首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paper presents oxygen and hydrogen isotopes of 284 precipitation event samples systematically collected in Irkutsk, in the Baikal region (southeast Siberia), between June 2011 and April 2017. This is the first high-resolution dataset of stable isotopes of precipitation from this poorly studied region of continental Asia, which has a high potential for isotope-based palaeoclimate research. The dataset revealed distinct seasonal variations: relatively high δ18O (up to −4‰) and δD (up to −40‰) values characterize summer air masses, and lighter isotope composition (−41‰ for δ18O and −322‰ for δD) is characteristic of winter precipitation. Our results show that air temperature mainly affects the isotope composition of precipitation, and no significant correlations were obtained for precipitation amount and relative humidity. A new temperature dependence was established for weighted mean monthly precipitation: +0.50‰/°C (r2 = 0.83; p <.01; n = 55) for δ18O and +3.8‰/°C (r2 = 0.83, p < 0.01; n = 55) for δD. Secondary fractionation processes (e.g., contribution of recycled moisture) were identified mainly in summer from low d excess. Backward trajectories assessed with the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model indicate that precipitation with the lowest mean δ18O and δD values reaches Irkutsk in winter related to moisture transport from the Arctic. Precipitation originating from the west/southwest with the heaviest mean isotope composition reaches Irkutsk in summer, thus representing moisture transport across Eurasia. Generally, moisture transport from the west, that is, the Atlantic Ocean predominates throughout the year. A comparison of our new isotope dataset with simulation results using the European Centre/Hamburg version 5 (ECHAM5)-wiso climate model reveals a good agreement of variations in δ18O (r2 = 0.87; p <.01; n = 55) and air temperature (r2 = 0.99; p <.01; n = 71). However, the ECHAM5-wiso model fails to capture observed variations in d excess (r2 = 0.14; p < 0.01; n = 55). This disagreement can be partly explained by a model deficit of capturing regional hydrological processes associated with secondary moisture supply in summer.  相似文献   

2.
Shi Qi  Wei Liu  Heping Shu  Fei Liu  Jinzhu Ma 《水文研究》2020,34(20):3941-3954
The sources and storage of soil NO3 in the western Tengger Desert, Northwest China, were explored using water chemistry analysis and stable isotope techniques. In line with the expansion and development of oases, part of the desert has been transformed into cultivated land and artificial forest land. The mean soil NO3 contents found in areas of cultivated land and artificial forest were 123.06 mg kg−1 and 1.26 mg kg−1, far higher and slightly lower than the background desert soil values, respectively. The δ15N-NO3 and δ18O-NO3 values in cultivated soils ranged from 1.00 to 11.81 ‰, and from −1.85 to 8.99 ‰, respectively, and the mean mNO3/Cl value in cultivated soils was 2.3. These figures would appear to demonstrate that the rapid increase in the nitrate content in soils is principally due to the use of nitrogen fertilizer. Such increases in soil NO3 storage is likely to promote the leaching of nitrogen into the groundwater where coarsely textured soils exist, the pollution of water sources used for irrigation water, and extreme precipitation events. The δ15N-NO3 and δ18O-NO3 values in groundwater ranged from 3.72 to 6.54 ‰, and from −0.19 to 12.06 ‰, respectively, mainly reflecting the nitrification of soil nitrogen. These values appeared similar to those measured in the soil water in adjacent areas of cultivated land and vegetated desert, indicating that the groundwater has been affected by both natural and artificial NO3. Artificial afforestation of desert regions would therefore seem to be a useful way of reducing the threat posed by anthropogenic sources to the circulation of NO3-N within arid regions, as well as promoting wind sheltering and sand fixation. This study explored the NO3 storage and groundwater quality responses to oasis development in arid areas in an attempt to provide effective information for local agricultural organizations and agricultural nitrogen management models.  相似文献   

