquitous feature in rivers of forested watersheds worldwide, and its importance for river diversity has been recognized for several decades. Although the role of LW in fluvial dynamics has been extensively documented, there is a need to better quantify the most significant components of LW budgets at the river scale. The purpose of our study was to quantify each component (input, accumulation, and output) of a LW budget at the reach and watershed scales for different time periods (i.e. a 50‐year period, decadal cycle, and interannual cycle). The LW budget was quantified by measuring the volumes of LW inputs, accumulations, and outputs within river sections that were finally evacuated from the watershed. The study site included three unusually large but natural wood rafts in the delta of the Saint‐Jean River (SJR; Québec, Canada) that have accumulated all LW exported from the watershed for the last 50 years. We observed an increase in fluvial dynamics since 2004, which led to larger LW recruitment and a greater LW volume trapped in the river corridor, suggesting that the system is not in equilibrium in terms of the wood budget but is rather recovering from previous human pressures as well as adjusting to hydroclimatic changes. The results reveal the large variability in the LW budget dynamics during the 50‐year period and allow us to examine the eco‐hydromorphological trajectory that highlights key variables (discharge, erosion rates, bar surface area, sinuosity, wood mobility, and wood retention). Knowledge on the dynamics of these variables improves our understanding of the historical and future trajectories of LW dynamics and fluvial dynamics in gravel‐bed rivers. Extreme events (flood and ice‐melt) significantly contribute to LW dynamics in the SJR river system. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
8.
The importance of large wood (LW) to riverine functions is well established scientifically and increasingly recognized by river managers in many countries. However, public perceptions largely associate LW with elevated danger and/or need for intervention. Such perspectives are amplified amongst recreational river users (defined here as any individuals that recreate by floating on the water surface of a river) who interact more directly with rivers than the general public and commonly view wood in life-or-death terms. Given that human life occupies a highest-order charge for river managers, they are left in a difficult position when safety appears to conflict with environmental services. LW deficits are perpetuated partly because wood removal, often in the name of safety, is far easier than placing wood in rivers. Further, river restoration practitioners are frequently burdened with expectations and liability unparalleled in built environments. A fundamentally different mindset is necessary to achieve desired ecologic outcomes when working with rivers. Based on two decades of experience as boaters, LW practitioners, and emergency responders, we (1) discuss LW hazard and risk from recreational and management viewpoints, (2) discretize objective and measurable physical properties of LW hazards, and (3) propose a decision framework that implicitly addresses risk by considering LW hazards relative to river use and ambient hazards. The approach is structured to increase objectivity in LW hazard mitigation and diminish asymmetric biases that favor LW removal. Our intent is to build understanding and rational flexibility among risk-averse management, regulatory, and funding entities to facilitate implementation of scientific understanding without undue risk to river users. © 2020 John Wiley & Sons, Ltd. 相似文献
9.
Patrick D. Shirey Jillian B. Kenny Michael A. Brueseke Gary A. Lamberti 《地球表面变化过程与地形》2020,45(5):1318-1324
Watershed management efforts in agriculturally dominated landscapes of North America face nearly two centuries of laws and policies that encouraged habitat destruction. Although streams and wetlands in these landscapes are actively being restored using designs that incorporate science and engineering, watershed drainage laws can constrain action or impact passively restored or naturalized habitat. In general, drainage laws require removal of any riparian vegetation or wood deemed to obstruct flow in streams regulated as drains. We use a case study from Indiana (USA) to introduce the shortcomings of drainage laws for allowing large wood, which is an important habitat feature, to remain in stream ecosystems. Removals of large wood from monitored stream reaches in a regulated drain were associated with subsequent declines in fish biomass. Such legal activities represent an important environmental management problem that exists under drainage laws which apply to streams over a widespread geographic region of North America. Recent litigation in Wisconsin (USA) suggests that if state legislatures fail to update these antiquated laws, the courts may act in favour of science-based management of drains. The statutes and regulations that govern agricultural drainage warrant careful consideration if streams within drainage districts are to be managed to improve ecological function. © 2020 John Wiley & Sons, Ltd. 相似文献
10.
