首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Digital elevation models (DEMs) at different resolutions (180, 360, and 720 m) are used to examine the impact of different levels of landscape representation on the hydrological response of a 690‐km2 catchment in southern Quebec. Frequency distributions of local slope, plan curvature, and drainage area are calculated for each grid size resolution. This landscape analysis reveals that DEM grid size significantly affects computed topographic attributes, which in turn explains some of the differences in the hydrological simulations. The simulations that are then carried out, using a coupled, process‐based model of surface and subsurface flow, examine the effects of grid size on both the integrated response of the catchment (discharge at the main outlet and at two internal points) and the distributed response (water table depth, surface saturation, and soil water storage). The results indicate that discharge volumes increase as the DEM is coarsened, and that coarser DEMs are also wetter overall in terms of water table depth and soil water storage. The reasons for these trends include an increase in the total drainage area of the catchment for larger DEM cell sizes, due to aggregation effects at the boundary cells of the catchment, and to a decrease in local slope and plan curvature variations, which in turn limits the capacity of the watershed to transmit water downslope and laterally. The results obtained also show that grid resolution effects are less pronounced during dry periods when soil moisture dynamics are mostly controlled by vertical fluxes of evaporation and percolation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
How processing digital elevation models can affect simulated water budgets   总被引:1,自引:0,他引:1  
For regional models, the shallow water table surface is often used as a source/sink boundary condition, as model grid scale precludes simulation of the water table aquifer. This approach is appropriate when the water table surface is relatively stationary. Since water table surface maps are not readily available, the elevation of the water table used in model cells is estimated via a two-step process. First, a regression equation is developed using existing land and water table elevations from wells in the area. This equation is then used to predict the water table surface for each model cell using land surface elevation available from digital elevation models (DEM). Two methods of processing DEM for estimating the land surface for each cell are commonly used (value nearest the cell centroid or mean value in the cell). This article demonstrates how these two methods of DEM processing can affect the simulated water budget. For the example presented, approximately 20% more total flow through the aquifer system is simulated if the centroid value rather than the mean value is used. This is due to the one-third greater average ground water gradients associated with the centroid value than the mean value. The results will vary depending on the particular model area topography and cell size. The use of the mean DEM value in each model cell will result in a more conservative water budget and is more appropriate because the model cell water table value should be representative of the entire cell area, not the centroid of the model cell.  相似文献   

3.
Surface elevations represented in MODFLOW head-dependent packages are usually derived from digital elevation models (DEMs) that are available at much high resolution. Conventional grid refinement techniques to simulate the model at DEM resolution increases computational time, input file size, and in many cases are not feasible for regional applications. This research aims at utilizing the increasingly available high resolution DEMs for effective simulation of evapotranspiration (ET) in MODFLOW as an alternative to grid refinement techniques. The source code of the evapotranspiration package is modified by considering for a fixed MODFLOW grid resolution and for different DEM resolutions, the effect of variability in elevation data on ET estimates. Piezometric head at each DEM cell location is corrected by considering the gradient along row and column directions. Applicability of the research is tested for the lower Rio Grande (LRG) Basin in southern New Mexico. The DEM at 10 m resolution is aggregated to resampled DEM grid resolutions which are integer multiples of MODFLOW grid resolution. Cumulative outflows and ET rates are compared at different coarse resolution grids. Results of the analysis conclude that variability in depth-to-groundwater within the MODFLOW cell is a major contributing parameter to ET outflows in shallow groundwater regions. DEM aggregation methods for the LRG Basin have resulted in decreased volumetric outflow due to the formation of a smoothing error, which lowered the position of water table to a level below the extinction depth.  相似文献   

