首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Concentration–discharge (C-Q) relationships are an effective tool for identifying watershed biogeochemical source and transport dynamics over short and long timescales. We examined stormflow C-Q, hysteresis, and flushing patterns of total suspended sediment (TSS) and soluble reactive phosphorus (SRP) in two stream reaches of a severely impaired agricultural watershed in northeastern Wisconsin, USA. The upper watershed reach—draining a relatively flat, row crop-dominated contributing area—showed predominantly anti-clockwise TSS hysteresis during storms, suggesting that particulate materials were mobilized more from distal upland sources than near- and in-channel areas. In contrast, the incised lower watershed reach produced strong TSS flushing responses on the rising limb of storm hydrographs and clockwise hysteresis, signalling rapid mobilization of near- and in-channel materials with increasing event flows. C-Q relationships for SRP showed complex patterns in both the upper and lower reaches, demonstrating largely non-linear chemodynamic C-Q behaviour during events. As with TSS, anti-clockwise SRP hysteresis in the upper reach suggested a delay in the hydrologic connectivity between SRP sources and the stream, with highly variable SRP concentrations during some events. A broad range of clockwise, anti-clockwise, and complex SRP hysteresis patterns occurred in the lower watershed, possibly influenced by in-channel legacy P stores and connection to tile drainage networks in the lower watershed area. Total suspended sediment and SRP responses were also strongly related to precipitation event characteristics including antecedent precipitation, recovery period, and precipitation intensity, highlighting the complexity of stormflow sediment and phosphorus responses in this severely impaired agricultural stream.  相似文献   

2.
Temporal Hyporheic Zone Response to Water Table Fluctuations   总被引:1,自引:0,他引:1       下载免费PDF全文
Expansion and contraction of the hyporheic zone due to temporal hydrologic changes between stream and riparian aquifer influence the biogeochemical cycling capacity of streams. Theoretical studies have quantified the control of groundwater discharge on the depth of the hyporheic zone; however, observations of temporal groundwater controls are limited. In this study, we develop the concept of groundwater‐dominated differential hyporheic zone expansion to explain the temporal control of groundwater discharge on the hyporheic zone in a third‐order stream reach flowing through glacially derived terrain typical of the Great Lakes region. We define groundwater‐dominated differential expansion of the hyporheic zone as: differing rates and magnitudes of hyporheic zone expansion in response to seasonal vs. storm‐related water table fluctuation. Specific conductance and vertical hydraulic gradient measurements were used to map changes in the hyporheic zone during seasonal water table decline and storm events. Planar and riffle beds were monitored in order to distinguish the cause of increasing hyporheic zone depth. Planar bed seasonal expansion of the hyporheic zone was of a greater magnitude and longer in duration (weeks to months) than storm event expansion (hours to days). In contrast, the hyporheic zone beneath the riffle bed exhibited minimal expansion in response to seasonal groundwater decline compared to storm related expansion. Results indicated that fluctuation in the riparian water table controlled seasonal expansion of the hyporheic zone along the planar bed. This groundwater induced hyporheic zone expansion could increase the potential for biogeochemical cycling and natural attenuation.  相似文献   

3.
Abstract

Knowledge of the hydrochemical dynamics of the trace metal manganese (Mn) in upland catchments is required for water quality management. Stream water Mn and other solutes and flow were monitored in two upland catchments in northern England with different soils: one dominated by peat (HS7), the other by mineral soils (HS4). Maximum Mn concentrations occurred at different times in the two catchments: in summer baseflow at HS4 and during late summer storm events at HS7. A two-component chemical mixing model was used to identify the hydrological processes controlling Mn concentrations in stream water. This approach was more successful for HS4 than HS7, probably because of different processes of Mn release in the two catchments and also difficulties in selecting conservative solutes. Factor analysis of the stream water chemistry data set for each catchment was more useful in identifying the controls on Mn release into runoff. The factors indicate that the main source of Mn at HS4 is the hydrological pathway supplying summer baseflow, whereas at HS7 Mn is released during the rewetting of dried peat soils. Manganese concentrations in stream water in upland catchments appear to depend on soil type and antecedent moisture conditions. This has implications for the design of sampling strategies in upland catchments and also for managing the quality of water supplies from such areas.  相似文献   

4.