Wood researchers increasingly rely on remote-sensing products to augment field information about wood deposits in river corridors. The availability of very high-resolution (<1 m) satellite imagery makes capturing wood over greater spatial extents possible, but previous studies have found difficulty in automatically extracting wood deposits due to the challenge in distinguishing wood from spectrally similar corridor features such as sand. We also lack knowledge on the spectral properties of different wood deposit types in multiple depositional environments. In this work, we explore image classification work-flows for four wood deposit types in three North American environments: in-channel jams deposited in the Tatshenshini River in Alaska, USA; a wood raft on the Slave River in Northwest Territories, Canada; and wood deposited along a lakeshore and coastal embayment in the Mackenzie River Delta in Northwest Territories, Canada. We compare classification results of object-based and pixel-based image analysis with supervised [support vector machine (SVM)] and unsupervised (ISO clustering) classifiers. We evaluate several accuracy assessment parameters and achieve overall classification accuracies of 65–99%, showing automated image classification is a possible approach for analysing wood across larger areas. We also find that wood sensitivity in the classification ranged from 0 to 95%, indicating that some techniques are better suited to wood capture than others. We find that supervised classification produced more accurate wood maps, though there is large variation in classification outcomes across environments related to spatial arrangement of wood in the landscape. We discuss the influence of depositional environment on classification and provide recommendations for designing a wood classification work-flow. 相似文献
11.
The effects of river restoration on catchment scale flood risk and flood hydrology 总被引:1,自引:0,他引:1 下载免费PDF全文
Simon J. Dixon David A. Sear Nicholas A. Odoni Tim Sykes Stuart N. Lane 《地球表面变化过程与地形》2016,41(7):997-1008
A rising exposure to flood risk is a predicted consequence of increased development in vulnerable areas and an increase in the frequency of extreme weather events due to climate change. In the face of this challenge, a continued reliance on engineered at‐a‐point flood defences is seen as both unrealistic and undesirable. The contribution of ‘soft engineering’ solutions (e.g. riparian forests, wood in rivers) to integrated, catchment scale flood risk management has been demonstrated at small scales but not larger ones. In this study we use reduced complexity hydrological modelling to analyse the effects of land use and channel changes resulting from river restoration upon flood flows at the catchment scale. Results show short sections of river‐floodplain restoration using engineered logjams, typical of many current restoration schemes, have highly variable impacts on catchment‐scale flood peak magnitude and so need to be used with caution as a flood management solution. Forested floodplains have a more general impact upon flood hydrology, with areas in the middle and upper catchment tending to show reductions in peak magnitude at the catchment outflow. The most promising restoration scenarios for flood risk management are for riparian forest restoration at the sub‐catchment scale, representing 20–40% of the total catchment area, where reductions in peak magnitude of up to 19% are observed through de‐synchronization of the timings of sub‐catchment flood waves. Sub‐catchment floodplain forest restoration over 10–15% of total catchment area can lead to reductions in peak magnitude of 6% at 25 years post‐restoration. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
12.
We present herein clear field evidence for the persistence of a coarse surface layer in a gravel‐bed river during flows capable of transporting all grain sizes present on the channel bed. Detailed field measurements of channel topography and bed surface grain size were made in a gravel‐bed reach of the Colorado River prior to a flood in 2003. Runoff produced during the 2003 snowmelt was far above average, resulting in a sustained period of high flow with a peak discharge of 27 m3/s (170% of normal peak flow); all available grain sizes within the study reach were mobilized in this period of time. During the 2003 peak flow, the river avulsed immediately upstream of the study reach, thereby abandoning approximately one half kilometer of the former channel. The abandonment was rapid (probably within a few hours), leaving the bed texture essentially frozen in place at the peak of the flood. All locations sampled prior to the flood were resampled following the stream abandonment. In response to the high flow, the surface median grain size (D50s) coarsened slightly in the outer part of the bend while remaining nearly constant along the inner part of the bend, resulting in an overall increase from 18 to 21 mm for the study reach. Thus, the coarse bed surface texture persisted despite shear stresses throughout the bend that were well above the critical entrainment value. This may be explained because the response of the bed texture to increases in flow strength depends primarily upon the continued availability of the various grain size percentiles in the supply, which in this case was essentially unlimited for all sizes present in the channel. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
13.