3.
The partition of available energy into evapotranspiration affected by environmental and physiological factors is critical in understanding the water cycle and optimizing the water management in the field. Our study attempted to accurately quantify the environmental and physiological control on variability in evaporative fraction (EF) based on the Penman–Monteith model. The eddy covariance method was used to measure water flux over a canopy and then calculate the EF above a maize field in northwest China in 2007. Results indicate that the EF was lower in other growth stages than in the heading stage, so the EF value in the heading stage was taken as the standard value. The decreases in EF caused by canopy conductance and environmental factors were 0.176 and ?0.026, accounting for 117% and ?17% of the total difference in EF, respectively. Such results were mainly due to the following: (1) the variation of maize canopy conductance was greater than that of the environmental factors, such as air temperature, air humidity, wind speed and radiation; (2) the EF of the maize was more sensitive to variation in canopy conductance than the environmental factor. Our study revealed that crop physiological factor played an important role in determining the energy partition processes and reducing the sensible heat flux in the maize field. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
The study of water fluxes is important to better understand hydrological cycles in arid regions. Data-driven machine learning models have been recently applied to water flux simulation. Previous studies have built site-scale simulation models of water fluxes for individual sites separately, requiring a large amount of data from each site and significant computation time. For arid areas, there is no consensus as to the optimal model and variable selection method to simulate water fluxes. Using data from seven flux observation sites in the arid region of Northwest China, this study compared the performance of random forest (RF), support vector machine (SVM), back propagation neural network (BPNN), and multiple linear regression (MLR) models in simulating water fluxes. Additionally, the study investigated inter-annual and seasonal variation in water fluxes and the dominant drivers of this variation at different sites. A universal simulation model for water flux was built using the RF approach and key variables as determined by MLR, incorporating data from all sites. Model performance of the SVM algorithm (R2 = 0.25–0.90) was slightly worse than that of the RF algorithm (R2 = 0.41–0.91); the BPNN algorithm performed poorly in most cases (R2 = 0.15–0.88). Similarly, the MLR results were limited and unreliable (R2 = 0.00–0.66). Using the universal RF model, annual water fluxes were found to be much higher than the precipitation received at each site, and natural oases showed higher fluxes than desert ecosystems. Water fluxes were highest during the growing season (May–September) and lowest during the non-growing season (October–April). Furthermore, the dominant drivers of water flux variation were various among different sites, but the normalized difference vegetation index (NDVI), soil moisture and soil temperature were important at most sites. This study provides useful insights for simulating water fluxes in desert and oasis ecosystems, understanding patterns of variation and the underlying mechanisms. Besides, these results can make a contribution as the decision-making basis to the water management in desert and oasis ecosystems.  相似文献   

5.
Based on summer observations of stable isotope of precipitation at Muztagata, western China, during 2002-2003, this paper presents the relationship between δ 18O in precipitation and air temperature, and discusses the effect of moisture transport on δ 18O in precipitation. Results show that air temperature correlates positively with δ 18O in precipitation, and the temperature effect controls the δ 18O of precipitation in this area. The Muztagata region exhibits high δ 18O values in summer precipitation, similar to those shown at stations in adjacent regions. According to the results of our model set up to trace the moisture trajectories, the westerlies and local moisture circulation contribute to variations of oxygen isotopes in precipitation. In addition, the impacts of the moisture transport distance, the moisture transport level, and the incursion of the polar air mass also influence the variations of δ 18O in precipitation. The moisture origins and transport mechanisms also contribute to the variation of δ 18O in precipitation at Muztagata.  相似文献   

6.
Spatial and temporal variations of the isotopic composition of precipitation over Thailand were investigated. The local meteoric water line for Thailand deviates slightly from the global meteoric water line, with lower slopes (7.62 ± 0.07, 7.59 ± 0.08) and intercepts (6.42 ± 0.39, 6.22 ± 0.42) using ordinary and precipitation weighted methods. Differences in spatial and temporal δ18O distributions between the tropical monsoon and tropical savanna climate zones were found due to differing moisture source contributions and seasonal precipitation patterns. The temporal data reveals that the northeast monsoon rains originate from isotopically-enriched local moisture with isotope values of −9.36 to −0.09‰ (mean − 3.73 ± 0.42‰), whereas the southwest monsoon clouds had a more significant rainout effect from Rayleigh distillation, with isotope values of −9.56 to −1.78‰ (mean − 5.40 ± 0.38‰). The precipitation amount at each site was negatively correlated with δ18O (−0.24 to −3.20‰ per 100 mm, R2 = 0.1–0.9). Furthermore, δ18O was negatively correlated with geography (latitude, altitude) for the southwest monsoon periods, as expected based on other observed correlations. However, an inverse correlation was seen in the northeast monsoon due to differing moisture transportation as part of the continental effect. The correlation coefficient (R) was higher in the southwest monsoon (−0.84 for latitude effect, −0.64 for altitude effect) than the northeast monsoon (0.67 for latitude effect, 0.35 for altitude effect). The spatial pattern of isotopic composition reflects the southwest monsoon more clearly than the northeast monsoon, but the two monsoons also have a cancelling impact on orographic patterns. An agreement of the δ18O and deuterium excess (d-excess) was a negative correlation and found to reflect precipitation sources and re-evaporation processes. The d-excess was slightly higher for the northeast monsoon, bringing moisture from the Pacific Ocean and travelling across the continent before reaching the observed stations. By contrast, the d-excess was relatively lower for the Indian Ocean's moisture in the southwest monsoon.  相似文献   