While the role of groundwater in flushing of solutes has long been recognized, few studies have explicitly studied the within‐event changes in groundwater chemistry. We compared the changes in groundwater chemistry during storm events for a wetland and hillslope position in a small (1·5 ha) glaciated, forested catchment in western New York. Flushing responses for dissolved organic carbon (DOC) and nitrogen (DON), nitrate (NO3) and sulfate (SO4) in wetland and hillslope groundwaters were also compared against the corresponding responses in stream water. Eight storm events with varying intensity, amount, and antecedent moisture conditions were evaluated. Solute flushing patterns for wetland and hillslope groundwaters differed dramatically. While DOC concentrations in wetland groundwater followed a dilution trend, corresponding values for hillslope groundwater showed a slight increase. Concentrations for NO3 in wetland groundwater were below detection limits, but hillslope groundwaters displayed high NO3 concentrations with a pronounced increase during storm events. Flushing responses at all positions were also influenced by the size of the event and the time between events. We attributed the differences in flushing to the differences in hydrologic flow paths and biogeochemical conditions. Flushing of the wetland did appear to influence storm‐event stream chemistry but the same could not be said for hillslope groundwaters. This suggests that while a variety of flushing responses may be observed in a catchment, only a subset of these responses affect the discharge chemistry at the catchment outlet. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
This paper investigates particulate phosphorus (PP) and soluble reactive phosphorus (SRP) concentrations at the outlet of a small (5 km²) intensively farmed catchment to identify seasonal variability of sources and transport pathways for these two phosphorus forms. The shape and direction of discharge‐concentration hystereses during floods were related to the hydrological conditions in the catchment during four hydrological periods. Both during flood events and on an annual basis, contrasting export dynamics highlighted a strong decoupling between SRP and PP export. During most flood events, discharge‐concentration hystereses for PP were clockwise, indicating mobilization of a source located within or near the stream channel. Seasonal variability of PP export was linked to the availability of stream sediments and the export capacity of the stream. In contrast, hysteresis shapes for SRP were anticlockwise, which suggests that SRP was transferred to the stream via subsurface flow. Groundwater rise in wetland soils was likely the cause of this transfer, through the hydrological connectivity it created between the stream and P‐rich soil horizons. SRP concentrations were the highest when the relative contribution of deep groundwater from the upland domain was low compared with wetland groundwater. Hence, soils from non‐fertilized riparian wetlands seemed to be the main source of SRP in the catchment. This conceptual model of P transfer with distinct hydrological controls for PP and SRP was valid throughout the year, except during spring storm events, during which PP and SRP exports were synchronized as a consequence of overland flow and erosion on hillslopes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Spatial and temporal variability in ground water–surface water interactions in the hyporheic zone of a salmonid spawning stream was investigated. Four locations in a 150‐m reach of the stream were studied using hydrometric and hydrochemical tracing techniques. A high degree of hydrological connectivity between the riparian hillslope and the stream channel was indicated at two locations, where hydrochemical changes and hydraulic gradients indicated that the hyporheic zone was dominated by upwelling ground water. The chemistry of ground water reflected relatively long residence times and reducing conditions with high levels of alkalinity and conductivity, low dissolved oxygen (DO) and nitrate. At the other locations, connectivity was less evident and, at most times, the hyporheic zone was dominated by downwelling stream water characterized by high DO, low alkalinity and conductivity. Substantial variability in hyporheic chemistry was evident at fine (<10 m) spatial scales and changed rapidly over the course of hydrological events. The nature of the hydrochemical response varied among locations depending on the strength of local ground water influence. It is suggested that greater emphasis on spatial and temporal heterogeneity in ground water–surface water interactions in the hyporheic zone is necessary for a consideration of hydrochemical effects on many aspects of stream ecology. For example, the survival of salmonid eggs in hyporheic gravels varied considerably among the locations studied and was shown to be associated with variation in interstitial chemistry. River restoration schemes and watershed management strategies based only on the surface expression of catchment characteristics risk excluding consideration of potentially critical subsurface processes. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