The annual fluvial export of large wood (LW) was monitored by local reservoir management offices in Japan. LW export per unit watershed area was relatively high in small watersheds, peaked in intermediate watersheds, and decreased in large watersheds. To explain these variations, we surveyed the amount of LW with respect to channel morphology in 78 segments (26 segments in each size class) in the Nukabira River, northern Japan. We examined the differences in LW dynamics, including its recruitment, transport, storage, and fragmentation and decay along the spectrum of watershed sizes. We found that a large proportion of LW produced by forest dynamics and hillslope processes was retained because of the narrower valley floors and lower stream power in small watersheds. The retained LW pieces may eventually be exported during debris flows. In intermediate watersheds, the volume of LW derived from hillslopes decreased substantially with reductions in the proportion of channel length bordered by hillslope margins, which potentially deliver large quantities of LW. Because these channels have lower wood piece length to channel width ratios and higher stream power, LW pieces can be transported downstream. During transport, LW pieces are further fragmented and can be more easily transported. Therefore, the fluvial export of LW is maximized in intermediate watersheds. Rivers in large watersheds, where the recruitment of LW is limited by the decreasing hillslope margins, cannot transport LW pieces because of their low stream power, and thus LW pieces accumulate at various storage sites. Although these stored LW pieces can be refloated and transported by subsequent flood events, they may also become trapped by obstacles such as logjams and standing trees on floodplains and in secondary channels, remaining there for decades and eventually decaying into fine organic particles. Thus, the fluvial export of LW pieces is low in large watersheds. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
14.
《Limnologica》2015
Habitat degradation in river ecosystems has considerably increased over the past decades, resulting in detrimental effects on aquatic and riparian communities. During the last two decades, the value of large wood as a resource for river restoration and recovery has been increasingly documented. However, post-project appraisal of the associations between restored large wood, morphological complexity and river ecology as a result of river restoration is extremely rare and thus scientific knowledge is essential. To investigate restored wood-induced morphological response and sediment complexity in an overwidened reach along a low gradient lowland river (River Bure, UK), two sub-reaches containing 12 jams initiated by wood emplacement in 2008 and 2010 and a sub-reach free of wood were studied. Wood surveys recording the dimensions and number of wood pieces in jams, geomorphological mapping of the reach illustrating the spatial distribution of features in and around the jams and in a section free of wood, and sediment sampling (analysed for particle size, organic content and plant propagule abundance) of five recurring patch types surrounding each jam (two wood-related patches and three representing the broader river environment) were performed. Wood jams partially spanned the river channel and contained large pieces of wood that created more open structures than naturally-formed wood jams. Where no wood was introduced, the channel remains wide and the gravel bed is buried by sand and finer sediment. In the restored reaches, fine sediment has accumulated in and around the wood jams and has been stabilised by vegetation colonisation, enhancing flow velocities in the narrowed channel sufficiently to mobilise fine sediment and expose the gravel bed. Sediment analysis reveals sediment fining with time since wood emplacement, largely achieved within the two wood-related patch types. Fine sediment retained around the wood shows a relatively higher plant propagule content than other patch types, suitable for sustaining plant succession as the vegetated side bars aggrade. Although channel narrowing and morphological adjustment has occurred surprisingly rapidly in this low energy, over-widened reach following wood introduction (2–4 years), sustaining the recovery in the longer term to suitably support flora and fauna communities depends on the continued delivery of wood by ensuring a natural supply of sufficiently large wood pieces from riparian trees both upstream and within the reach. 相似文献
15.