4.
The resolution of a digital elevation model (DEM) is a crucial factor in watershed hydrologic and environmental modelling. DEM resolution can cause significant variability in the representation of surface topography, which further affects quantification of hydrologic connectivity and simulation of hydrologic processes. The objective of this study is to examine the effects of DEM resolution on (1) surface microtopographic characteristics, (2) hydrologic connectivity, and (3) the spatial and temporal variations of hydrologic processes. A puddle‐to‐puddle modelling system was utilized for surface delineation and modelling of the puddle‐to‐puddle overland flow dynamics, surface runoff, infiltration, and unsaturated flow for nine DEM resolution scenarios of a field plot surface. Comparisons of the nine modelling scenarios demonstrated that coarser DEM resolutions tended to eliminate topographic features, reduce surface depression storage, and strengthen hydrologic connectivity and surface runoff. We found that reduction in maximum depression storage and maximum ponding area was as high as 97.56% and 76.36%, respectively, as the DEM grid size increased from 2 to 80 cm. The paired t‐test and fractal analysis demonstrated the existence of a threshold DEM resolution (10 cm for the field plot), within which the DEM‐based hydrologic modelling was effective and acceptable. The effects of DEM resolution were further evaluated for a larger surface in the Prairie Pothole Region subjected to observed rainfall events. It was found that simulations based on coarser resolution DEMs (>10 m) tended to overestimate ponded areas and underestimate runoff discharge peaks. The simulated peak discharge from the Prairie Pothole Region surface reduced by approximately 50% as the DEM resolution changed from 2 to 90 m. Fractal analysis results elucidated scale dependency of hydrologic and topographic processes. In particular, scale analysis highlighted a unique constant–threshold–power relationship between DEM scale and topographic and hydrologic parameters/variables. Not only does this finding allow one to identify threshold DEM but also further develop functional relationships for scaling to achieve valid topographic characterization as well as effective and efficient hydrologic modelling. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Two different canopy interception schemes are applied to the parameterization of the hydrological processes in the Community Land Model version 3. One scheme treats rainfall and canopy water storage as spatially uniform within each model grid cell, and the other scheme considers sub‐grid variability of rainfall and water storage in the parameterization of canopy hydrological processes. The hydrological responses to differences between these two schemes in different regions are studied. It is found that the impact of the sub‐grid variability in the tropical regions is generally greater than the extra‐tropical regions. However, such impact can't be negligible for the extra‐tropical regions. Soil water in the total 3.4 m soil depth increases by 3% for Central‐South Europe, and vegetation temperature increases by 0.14 °C for Southeastern United States if the regional averages are considered. The magnitude of the impact is greater if the analysis focuses on the specific grid cells in these regions. The impact is tightly correlated with rainfall amount and vegetation density. The correlation coefficient between such impact and rainfall amount and vegetation density varies with regions and hydrological variables, with the largest value of 0.92 for interception loss in Amazonia. Our results indicate that the impact of the sub‐grid variability on hydrological processes in the extra‐tropical areas is also important, although rainfall amount and vegetation density in these areas are not as high as in the tropical areas. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
流域水系自动提取的方法和应用   总被引:31,自引:3,他引:28  
李昌峰  冯学智  赵锐 《湖泊科学》2003,15(3):205-212
讨论由栅格数字高程模型(DEM)自动提取流域水系的原理和方法,并以西苕溪中上游流域为研究区进行了河网生成实验. 研究表明:在山地丘陵区和平均地形坡度不小于3°的区域,所生成河网具有很高的可靠性. 为了解决在平均地形坡度小于3°的平坦区域河网生成中产生的虚拟河网与自然水系偏差较大的问题,提出了利用主干河道和平原水系数字化作为约束条件的生成河网的方法,取得了与实际情况比较接近的结果,从而使水文要素的模拟更具有实际意义.  相似文献   

7.
Selecting the correct resolution in distributed hydrological modelling at the watershed scale is essential in reducing scale-related errors. The work presented herein uses information content (entropy) to identify the resolution which captures the essential variability, at the watershed scale, of the infiltration parameters in the Green and Ampt infiltration equation. A soil map of the Little Washita watershed in south-west Oklahoma, USA was used to investigate the effects of grid cell resolution on the distributed modelling of infiltration. Soil-derived parameters and infiltration exhibit decreased entropy as resolutions become coarser. This is reflected in a decrease in the maximum entropy value for the reclassified/derived parameters vis a vis the original data. Moreover, the entropy curve, when plotted against resolution, shows two distinct segments: a constant section where no entropy was lost with decreasing resolution and another part which is characterized by a sharp decrease in entropy after a critical resolution of 1209 m is reached. This methodology offers a technique for assessing the largest cell size that captures the spatial variability of infiltration parameters for a particular basin. A geographical information system (GIS) based rainfall-runoff model is used to simulate storm hydrographs using infiltration parameter maps at different resolutions as inputs. Model results up to the critical resolution are reproducible and errors are small. However, at resolutions beyond the critical resolution the results are erratic with large errors. A major finding of this study is that a large resolution (1209 m for this basin) yields reproducible model results. When modelling a river basin using a distributed model, the resolution (grid cell size) can drastically affect the model results and calibration. The error structure attributable to grid cell resolution using entropy as a spatial variability measure is shown.  相似文献   