7.
Tamarix elongata Ledeb is a desert shrub found in the desert region of Northwest China and is commonly cultivated as a sand‐holding plant in this region. To understand its water requirement and the effects of climate conditions on its growth, trunk xylem sap flows of irrigated 8‐year‐old Tamarix elongata Ledeb plants were monitored continuously with heat‐pulse sap flow meters for the entire season. Soil moisture contents at 0–300 cm layer depth were also measured with a tube type time domain reflectometry (Tube‐TDR). Meteorological factors, i.e. solar radiation, air temperature, relative humidity and wind speed were simultaneously monitored by an automatic weather station at the site. Daily and seasonal variations of the trunk sap fluxes and their correlations with the meteorological factors, reference evapotranspiration and soil moisture contents in the root‐zone were analysed. The results indicated that frost influenced the trunk sap flux greatly under irrigated conditions, although the flux generally fluctuated with the variation of environmental factors and showed a mean trunk sap flux of 4·18 l d?1. There was a significantly exponential relationship between sap flux and the reference value of crop evapotranspiration, with a correlation coefficient of R2 = 0·7172. The sap flux also had a significant correlation with the soil water contents at a depth of 150–300 cm from soil surface (R2 = 0·5014). The order of the main meteorological factors affecting the sap flux of Tamarix elongata Ledeb trees was solar radiation > air temperature > vapour pressure deficit > relative humidity > wind speed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
A case study on a desert‐oasis wetland ecosystem in the arid region of Northwest China measured the seasonal and interannual variation in energy partitioning and evapotranspiration to analyse the response of water and energy exchange on soil moisture, groundwater, and environmental variables. Energy partitioning showed a clear seasonal and interannual variability, and the process of water and energy exchange differed significantly in the monthly and interannual scales. The net radiation was 7.31 MJ m?2· day?1, and sensible heat flux accounted for 50.42% of net radiation in energy fluxes, 40.56% for latent heat flux, and 9.02% for ground heat flux. The parameters in energy fluxes were best described by a unimodal curve, whereas sensible heat flux followed a bimodal curve. Variations in the daily evapotranspiration and crop evapotranspiration also exhibited a single peak curve with annual values of 569.84 and 644.47 mm, respectively. Canopy conductance averaged 20.77 ± 13.75 mm s?1 and varied from 0.16 to 83.96 mm s?1 during the two hydrological years. The variation in water and energy exchange reflected environmental conditions and depended primarily on vapour pressure deficit, net radiation, soil moisture, and water depth. Although the effects of precipitation on evapotranspiration showed that the response of this ecosystem to climate changes was not obvious, the variation of air temperatures had a strong influence on evapotranspiration, resulting in a significant increase in evapotranspiration (R = 0.730; P < 0.01). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Accurately quantifying the evaporation loss of surface water is essential for regional water resources management, especially in arid and semi-arid areas where water resources are already scarce. The long-term monitoring of stable isotopes (δ18O and δ2H) in water can provide a sensitive indicator of water loss by evaporation. In this study, we obtained surface water samples of Shiyang River Basin from April to October between 2017 and 2019. The spatial and temporal characteristics of stable isotopes in surface water show the trend of enrichment in summer, depletion in spring, enrichment in deserts and depletion in mountains. The Local Evaporation Line (LEL) obtained by the regression of δ2H and δ18O in surface water has been defined by the lines: δ2H = 7.61δ18O + 14.58 for mountainous area, δ2H = 4.19δ18O − 17.85 for oasis area, δ2H = 4.08δ18O − 18.92 for desert area. The slope of LEL shows a gradual decrease from mountain to desert, indicating that the evaporation of surface water is gradually increasing. The evaporation loss of stable isotopes in surface water is 24.82% for mountainous area, 32.19% for oasis area, and 70.98% for desert area, respectively. Temperature and air humidity are the main meteorological factors affecting the evaporation loss, and the construction of reservoirs and farmland irrigation are the main man-made factors affecting the evaporation loss.  相似文献   