L. Allan James 《地球表面变化过程与地形》2006,31(13):1692-1706
An extensive literature about fluvial sediment waves, slugs or pulses has emerged in the past 20 years. The concept has been useful in many respects, but has been applied to diverse phenomena using a variety of definitions. Moreover, inferred linkages between channel‐bed changes and sediment loads are often not justifiable. This paper reviews concepts of large fluvial sediment waves at scales extending to several tens of kilometres. It points out constraints on the inferences that can be made about sediment loads based on changes in channel‐bed elevation at this scale where channel sediment interacts with storage in floodplain and terrace deposits. The type area of G. K. Gilbert's initial sediment‐wave concept is re‐examined to show that neither wave translation nor dispersion occurred in the simple manner commonly assumed. Channel aggradation and return to graded conditions provide an alternative theory explaining Gilbert's observed bed‐elevation changes. Recognizing the evidence and implications of the former passage of a large‐scale bed wave is essential to the accurate diagnosis of catchment conditions and the adoption of appropriate river restoration goals or methods. Sediment loads, water quality, channel morphologic stability and aquatic ecosystems often reflect changes in sediment storage long after the channel bed has returned to grade. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
16.
Matthew Luck Niels Maumenee Diane Whited John Lucotch Samantha Chilcote Mark Lorang Daniel Goodman Kyle McDonald John Kimball Jack Stanford 《地球表面变化过程与地形》2010,35(11):1330-1343
Salmon populations are highly variable in both space and time. Accurate forecasting of the productivity of salmon stocks makes effective management and conservation of the resource extremely challenging. Furthermore, widespread and consistent data on the productivity of species‐specific and total salmon stocks in a river are almost nonexistent. Ranking rivers based on physical complexity derived from remote sensing allows rivers to be objectively compared. Our approach considered rivers with great geomorphic complexity (e.g. having expansive, multichanneled floodplains and/or on‐channel lakes) as likely to have greater productivity of salmon than rivers flowing in constrained or canyon‐bound channels. Our objective was to develop a database of landscape metrics that could be used to rank the rivers in relation to potential salmon productivity. We then examined the rankings in relation to existing empirical (monitoring) data describing productivity of salmon stocks. To extract the metrics for each river basin we used a digital elevation model and multispectral satellite imagery. We developed procedures to extract channel networks, floodplains, on‐channel lakes and other catchment features; variables such as catchment area, channel elevation, main channel length, floodplain area, and density of hydrojunctions (nodes) were measured. We processed 1509 catchments in the North Pacific Rim including the Kamchatka Peninsula in Russia and western North America. Overall, catchments were most physically complex in western Kamchatka and western Alaska, and particularly on the Arctic North Slope of Alaska. We could not directly examine coherence between potential and measured productivity except for a few rivers, but the expected relationship generally held. The resulting database and systematic ranking are objective tools that can be used to address questions about landscape structure and biological productivity at regional to continental extents, and provide a way to begin to efficiently prioritize the allocation of funding and resources towards salmon management and conservation. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
17.
18.
Zhi Zhang Hossein Ghaffarian Bruce MacVicar Lise Vaudor Aurélie Antonio Kristell Michel Hervé Piégay 《地球表面变化过程与地形》2021,46(4):822-836
Wood flux (piece number per time interval) is a key parameter for understanding wood budgeting, determining the controlling factors, and managing flood risk in a river basin. Quantitative wood flux data is critically needed to improve the understanding of wood dynamics and estimate wood discharge in rivers. In this study, the streamside videography technique was applied to detect wood passage and measure instantaneous rates of wood transport. The goal was to better understand how wood flux responds to flood and wind events and then predict wood flux. In total, one exceptional wind and seven flood events were monitored on the Ain River, France, and around 24,000 wood pieces were detected visually. It is confirmed that, in general, there is a threshold of wood motion in the river equal to 60% of bankfull discharge. However, in a flood following a windy day, no obvious threshold for wood motion was observed, which confirms that wind is important for the preparation of wood for transport between floods. In two multi-peak floods, around two-thirds of the total amount of wood was delivered on the first peak, which confirms the importance of the time between floods for predicting wood fluxes. Moreover, we found an empirical relation between wood frequency and wood discharge, which is used to estimate the total wood amount produced by each of the floods. The data set is then used to develop a random forest regression model to predict wood frequency as a function of three input variables that are derived from the flow hydrograph. The model calculates the total wood volume either during day or night based on the video monitoring technique for the first time, which expands its utility for wood budgeting in a watershed. A one-to-one link is then established between the fraction of detected pieces of wood and the dimensionless parameter “passing time × frame rate ”, which provides a general guideline for the design of monitoring stations. 相似文献
19.