The temporal variability of suspended sediment, nitrates (NO3) and dissolved (DOC) and particulate organic carbon concentrations was analysed in the Alegria agricultural watershed over a 2‐year period. Nine storm events were studied, including an exhaustive analysis of hydrometeorological conditions, quantification of fluxes, and concentration‐discharge hysteresis loop characterization. The overall aim was to study the variability in these components during storm events and determine the mechanisms (flow paths) affecting the trajectories, from the source to the stream. The forms, rotational patterns and trends of hysteretic loops were investigated, and relationships between hysteresis features and hydrological parameters were studied. The results revealed clear differences between particulate (suspended sediment, particulate organic carbon) and dissolved (DOC, NO3) matter transport responses. Movement of the particulate matter was attributed to surface water, as reflected in clockwise hysteresis loops, whereas dissolved matter showed, in general, counterclockwise hysteresis loops, indicating a time delay in the arrival of solutes to the stream. This could be related to subsurface flow paths for DOC and a groundwater source for NO3. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
The hydrochemical behaviour of catchments is often investigated by inferring stream chemistry through identification of source areas involved in hydrograph separation analysis, yet its dynamic evolution of hydrologic pathways has received little attention. Intensive hydrometric and hydrochemical measurements were performed during two different storms on March 29, 2001 and August 21–22, 2001 to define hydrochemical evolution under the dynamic of flow pathways in a 5·2 ha first‐order drainage of the Kawakami experimental basin (KEB), Central Japan, a forested headwater catchment with various soil depths (1·8 to 5 m) overlying late Neogene of volcanic bedrocks. The hydraulic potential distribution and flow lines data showed that the change in flow direction, which was controlled by rainfall amount and antecedent wetness of the soil profile, agreed well with the hydrochemical change across the slope segment during the storm. Hydrograph separation predicted by end‐member mixing analysis (EMMA) using Ca2+ and SiO2 showed that near surface riparian, hillslope soil water and deep riparian groundwater were important in stream flow generation. The evidence of decrease in solutes concentration at a depth of 1 m in the hillslope and 0·6 m in the near surface riparian during peak storm suggested a flushing of high solutes concentration. Most of the solutes accumulated in the deep riparian groundwater zone, which was due to prominent downward flow and agreed well with the residence time. The distinct flow pathways and chemistry between the near surface riparian and deep riparian groundwater zones and the linkage hillslope aquifer and near surface riparian reservoir, which controls rapid flow and solutes flushing during the storm event, are in conflict with the typical assumption that the whole riparian zone resets flow pathways and chemical signature of hillslope soil water, as has been reported in a previous study. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
Previously unpublished water quality data are used to explore the potassium chemistry of a small upland stream following the 1976 drought in England. The behaviour of potassium is a complex response to several factors: hydrological pathways operating during periods of storm runoff; sediment inputs; and the chemical properties of the transporting water. Analyses of ‘hysteresis loops’ for a series of storms show that the relationship between suspended sediment and potassium concentrations is not simple; spatial and temporal variations in surface and subsurface stormflow add complexity. In addition to the specific discussion of potassium, data are presented to show the recovery of stream discharge, and of sediment and solute concentrations during the immediate post-drought period. © 1997 by John Wiley & Sons Ltd.  相似文献   

10.