10.
Through combining the soil respiration with the main environmental factors under the planting shelterbelt (Populus woodland) and the natural desert vegetation (Tamarix ramosissima+Phragmites communis community and Haloxylon ammodendron community) in the western Junngar Basin, the difference in soil respiration under different land use/land cover types and the responses of soil respiration to temperature and soil moisture were analyzed. Results showed that the rate of soil respiration increased with temperature. During the daytime, the maximum soil respiration rate occurred at 18:00 for the Populus woodland, 12:00 for T. ramosissima+Ph. communis community, and 14:00 for H. ammodendron community, while the minimum rate all occurred at 8:00. The soil respiration, with the maximum rate in June and July and then declining from August, exhibited a similar trend to the near-surface temperature from May to October. During the growing season, the mean soil respiration rates and seasonal variation differed among the land use/land cover types, and followed the order of Populus woodland > T. ramosissima+Ph. communis community > H. ammodendron community. The difference in the soil respiration rate among different land use/land cover types was significant. The soil respiration of Pouplus woodland was significantly correlated with the near-surface temperature and soil temperature at 10 cm depth (P<0.01) in an exponential manner. The soil respiration of T. ramosissima+Ph. communis and H. ammodendron communities were all linearly correlated with the near-surface temperature and soil surface temperature (P<0.01). Based on the near-surface temperature, the calculated Q10 of Populus woodland, T. ramosissima+Ph. communis community and H. ammodendron community were 1.48, 1.59 and 1.63, respectively. The integrated soil respiration of the three land use/land cover types showed a significant correlation with the soil moisture at 0–5 cm, 5–15 cm and 0–15 cm depths (P<0.01). The quadratic model could best describe the relationship between soil respiration and soil moisture at 0–5 cm depth (P<0.01).  相似文献   

11.
In this paper, the process of oasis-desert circulation (ODC) is simulated by MM5V3.5 model through designing an ideal oasis-desert scheme and assuming that initial atmosphere is at rest (V= 0). The findings showed that the key of forming special oasis boundary structure is the difference of energy and water between oasis and desert. The evaporation of oasis surface consumes heat energy, and the low temperature of oasis causes an oasis breeze circulation (OBC), which drives an ODC with a downdraft over the oasis and an updraft over the desert. Later, the cold, dry and stable boundary over oasis is gradually formed, on the contrary, the atmospheric boundary over desert on the edge of oasis is hot, humid and unstable and its height is about 600 hPa. The updraft over the desert forms a wet ring that acts as a vertical wall weakening the low-level moisture exchange between the oasis and desert. The downdraft of OBC increases the atmospheric stability that reduces the oasis evaporation. The low-level outflow from the oasis (into the desert) prevents the dry, hot air flowing from the desert into the oasis. Thus an oasis self-preservation mechanism may be formed due to OBC. The horizontal area influenced by oasis is twice as oasis area and the vertical range is four times as oasis. The ODC is strong in the daytime and reaches the strongest at 17:00, and the influenced area is the largest at 20:00.  相似文献   