Andrés Iroumé Virginia Ruiz‐Villanueva Luca Mao Guillermo Barrientos Markus Stoffel Gastón Vergara 《水文研究》2018,32(17):2636-2653
Understanding large wood (LW; ≥1 m long and ≥10 cm in diameter) dynamics in rivers is critical for many disciplines including those assessing flood hazard and risk. However, our understanding of wood entrainment and deposition is still limited, mainly because of the lack of long‐term monitoring of wood‐related processes. The dataset presented here was obtained from more than 8 years of monitoring of 1,264 tagged wood pieces placed in 4 low‐order streams of the Chilean mountain ranges and was used to further our understanding of key factors controlling LW dynamics. We show that LW displacement lengths were longer during periods when peak‐flow water depths (Hmax) exceeded the bankfull stage (HBk) than in periods with Hmax ≤ HBk and that these differences were significantly higher for smaller wood pieces. LW length and length relative to channel dimensions were the main factors governing LW entrainment; LW displacement lengths were inversely related to the ratio of piece length to H15% (i.e., the level above which the flow remains for 15% of the time) and to the ratio of H15% to bankfull width. Unrooted logs and LW pieces located at the bankfull stage travelled significantly longer distances than logs with attached rootwads and those located in other positions within the bankfull channel. A few large logjams were broken during the period of observation, and in all occasions, LW from these broken logjams did not travel over longer distances than other pieces of LW moved in the same periods and in the same stream segments. Most importantly, our work reveals that LW dynamics tend to be concentrated within a few reaches in each stream and that reaches exhibiting high wood dynamics (extensive entrainment, deposition, or repositioning of LW) are significantly wider and less steep than less dynamic reaches. 相似文献
20.
Anthropogenic impacts in large rivers are widely studied, but studies of recovery once a disturbance has stopped are uncommon. This study examines the biogeomorphic recovery of a 40-km river corridor on the mid-Apalachicola River, Florida following the cessation of dredging, disposal, and snag removal in 2002. This failed navigation project resulted in vegetation losses (~166 ha between 1941 and 2004), river widening, and increased point bar areas. We used paired sets of imagery for a 10-year period during the recovery process at two different flow levels to assess sand bar change, land cover change, and their spatial variations. Most large sand bars decreased significantly in area due to growth of pioneer species, typically from the bankside of the bar. Mean bar area shrank 0.17 and 0.20 ha for the 30th and 1st percentile flows, respectively. For the entire study area, both water-level comparisons showed gains in vegetation (23.36 and 15.83 ha), compensated by losses in the extent of water (16.83 and 8.55 ha) and sand bar losses (6.53 and 7.28 ha). Overall, these gains during the 10-year passive recovery period are equivalent to ~15% of the vegetation losses that resulted from the navigational dredging. As found in other studies, most of the pioneer vegetation grew approximately 2 m relative elevation above the low-water surface. The initial length of the tree line and the area of herbaceous growth both had a significant and positive relationship with the area of new vegetation growth over the study interval. As parts of the river are healing, reduced channel capacity from narrowing and tree growth will benefit the floodplain. As elsewhere, understanding of a river's biogeomorphology, hydrology, and disturbance history can help in selecting appropriate recovery metrics to further advance the understanding and management of disturbed floodplains. © 2020 John Wiley & Sons, Ltd. 相似文献