8.
Considering all the alterations on hydrology and water quality that urbanization process brings, permeable pavement (PP) is an alternative to traditional impermeable asphalt and concrete pavement. The goal of the PP and other low impact development devices is to increase infiltration and reduce peak runoff flows. These structures are barely used in Brazil aiming stormwater management, one of the big hydrological issues in cities throughout the country, with increasing urbanization rates. The main objective of this paper is the hydraulic characterization of a PP and the assessment of its hydrological efficiency from the point of view of the infiltration process. The study focuses on a pilot area in a parking lot in an urban area (Recife, Brazil). Soil elements filling the voids between concrete elements were sampled (particle size density, water contents) and tested with water infiltration experiments at several points of the 3 m × 1.5 m surface pilot area. Beerkan Estimation of Soil Transfer parameters algorithm was applied to the infiltration experiment data to obtain the hydraulic characteristics of the soil composing the PP surface layer, the concrete grid pavers (with internal voids filled with natural soil) permeability being neglected. Results show that the soil hydraulic characteristics vary spatially within the pilot area and that the soil samples have different hydraulic behaviours. The hydraulic characteristics derived from Beerkan Estimation of Soil Transfer parameters analysis were implemented into Hydrus code to simulate runoff, infiltration and water balance over a year. The numerical simulation showed the good potential of the PP for rainfall–runoff management, which demonstrates that PP can be used to retrofit existing parking infrastructure and to promote hydrological behaviour close to natural soils. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
ABSTRACT

This study evaluates and compares two-dimensional (2D) numerical models of different complexities by testing them on a floodplain inundation event that occurred on the Secchia River (Italy). We test 2D capabilities of LISFLOOD-FP and HEC-RAS (5.0.3), implemented using various grid sizes (25–100 m) based on 1-m DEM resolution. As expected, the best results were shown by the higher-resolution grids (25 m) for both models, which is justified by the complex terrain of the area. However, the coarser resolution simulations (50 and 100 m) performed virtually identically compared to the high-resolution simulations. Nevertheless, the spatial distribution of flood characteristics varies: the 50 and 100 m results of LISFLOOD-FP and HEC-RAS misestimated flood extent and water depth in selected control areas (built-up zones). We suggest that the specific terrain of the area can cause ambiguities in large-scale modelling, while providing plausible results in terms of the overall model performance.  相似文献   

10.
We propose an improvement of the overland‐flow parameterization in a distributed hydrological model, which uses a constant horizontal grid resolution and employs the kinematic wave approximation for both hillslope and river channel flow. The standard parameterization lacks any channel flow characteristics for rivers, which results in reduced river flow velocities for streams narrower than the horizontal grid resolution. Moreover, the surface areas, through which these wider model rivers may exchange water with the subsurface, are larger than the real river channels potentially leading to unrealistic vertical flows. We propose an approximation of the subscale channel flow by scaling Manning's roughness in the kinematic wave formulation via a relationship between river width and grid cell size, following a simplified version of the Barré de Saint‐Venant equations (Manning–Strickler equations). The too large exchange areas between model rivers and the subsurface are compensated by a grid resolution‐dependent scaling of the infiltration/exfiltration rate across river beds. We test both scaling approaches in the integrated hydrological model ParFlow. An empirical relation is used for estimating the true river width from the mean annual discharge. Our simulations show that the scaling of the roughness coefficient and the hydraulic conductivity effectively corrects overland flow velocities calculated on the coarse grid leading to a better representation of flood waves in the river channels.  相似文献   