12.
Shuaipu Zhang  Mingan Shao 《水文研究》2017,31(15):2725-2736
Temporal stability of soil moisture has been widely used in hydrological monitoring since it emerged. However, the spatial analysis of temporal stability at the landscape scale is often limited because of insufficient sampling numbers. This work made an effort to investigate the spatial variations of temporal stability of soil moisture in an oasis landscape. The specific objectives of the study were to explore the spatial patterns of temporal stability and to determine the controlling factors of temporal stability in the desert oasis. A time series of soil moisture measurements were gathered on 23 occasions at 118 locations over 3 years in a rectangular transect of approximately 100 km2. The nonparametric Spearman's rank correlation coefficient, standard deviation of relative difference (SDRD), and mean absolute bias error (MABE) were used to quantify the temporal stability of soil moisture. Results showed that the temporal stability of soil moisture was depth dependent and season dependent. The spatial pattern of soil moisture in a deep soil layer and between two same seasons generally had a high temporal stability. SDRD and MABE were spatially autocorrelated and exhibited strong spatial structures in the geographic space. The concept of temporal stability can be extended to describe the time‐stable areas of soil moisture with geostatistics. There were great differences between SDRD and MABE in describing the temporal stability of soil moisture and in identifying the controlling factors of temporal stability. In this case, MABE was a better alternative to estimate the areal mean soil moisture using representative locations than SDRD. Land use type, soil moisture condition, and soil particle composition were the dominant controls of temporal stability in the oasis. These insights could help to better understand the essence of temporal stability of soil moisture in arid regions.  相似文献   

13.
鄱阳湖典型洲滩湿地土壤含水量和地下水位年内变化特征   总被引:3,自引:0,他引:3  
湿地植被空间分布受多个水分因子共同影响,为了探求鄱阳湖典型洲滩湿地不同植被类型下地下水、土壤水的变化特征,本文选择鄱阳湖吴城湿地保护区内一个长约1.2 km的典型洲滩湿地为实验区,建立了气象-土壤-水文联合观测系统.对观测的气象、水文要素进行分析发现:(1)洲滩湿地地下水位年内呈单峰变化,季节性差异显著,最大埋深可达10 m,出现在1月份,丰水期8月份地下水位最高时可出露地表,且地下水位与湖泊水位变化具有高度一致性;(2)由远湖区高地至近湖区低地,不同植被带中地下水平均埋深变化为藜蒿带(4.76 m)芦苇带(2.87 m)灰化薹草带(1.61 m).地下水埋深小于50 cm的持续时间分别为:藜蒿带27 d、芦苇带112 d、灰化薹草带170 d;(3)土壤平均含水量沿不同植被带梯度变化为:藜蒿带最小(15.9%),芦苇样带(40.7%)和灰化薹草样带(43.7%)较大.土壤含水量年内变幅为:藜蒿带最大(2.5%~55.2%),芦苇带和灰化薹草带相对较小,分别为22.1%~48.1%和28.4%~54.1%;(4)不同植被带土壤含水量季节变化规律不同,藜蒿带土壤含水量年内呈单峰型,仅夏季土壤含水量较高,其余季节均在10%左右,而芦苇带和灰化薹草样带春、夏、秋季均维持较高含水量(42%以上),仅冬季水分含量较低.  相似文献   

14.
The active layer of frozen ground data assimilation system adopts the SHAW (Simulteneous Heat and Water) model as the model operator. It employs an ensemble kalman filter to fuse state variables predicted by the SHAW model with in situ observation and the SSM/I 19 GHz brightness temperature for the purpose of optimizing model hydrothermal state variables. When there is little water movement in the frozen soil during the winter season, the unfrozen water content depends primarily on soil temperature. Thus, soil temperature is the crucial state variable to be improved. In contrast, soil moisture is heavily influenced by precipitation during the summer season. The simulation accuracy of soil moisture has a strong and direct impact on the soil temperature. In this case, the crucial state variable to be improved is soil moisture. One-dimensional assimilation experiments that have been carried out at AMDO station show that land data assimilation method can improve the estimation of hydrothermal state variables in the soil by fusing model information and observation information. The reasonable model error covariance matrix plays a key role in transferring the optimized surface state information to the deep soil, and it provides improved estimations of whole soil state profiles. After assimilating the 4-cm soil temperature by in situ observation, the soil temperature RMSE (Root Mean Square Error) of each soil layer decreased by 0.96°C on average relative to the SHAW simulation. After assimilating the 4-cm soil moisture in situ observation, the soil moisture RMSE of each soil layer decreased by 0.020 m3·m−3. When assimilating the SSM/I 19 GHz brightness temperature, the soil temperature RMSE of each soil layer during the winter decreased by 0.76°C, while the soil moisture RMSE of each soil layer during the summer decreased by 0.018 m3·m−3.  相似文献   

15.