Hydrological budgets and flow pathways have been quantified for a small upland catchment (1.76 km2) in the northeast of Scotland. Water balance calculations for four subcatchments identified spatial variability within the catchment, with an estimated runoff enhancement of up to 25% for the upper western area, compared with the rest of the catchment. Data from spatial hydrochemical sampling, over a range of flow conditions, were used to identify the principal hillslope runoff mechanisms within the catchment. A hydrochemical mixing analysis revealed that runoff emerging from springs in various locations of the hillslope accounted for a significant proportion of flow in the streams, even during storm events. A hydrological model of the catchment was calibrated using the calculated stream flows for four locations, together with results from the mixing analysis for different time points. The calibrated model was used to predict the temporal variability in contributions to stream flow from the hillslope springs and soil water flows. The overall split ranged from 57%:43% spring water:soil water in the upper eastern subcatchment, to 76%:24% in the upper western subcatchment. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
Stream temperature (Ts) is a key water quality parameter that controls several biological, ecological, and chemical processes in aquatic systems. In forested headwaters, exchanges of energy across air-water-streambed interfaces may influence Ts regimes, especially during storm events as the sources of runoff change over space and time. Analysis of the hysteretic behaviour of Ts during storm events may provide insights into rainfall-runoff responses, but such relationships have not been thoroughly investigated. As such, our objectives were to (a) quantify the variability of stream temperature hysteresis across seasons in different sub-regions and (b) investigate the relationship between the hysteretic response and catchment characteristics. Ts hysteresis during storm events was assessed based on the hysteresis index (HI), which describes the directionality of hysteresis loops, and the temperature response index (TRI), which indicates whether Ts increased or decreased during a storm event. We analysed Ts data from 10 forested headwater reaches in two sub-regions (McGarvey and West Fork Tectah) in Northern California. We also performed a clustering analysis to examine the relationship amongst HI, TRI, topographic metrics, and meteorological characteristics of the study areas. Overall, the hysteretic behaviour of Ts varied across seasons—the greatest HI occurred during spring and summer. Interestingly, in the McGarvey streams the variability in Ts hysteresis co-varied strongly with topographic metrics (i.e., upslope accumulative area, average channel slope, topographic wetness index). Comparatively, in West Fork Tectah the variability of Ts hysteresis co-varied most strongly with meteorological metrics (i.e., antecedent rainfall events, solar radiation, and air temperature). Variables such as the gradient between stream and air temperatures, slope, and wetted width were significant for both sub-regional hysteretic patterns. We posit that the drivers of Ts response during storms are likely dependent on catchment physiographic characteristics. Our study also illustrated the potential utility of stream temperature as a tracer for improving the understanding of hydrologic connectivity and shifts in the dominant runoff contributions to streamflow during storm events.  相似文献   

12.
To improve understanding of DOC dynamics in seasonal Mediterranean environments, rainfall, soil water, groundwater and stream water samples were taken during a 27-month period in the Can Vila catchment (northeast Spain). Using these data, we characterized DOC dynamics in the different hydrological compartments and analysed the factors affecting them. We also analysed DOC dynamics during storm events and the factors that control DOC delivery to the stream. The results show some seasonality in rainwater and soil water DOC concentrations, while no clear seasonality was observed in stream water and groundwater, where DOC dynamics were strongly related to discharge and water table variations. For storm events with several discharge peaks, the slope of the discharge–DOC concentration relationship was higher for the first peak. The rather similar dynamics of stream water DOC concentration in all floods contrast with the observed diversity of hydrological processes. This raises the question of the origin of the observed rapid DOC increase.
EDITOR M.C. Acreman

ASSOCIATE EDITOR K. Heal  相似文献   

13.