11.
Depression storage (DS) is the maximum storage of precipitation and runoff in the soil surface at a given slope. The DS is determined by soil roughness that in agricultural soils is largely affected by tillage. The direct measurement of DS is not straightforward because of the natural permeability of the soil. Therefore, DS has generally been estimated from 2D/3D empirical relationships and numerical algorithms based on roughness indexes and height measurements of the soil surface, respectively. The objective of this work was to evaluate the performance of some 2D models for DS, using direct and reliable measurements of DS in an agricultural soil as reference values. The study was carried out in experimental microplots where DS was measured in six situations resulting from the combination of three types of tillage carried out parallel and perpendicular to the main slope. Those data were used as reference to evaluate four empirical models and a numerical method. Longitudinal altitudinal profiles of the relief were obtained by a laser profilometer. Infiltration measurements were carried out before and after tillage. The DS was largely affected by tillage and its direction. Highest values of DS are found on rougher surfaces mainly when macroforms cut off the dominant slope. The empirical models had a limited performance while the numerical method was the most effective, even so, with an important variability. In addition, a correct hydrological management should take into account that each type of soil tillage affects infiltration rate differently. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Testing hydrological models over different spatio‐temporal scales is important for both evaluating diagnostics and aiding process understanding. High‐frequency (6‐hr) stable isotope sampling of rainfall and runoff was undertaken during 3‐week periods in summer and winter within 12 months of daily sampling in a 3.2‐km2 catchment in the Scottish Highlands. This was used to calibrate and test a tracer‐aided model to assess the (a) information content of high‐resolution data, (b) effect of different calibration strategies on simulations and inferred processes, and (c) model transferability to <1‐km2 subcatchment. The 6‐hourly data were successfully incorporated without loss of model performance, improving the temporal resolution of the modelling, and making it more relevant to the time dynamics of the isotope and hydrometric response. However, this added little new information due to old‐water dominance and riparian mixing in this peatland catchment. Time variant results, from differential split sample testing, highlighted the importance of calibrating to a wide range of hydrological conditions. This also provided insights into the nonstationarity of catchment mixing processes, in relation to storage and water ages, which varied markedly depending on the calibration period. Application to the nested subcatchment produced equivalent parameterization and performance, highlighting similarity in dominant processes. The study highlighted the utility of high‐resolution data in combination with tracer‐aided models, applied at multiple spatial scales, as learning tools to enhance process understanding and evaluation of model behaviour across nonstationary conditions. This helps reveal more fully the catchment response in terms of the different mechanistic controls on both wave celerites and particle velocities.  相似文献   

13.
This paper analyses the effect of spatial resolution and distribution of model input data on the results of regional-scale land use scenarios using three different hydrological catchment models. A 25 m resolution data set of a mesoscale catchment and three land use scenarios are used. Data are systematically aggregated to resolutions up to 2 km. Land use scenarios are spatially redistributed, both randomly and topography based. Using these data, water fluxes are calculated on a daily time step for a 16 year time period without further calibration. Simulation results are used to identify grid size, distribution and model dependent scenario effects. In the case of data aggregation, all applied models react sensitively to grid size. WASIM and TOPLATS simulate constant water balances for grid sizes from 50 m to 300–500 m, SWAT is more sensitive to input data aggregation, simulating constant water balances between 50 m and 200 m grid size. The calculation of scenario effects is less robust to data aggregation. The maximum acceptable grid size reduces to 200–300 m for TOPLATS and WASIM. In case of spatial distribution, SWAT and TOPLATS are slightly sensitive to a redistribution of land use (below 1.5% for water balance terms), whereas WASIM shows almost no reaction. Because the aggregation effects were stronger than the redistribution effects, it is concluded that spatial discretisation is more important than spatial distribution. As the aggregation effect was mainly associated with a change in land use fraction, it is concluded that accuracy of data sets is much more important than a high spatial resolution.  相似文献   