Water relation characteristics of the desert legumeAlhagi sparsifolia were investigated during the vegetation period from April to September 1999 in the foreland of Qira oasis at the southern fringe of the Taklamakan Desert, Xinjiang Uygur Autonomous Region of China. The seasonal variation of predawn water potentials and of diurnal water potential indicated thatAlhagi plants were well water supplied over the entire vegetation period. Decreasing values in the summer months were probably attributed to increasing temperatures and irradiation and therefore a higher evapotranspirative demand. Data from pressure-volume analysis confirmed thatAlhagi plants were not drought stressed and xylem sap flow measurements indicated thatAlhagi plants used large amounts of water during the summer months. Flood irrigation had no influence on water relations inAlhagi probably becauseAlhagi plants produced only few fine roots in the upper soil layers. The data indicate thatAlhagi sparsifolia is a drought-avoiding species that utilizes ground water by a deep roots system, which is the key characteristic to adjust the hyper-arid environment. Because growth and survival ofAlhagi depends on ground water supply, it is important that variations of ground water depth are kept to a minimum. The study will provide a theoretical basis for the restoration and management of natural vegetation around oasis in arid regions.

  相似文献   

16.
Soil moisture is crucial to vegetation restoration in karst areas, and climate factors and vegetation restoration are key factors affecting changes in soil moisture. However, there is still much controversy over the long-term changes in soil moisture during vegetation restoration. In order to reveal the changes in soil moisture during vegetation restoration, we conducted long-term positioning monitoring of soil moisture at 0–10 and 10–20 cm on secondary forests sample plot (SF, tree land) and shrubs sample plot (SH, shrub land) in karst areas from 2013 to 2020. The results showed that the aboveground biomass of SF and SH increased by 50% and 240%, respectively, and the soil moisture of the SF and SH showed an increasing trend. When shrubs are restored to trees in karst areas, the soil moisture becomes more stable. However, the correlation coefficients (R2) between the annual rainfall and the annual average soil moisture of SF and SH are 0.84 and 0.55, respectively, indicating that soil moistures in tree land are more affected by rainfall. The soil moisture of shrubs and trees are relatively low during the months of alternating rainy and dry seasons. Rainfall has a very significant impact on the soil moisture of tree land, while air temperature and wind speed have a significant impact on the soil moisture of tree land, but the soil moistures of shrub land are very significantly affected by rainfall and relative humidity. Therefore, during the process of vegetation restoration from shrubs to trees, the main meteorological factors that affect soil moisture changes will change. The results are important for understanding the hydrological processes in the ecological restoration process of different vegetation types in karst areas.  相似文献   

17.
In cold climates, the process of freezing–thawing significantly affects the ground surface heat balance and water balance. To better understand the mechanism of evaporation from seasonally frozen soils, we performed field experiments at different water table depths on vegetated and bare ground in a semiarid region in China. Soil moisture and temperature, air temperature, precipitation, and water table depths were measured over a 5‐month period (November 1, 2016, to March 14, 2017). The evaporation, which was calculated by a mass balance method, was high in the periods of thawing and low in the periods of freezing. Increased water table depth in the freezing period led to high soil moisture in the upper soil layer, whereas lower initial groundwater levels during freezing–thawing decreased the cumulative evaporation. The extent of evaporation from the bare ground was the same in summer as in winter. These results indicate that a noteworthy amount of evaporation from the bare ground is present during freezing–thawing. Finally, the roots of Salix psammophila could increase the soil temperature. This study presents an insight into the joint effects of soil moisture, temperature, ground vegetation, and water table depths on the evaporation from seasonally frozen soils. Furthermore, it also has important implications for water management in seasonally frozen areas.  相似文献   