C. Soulsby 《Journal of Hydrology》1995,170(1-4):159-179
The hydrochemistry of stream water in an acidic afforested catchment in the Welsh uplands was monitored routinely between 1985 and 1990. Nineteen storm episodes were sampled intensively during this period. Although the general storm response of the stream can be characterised by increased concentrations of H+, Al and dissolved organic carbon (DOC), and a dilution of Ca and SiO2, the detailed hydrochemistry of individual acid episodes exhibited marked contrasts. The minimum pH reached during specific episodes ranged from 4.1 to 5.0, and peak dissolved Al concentrations varied from 9 to 44 μmol l−1. The reasons for such differences in the hydrochemical response can be identified for each individual episode by examining the complex interactions between (1) the quantity and quality of event precipitation, (2) antecedent patterns of weather and atmospheric deposition and (3) the hydrological processes which dominate the storm runoff response. The dynamic nature of catchment hydrology was found to exert a particularly strong influence on the hydrochemistry of specific acid episodes.  相似文献   

14.
Relatively little is known about the role of perched aquifers in hydrological, biogeochemical, and biological processes of vernal pool landscapes. The objectives of this study are to introduce a perched aquifer concept for vernal pool formation and maintenance and to examine the resulting hydrological and biogeochemical phenomena in a representative catchment with three vernal pools connected to one another and to a seasonal stream by swales. A combined hydrometric and geochemical approach was used. Annual rainfall infiltrated but perched on a claypan/duripan, and this perched groundwater flowed downgradient toward the seasonal stream. The upper layer of soil above the claypan/duripan is ~0·6 m in thickness in the uplands and ~0·1 m in thickness in the vernal pools. Some groundwater flowed through the vernal pools when heads in the perched aquifer exceeded ~0·1 m above the claypan/duripan. Perched groundwater discharge accounted for 30–60% of the inflow to the vernal pools during and immediately following storm events. However, most perched groundwater flowed under or around the vernal pools or was recharged by annual rainfall downgradient of the vernal pools. Most of the perched groundwater was discharged to the outlet swale immediately upgradient of the seasonal stream, and most water discharging from the outlet swale to the seasonal stream was perched groundwater that had not flowed through the vernal pools. Therefore, nitrate‐nitrogen concentrations were lower (e.g. 0·17 to 0·39 mg l?1) and dissolved organic carbon concentrations were higher (e.g. 5·97 to 3·24 mg l?1) in vernal pool water than in outlet swale water discharging to the seasonal stream. Though the uplands, vernal pools, and seasonal stream are part of a single surface‐water and perched groundwater system, the vernal pools apparently play a limited role in controlling landscape‐scale water quality. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
Soil water, stream water, groundwater and rain water were sampled through a storm event in a moorland catchment. Samples were analysed for major ions and deuterium. Chloride and deuterium are used as tracers to enable separation of the stream runoff hydrograph into three components: rain, soil and groundwater. The results indicate that rain water arrives in the stream quickly during the event and contributes a significant volume to the runoff peak. The chemical signal in the rain water is, however, significantly damped, apparently due to mixing with soil water held in the catchment before the event. This is further modified before reaching the stream, apparently through mixing with a deeper groundwater component. Interpretation of tracer, chemistry and hydrological data to present an integrated picture of catchment hydrochemical response is difficult due to problems in the chemical and conceptual definition of the flow components.  相似文献   

16.