14.
Stream burning is a common flow enforcement technique used to correct surface drainage patterns derived from digital elevation models (DEM). The technique involves adjusting the elevations of grid cells that are coincident with the features of a vector hydrography layer. This paper focuses on the problematic issues with common stream burning practices, particularly the topological errors resulting from the mismatched scales of the hydrography and DEM data sets. A novel alternative stream burning method is described and tested using five DEMs of varying resolutions (1 to 30 arc‐seconds) for an extensive area of southwestern Ontario, Canada. This TopologicalBreachBurn method uses total upstream channel length (TUCL) to prune the vector hydrography layer to a level of detail that matches the raster DEM grid resolution. Network pruning reduces the occurrence of erroneous stream piracy caused by the rasterization of multiple stream links to the same DEM grid cell. The algorithm also restricts flow within individual stream reaches, further reducing erroneous stream piracy. In situations where two vector stream features occupy the same grid cell, the new tool ensures that the larger stream, designated by higher TUCL, is given priority. TUCL‐based priority minimizes the impact of the topological errors that occur during the stream rasterization process on modeled regional drainage patterns. The test data demonstrated that TopologicalBreachBurn produces highly accurate and scale‐insensitive drainage patterns and watershed boundaries. The drainage divides of four large watersheds within the study region that were delineated from the TopologicalBreachBurn‐processed DEMs were found to be highly accurate when compared with the official watershed boundaries, even at the coarsest grid resolutions, with Kappa index of agreement values ranging from 0.952 to 0.921. The corresponding Kappa coefficient values for a traditional stream burning method (FillBurn) ranged from 0.953 to 0.490, demonstrating a significant decrease in mapping accuracy at coarser DEM grid resolutions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Construction of dams and the resulting water impoundments are one of the most common engineering procedures implemented on river systems globally; yet simulating reservoir operation at the regional and global scales remains a challenge in human–earth system interactions studies. Developing a general reservoir operating scheme suitable for use in large-scale hydrological models can improve our understanding of the broad impacts of dams operation. Here we present a novel use of artificial neural networks to map the general input/output relationships in actual operating rules of real world dams. We developed a new general reservoir operation scheme (GROS) which may be added to daily hydrologic routing models for simulating the releases from dams, in regional and global-scale studies. We show the advantage of our model in distinguishing between dams with various storage capacities by demonstrating how it modifies the reservoir operation in respond to changes in capacity of dams. Embedding GROS in a water balance model, we analyze the hydrological impact of dam size as well as their distribution pattern within a drainage basin and conclude that for large-scale studies it is generally acceptable to aggregate the capacity of smaller dams and instead model a hypothetical larger dam with the same total storage capacity; however we suggest limiting the aggregation area to HUC 8 sub-basins (approximately equal to the area of a 60 km or a 30 arc minute grid cell) to avoid exaggerated results.  相似文献   

16.
陆地水储量是赋存在陆地上各种形式水的综合体现,研究其时空变化对认识区域水循环过程和水资源调控等具有重要意义。然而现有陆地水储量变化数据实际分辨率较低,限制了其在中小流域或地区中的应用。针对这一问题,本文基于GRACE重力卫星和其后续卫星GRACE-FO反演的陆地水储量变化数据,首先采用随机森林模型,分别基于格点、区域(流域)和区域(全国)3种空间降尺度思路将GRACE数据降尺度至0.25°×0.25°,后结合GLDAS模型数据,基于水量平衡原理计算得到地下水储量变化数据,最后基于降尺度模型模拟效果和实测地下水位数据评估3种降尺度思路在全国的适用性。结果表明:随机森林模型能够较好地模拟驱动数据(降水、气温、植被条件指数和土壤水储量)与GRACE数据的统计关系,验证期格点降尺度思路的平均相关系数总体在0.6左右,区域降尺度思路的平均纳什效率系数、相关系数和均方根误差分别>0.5、>0.75和<6.6 cm,3种空间降尺度思路的模拟精度均满足基本要求;2003—2021年间,GRACE数据、格点降尺度、区域降尺度(流域)和区域降尺度(全国)得到的我国陆地水储量亏缺量分别约为...  相似文献   

17.
Problem complexity for watershed model calibration is heavily dependent on the number of parameters that can be identified during model calibration. This study investigates the use of global sensitivity analysis as a screening tool to reduce the parametric dimensionality of multi-objective hydrological model calibration problems while maximizing the information extracted from hydrological response data. This study shows that by expanding calibration problem formulations beyond traditional, statistical error metrics to also include metrics that capture indices or signatures of hydrological function, it is possible to reduce the complexity of calibration while maintaining high quality model predictions. The sensitivity-guided calibration is demonstrated using the Sacramento Soil Moisture Accounting (SAC-SMA) conceptual rainfall–runoff model of moderate complexity (i.e., up to 14 freely varying parameters). Using both statistical and hydrological metrics, optimization results demonstrate that parameters controlling at least 20% of the model output variance (through individual effects and interactions) should be included in the calibration process. This threshold generally yields 30–40% reductions in the number of SAC-SMA parameters requiring calibration – setting the others to a priori values – while maintaining high quality predictions. Two parameters are recommended to be calibrated in all cases (percent impervious area and lower zone tension water storage), three parameters are needed in drier watersheds (additional impervious area, riparian zone vegetation, and percent of percolation going to tension storage), and the lower zone parameters are crucial unless the watershed is very dry. Overall, this study demonstrates that a coupled, multi-objective sensitivity and calibration analysis better captures differences between watersheds during model calibration and serves to maximize the value of available watershed response time series. These contributions are particularly important given the ongoing development of more complex integrated models, which will require new tools to address the growing discrepancy between the information content of hydrological data and the number of model parameters that have to be estimated.  相似文献   