18.
Data on temporal variability in Mg isotope ratios of atmospheric deposition and runoff are critical for decreasing the uncertainty associated with construction of isotope mass balances in headwater catchments, and statistical evaluation of isotope differences among Mg pools and fluxes. Such evaluations, in turn, are needed to distinguish between biotic and abiotic contributions to Mg2+ in catchment runoff. We report the first annual time-series of δ26Mg values simultaneously determined for rainfall, canopy throughfall, soil water and runoff. The studied 55-ha catchment, situated in western Czech Republic, is underlain by Mg-rich amphibolite and covered by mature spruce stands. Between 1970 and 1996, the site received extremely high amounts of acid deposition and fly ash form nearby coal-burning power plants. The δ26Mg values of open-area precipitation (median of −0.79‰) at our study site were statistically indistinguishable from the δ26Mg values of throughfall (−0.73‰), but significantly different from the δ26Mg values of soil water (−0.55‰) and runoff (−0.55‰). The range of δ26Mg values during the observation period decreased in the order: open-area precipitation (0.57‰) > throughfall (0.27‰) > runoff (0.21‰) > soil water (0.16‰). The decreasing variability in δ26Mg values of Mg2+ from precipitation to soil water and runoff reflected an increasing homogenization of atmospheric Mg in the catchment and its mixing with geogenic Mg. In addition to atmospheric Mg, runoff also contained Mg mobilized from the three major solid Mg pools, bedrock (δ26Mg of −0.32‰), soil (−0.28‰), and vegetation (−0.31‰). The drought of summer 2019 did not affect the nearly constant δ26Mg value of runoff. Collectively, our data show that within-catchment processes buffer the Mg isotope variability of the atmospheric input.  相似文献   

19.

Knowledge of seasonal variation of net ecosystem CO2 exchange (NEE) and its biotic and abiotic controllers will further our understanding of carbon cycling process, mechanism and large-scale modelling. Eddy covariance technique was used to measure NEE, biotic and abiotic factors for nearly 3 years in the hinterland alpine steppe—Korbresia meadow grassland on the Tibetan Plateau, the present highest fluxnet station in the world. The main objectives are to investigate dynamics of NEE and its components and to determine the major controlling factors. Maximum carbon assimilation took place in August and maximum carbon loss occurred in November. In June, rainfall amount due to monsoon climate played a great role in grass greening and consequently influenced interannual variation of ecosystem carbon gain. From July through September, monthly NEE presented net carbon assimilation. In other months, ecosystem exhibited carbon loss. In growing season, daytime NEE was mainly controlled by photosynthetically active radiation (PAR). In addition, leaf area index (LAI) interacted with PAR and together modulated NEE rates. Ecosystem respiration was controlled mainly by soil temperature and simultaneously by soil moisture. Q 10 was negatively correlated with soil temperature but positively correlated with soil moisture. Large daily range of air temperature is not necessary to enhance carbon gain. Standard respiration rate at referenced 10°C (R 10) was positively correlated with soil moisture, soil temperature, LAI and aboveground biomass. Rainfall patterns in growing season markedly influenced soil moisture and therefore soil moisture controlled seasonal change of ecosystem respiration. Pulse rainfall in the beginning and at the end of growing season induced great ecosystem respiration and consequently a great amount of carbon was lost. Short growing season and relative low temperature restrained alpine grass vegetation development. The results suggested that LAI be usually in a low level and carbon uptake be relatively low. Rainfall patterns in the growing season and pulse rainfall in the beginning and at end of growing season control ecosystem respiration and consequently influence carbon balance of ecosystem.

  相似文献   

20.
As the largest fixed and semi-fixed desert in China, the Gurbantünggüt Desert undergoes a long period of snow cover in the winter and the rapid growth of ephemeral plants in the spring, presenting obvious seasonal changes in the underlying desert surface type, which can lead to variation in the turbulence of the near-surface boundary layer turbulence over the desert. In this study, gradient tower data and eddy covariance data from 2017 were analysed to investigate the turbulence characteristics of the different surface boundary layers in the hinterland of the Gurbantünggüt Desert. The results indicate that stable atmospheric conditions in the desert occur exclusively during the early morning and at night in the desert, and the onset and duration of this stable state varies seasonally. Two regimes of intermittent turbulence occur during the night, a weak turbulent regime that occurs when the wind speed is less than the threshold and a strong turbulent regime when the wind speed exceeds the threshold, and different wind speed thresholds were observed at each level. These parameters follow a seasonal pattern of summer (July) > spring (April) > autumn (October) > winter (January) in terms of magnitude. The mean turbulence intensities of the along-wind, cross-wind and vertical wind are 0.5, 0.47 and 0.14, respectively, with Iu > Iv > Iw. The normalized standard deviation of the wind velocity components (σu, σv and σw) generally satisfies a 1/3 power-law relation. Our results show that the night-time turbulence regime classification for the Gurbantünggüt Desert strongly depends on meteorological and orographic features, and the intermittent turbulent events have the non-stationarity of the flow in common. The results can contribute to the study of land surface processes, climate change and desertification in inland arid desert areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号