We examined the contributions of bedrock groundwater to the upscaling of storm‐runoff generation processes in weathered granitic headwater catchments by conducting detailed hydrochemical observations in five catchments that ranged from zero to second order. End‐member mixing analysis (EMMA) was performed to identify the geographical sources of stream water. Throughfall, hillslope groundwater, shallow bedrock groundwater, and deep bedrock groundwater were identified as end members. The contribution of each end member to storm runoff differed among the catchments because of the differing quantities of riparian groundwater, which was recharged by the bedrock groundwater prior to rainfall events. Among the five catchments, the contribution of throughfall was highest during both baseflow and storm flow in a zero‐order catchment with little contribution from the bedrock groundwater to the riparian reservoir. In zero‐order catchments with some contribution from bedrock groundwater, stream water was dominated by shallow bedrock groundwater during baseflow, but it was significantly influenced by hillslope groundwater during storms. In the first‐order catchment, stream water was dominated by shallow bedrock groundwater during storms as well as baseflow periods. In the second‐order catchment, deeper bedrock groundwater than that found in the zero‐order and first‐order catchments contributed to stream water in all periods, except during large storm events. These results suggest that bedrock groundwater influences the upscaling of storm‐runoff generation processes by affecting the linkages of geomorphic units such as hillslopes, riparian zones, and stream channels. Our results highlight the need for a three‐dimensional approach that considers bedrock groundwater flow when studying the upscaling of storm‐runoff generation processes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
There has been little work to date into the controls on slope‐to‐channel fine sediment connectivity in alpine environments largely ice‐free for most of the Holocene. Characterization of these controls can be expected to result in better understanding of how landscapes “relax” from such perturbations as climate shock. We monitored fine sediment mobilization on a slope segment hydrologically connected to a stream in the largely ice‐free 8·3 km2 Hoophorn Valley, New Zealand. Gerlach traps were installed in ephemeral slope channels to trap surficial material mobilized during rainfall events. Channel sediment flux was measured using turbidimeters above and below the connected slope, and hysteresis patterns in discharge‐suspended sediment concentrations were used to determine sediment sources. Over the 96 day measurement period, sediment mobilization from the slope segment was limited to rainfall events, with increasingly larger particles trapped as event magnitude increased. Less than 1% of the mass of particles collected during these events was fine sediment. During this period, 714 t of suspended sediment was transported through the lower gauging station, 60% of it during rainfall events. Channel sediment transfer patterns during these events were dominated by clockwise hysteresis, interpreted as remobilization of nearby in‐channel sources, further suggesting limited input of fine sediment from slopes in the lower valley. Strong counterclockwise hysteresis, representing input of fine sediment from slope segments, was restricted to the largest storm event (JD2 2009) when surfaces in the upper basin were activated. The results indicate that the slopes of the lower Hoophorn catchment are no longer functioning as sources of fine sediment, but rather as sources of coarse material, with flux rates controlled by the intensity and duration of rainfall events. Although speculative, these findings suggest a shift to a coarse sediment dominated slope‐to‐channel transfer system as the influence of pre‐Holocene glacial erosion declines. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Extreme storm events are known to produce, entrain, transport and deposit sizable boulders along rocky coastlines. However, the extent to which these processes occur under moderate, fetch-limited wave conditions is seldom considered. In this study we quantify boulder transport at a relatively sheltered location subject to high-frequency, low-magnitude storm activity. This was achieved by deploying radio frequency identification (RFID) tags within 104 intertidal limestone boulders ranging in size from fine to very coarse (intermediate axis: 0.27–2.85 m). The study was conducted over 3 years (July 2015–July 2018) and encompassed numerous storm events. Tagged boulders were relocated during 17 field surveys and their positions recorded using a differential global positioning navigation satellite system (DGNSS). On completion, we identified boulder displacement in 69% of the tagged array. The accrued boulder transport distance amounted to 233.0 m from 195 incidents of displacement, including the movement of a boulder weighing an estimated 11.9 t. Transport was not confined to autumn and winter storms alone, as displacement was also recorded during summer months (April–September), despite the seasonally reduced wave magnitude. Boulder production by wave quarrying was documented in three tagged clasts, confirming observations that the shore platform is actively eroding. Incidents of overturning during transport were also recorded, including multiple overturning of clasts weighing up to 5 t. We further identify a statistically significant difference (maximum p-value ≤ 0.03) between the transport distances attributed to constrained and unconstrained boulders, suggesting that the pre-transport morphological setting exerts considerable control over boulder transport potential. The findings establish low to moderate storm waves as a key component in the evolution of the study site. More broadly, we claim that high-frequency, low-magnitude storms regularly modify these overlooked rocky coastal locations, suggesting that the hydrodynamic capability at such sites may previously have been underestimated. © 2020 John Wiley & Sons, Ltd.  相似文献   

19.