18.
Watershed delineation is a required step when conducting any spatially distributed hydrological modelling. Automated approaches are often proposed to delineate a watershed based on a river network extracted from the digital elevation model (DEM) using the deterministic eight‐neighbour (D8) method. However, a realistic river network cannot be derived from conventional DEM processing methods for a large flat area with a complex network of rivers, lakes, reservoirs, and polders, referred to as a plain river network region (PRNR). In this study, a new approach, which uses both hydrographic features and DEM, has been developed to address the problems of watershed delineation in PRNR. It extracts the river nodes and determines the flow directions of the river network based on a vector‐based hydrographic feature data model. The river network, lakes, reservoirs, and polders are then used to modify the flow directions of grid cells determined by D8 approach. The watershed is eventually delineated into four types of catchments including lakes, reservoirs, polders, and overland catchments based on the flow direction matrix and the location of river nodes. Multiple flow directions of grid cells are represented using a multi‐direction encoding method, and multiple outflows of catchments are also reflected in the topology of catchments. The proposed approach is applied to the western Taihu watershed in China. Comparisons between the results obtained from the D8 approach, the ‘stream burning’ approach, and those from the proposed approach clearly demonstrate an improvement of the new approach over the conventional approaches. This approach will benefit the development of distributed hydrological models in PRNR for the consideration of different types and multiple inlets and outlets of catchments. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Connectivity has become an increasingly used concept in hydrological and sediment research. In order to quantify it, various indices have been proposed since the start of the 21st century including the index of connectivity. This index is based on a limited number of factors, the most important one being topography. Sediment connectivity indices values probably depend on the digital elevation model (DEM) resolution. The aim of this study was, first, to compare the effect of DEM pixel size (between 0.25 and 10 m, using an UAV) in the Belgian loess belt, a lowland area. We show that the index values were lower when the pixel size decreased (a difference of about 20% in value between 0.25 and 10 m). In addition, the impact of linear features in the watershed (e.g. grass strip, bank and road) was lower with the largest pixel sizes, and the connectivity pattern was affected with a pixel size of 5 m or more. At lower pixel sizes (1 m or below), some more disconnected regions appeared. These corresponded with zones where there had been water stagnation during and after rainfalls, and was corroborated by field observations. This confirmed the need for a proper resolution according to the objectives of the study. The second aim of this study was to deduce a minimum pixel size for connectivity study, helping local erosion or sedimentation location and consequent land management decisions. In our context, 1 m stands as the optimum DEM resolution. This pixel size permitted location of all ‘key areas’ in terms of erosion. Very high resolutions (<0.5 m) did not generate much more information, and their calculation time was far greater. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
The role of hummocky terrain in governing runoff routing and focussing groundwater recharge in the Northern Prairies of North America is widely recognised. However, most hydrological studies in the region have not effectively utilised information on the surficial geology and associated landforms in large-scale hydrological characterization. The present study uses an automated digital elevation model (DEM) analysis of a 6500-km2 area in the Northern Prairies to quantify hydrologically relevant terrain parameters for the common types of terrains in the prairies with different surficial deposits widespread in the prairies, namely, moraines and glaciolacustrine deposits. Runoff retention (and storage) capacity within depressions varies greatly between different surficial deposits and is comparable in magnitude with a typical amount of seasonal snowmelt runoff generation. The terrain constraint on potential runoff retention varies from a few millimetres in areas classified as moraine to tens of millimetres in areas classified as stagnant ice moraine deposits. Fluted moraine and glaciolacustrine deposits have intermediate storage capacity values. The study also identified the probability density function describing a number of immediate upstream neighbours for each depression in a fill-and-spill network. A relationship between depression parameters and surficial deposits, as well as identified depression network structure, allows parametrisation of hydrologic models outside of the high-resolution DEM coverage, which can still account for terrain variation in the Prairies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号