Stream flow regimes are determined by watershed characteristics: climate, geology, topography, soil, vegetation and human activities. In the process of urbanisation, natural land surfaces are replaced by man made artificial coverage, such as paved roads, parking lots and roofs, which usually also implies vegetation clearing and soil compaction. Gutters, drains and storm sewers are built to accelerate the conveyance of runoff to stream channels, thus affecting the drainage system. The impact of urbanisation is complex and affects different elements of the hydrological cycle. The commonly observed hydrological responses of the watershed to urbanization are increased volume and peak of floodwaters. Concerning the ecological status of stream water, the intensified rainfall runoff induces increased pollution risks and diminishes the value of the stream water body as a habitat, especially during dry periods. In order to improve the flood safety, the regulations of the stream channel have further devaluated the ecological role of the urban streams. The magnitude of the impact is usually enlarged with the decrease in the stream size. The present paper aims at presenting the results of a two-year study monitoring the impacts of the urban environment on the watershed of the Glinscica stream situated in the central part of Slovenia. The study area of 19.3 km2 represents a great complexity in terms of the land use pattern. The watershed was equipped with three rainfall stations, a Doppler velocity meter and a water quality multiprobe. In a short period of time more than 10 thunderstorm events were recorded and analyzed. The hydrological response of the watershed was analyzed and, interestingly, it did not show the “typical” urban impact on the runoff processes. The main water quality parameters such as temperature, pH, TDS, ORP, conductivity, dissolved oxygen and especially the concentrations of nitrate and ammonium, were measured to obtain an insight into seasonal and short time dynamics of the water quality. The results show substantial seasonal and along-the-channel variations of concentration of dissolved oxygen, nitrate and ammonium content due to biochemical processes in the channeled stream. The continuous tracing of nitrate and ammonium showed significant influence of stream regulation works on short time variations of the measured water quality parameters.  相似文献   

20.
The source and hydrochemical makeup of a stream reflects the connectivity between rainfall, groundwater, the stream, and is reflected to water quantity and quality of the catchment. However, in a semi-arid, thick, loess covered catchment, temporal variation of stream source and event associated behaviours are lesser known. Thus, the isotopic and chemical hydrographs in a widely distributed, deep loess, semi-arid catchment of the northern Chinese Loess Plateau were characterized to determine the source and hydrochemical behaviours of the stream during intra-rainfall events. Rainfall and streamflow were sampled during six hydrologic events coupled with measurements of stream baseflow and groundwater. The deuterium isotope (2H), major ions (Cl, SO42−, NO3, Ca2+, K+, Mg2+, and Na+) were evaluated in water samples obtained during rainfall events. Temporal variation of 2H and Cl measured in the groundwater and stream baseflow prior to rainfall was similar; however, the isotope compositions of the streamflow fluctuated significantly and responded quickly to rainfall events, likely due to an infiltration excess, overland dominated surface runoff during torrential rainfall events. Time source separation using 2H demonstrated greater than 72% on average, the stream composition was event water during torrential rainfall events, with the proportion increasing with rainfall intensity. Solutes concentrations in the stream had loglinear relationships with stream discharge, with an outling anomaly with an example of an intra-rainfall event on Oct. 24, 2015. Stream Cl behaved nonconservative during rainfall events, temporal variation of Cl indicated a flush and washout at the onset of small rainfall events, a dilution but still high concentration pattern in high discharge and old water dominated in regression flow period. This study indicates rainfall intensity affects runoff responses in a semi-arid catchment, and the stored water in the thick, loess covered areas was less connected with stream runoff. Solute transport may threaten water quality in the area, requiring further analysis of the performance of the eco-restoration project.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号