首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This paper presents new estimates of solute fluxes from five high Arctic glacier basins in Svalbard. These estimates are combined with data from two other glacier basins to assess the effectiveness of chemical denudation on Svalbard and to estimate rates of temporary (or transient) CO2 drawdown. We use a solute provenance model to partition solutes into marine, aerosol, atmospheric and crustal components and to estimate their annual fluxes. Crustally derived solute fluxes are equivalent to a mean chemical denudation rate of 350 Σmeq+ m−2 a−1 for Svalbard (range: 160–560 Σmeq+ m−2 a−1), which lies within the global range of 94–4200 Σmeq+ m−2 a−1 for 21 glacier basins in the northern hemisphere, and is close to the continental average of 390 Σmeq+ m−2 a−1. Specific annual discharge is the most significant control upon chemical denudation in the glacierized basins, and basin lithology is an important secondary control, with carbonate‐rich and basaltic lithologies currently showing the greatest chemical denudation rates. Estimates of transient CO2 drawdown are also directly associated with specific annual discharge and rock type. On Svalbard transient CO2 drawdown lies in the range 110–3000 kg C km−2 a−1, whilst the range is 110–13000 kg C km−2 a−1 for the northern hemisphere glacial data set. Transient CO2 drawdown is therefore usually low in the Svalbard basins unless carbonate or basalt rocks are abundant. The analysis shows that a large area of uncertainty in the transient CO2 drawdown estimates exists due to the non‐stoichiometric release of solute during silicate hydrolysis. Silicate hydrolysis is particularly non‐stoichiometric in basins where the extent of glacierization is high, which is most probably an artefact of high flushing rates through ice‐marginal and subglacial environments where K‐feldspars are undergoing mechanical comminution. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
A physically based snow-evolution modelling system (SnowModel) that includes four sub-models: MicroMet, EnBal, SnowPack, and SnowTran-3D, was used to simulate eight full-year evolutions of snow accumulation, distribution, sublimation, and surface melt from glaciers in the Zackenberg river drainage basin, in north-east Greenland. Meteorological observations from two meteorological stations were used as model inputs, and spatial snow depth observations, snow melt depletion curves from photographic time lapse, and a satellite image were used for model testing of snow and melt simulations, which differ from previous SnowModel tests methods used on Greenland glaciers. Modelled test-period-average end-of-winter snow water equivalent (SWE) depth for the depletion area differs by a maximum of 14 mm w.eq., or ∼6%, more than the observed, and modelled test-period-average snow cover extent differs by a maximum of 5%, or 0·8 km2, less than the observed. Furthermore, comparison with a satellite image indicated a 7% discrepancy between observed and modelled snow cover extent for the entire drainage basin. About 18% (31 mm w.eq.) of the solid precipitation was returned to the atmosphere by sublimation. Modelled mean annual snow melt and glacier ice melt for the glaciers in the Zackenberg river drainage basin from 1997 through 2005 (September–August) averaged 207 mm w.eq. year−1 and 1198 mm w.eq. year−1, respectively, yielding a total averaging 1405 mm w.eq. year−1. Total modelled mean annual surface melt varied from 960 mm w.eq. year−1 to 1989 mm w.eq. year−1. The surface-melt period started between mid-May and the beginning of June and lasted until mid-September. Annual calculated runoff averaged 1487 mm w.eq. year−1 (∼150 × 106 m3) (1997–2005) with variations from 1031 mm w.eq. year−1 to 2051 mm w.eq. year−1. The model simulated a total glacier recession averaging − 1347 mm w.eq. year−1 (∼136 × 106 m3) (1997–2005), which was almost equal to previous basin average hydrological water balance storage studies − 244 mm w.eq. year−1 (∼125 × 106 m3) (1997–2003). Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
This paper describes a point surface energy balance model which runs within the Microsoft Excel spreadsheet package. The study incorporates a large amount of previous energy balance work and presents it in a useable form. The core model calculates the net shortwave and longwave radiation fluxes, the turbulent sensible and latent heat fluxes and the surface melt rate at a point on a melting ice or snow surface, from hourly inputs of incoming shortwave radiation, vapour pressure, air temperature and wind speed data. The latitude, longitude, slope angle, aspect, elevation, local temperature lapse rate, albedo and aerodynamic roughness of the study site, and the elevation of the meteorological station, can all be specified in the model. An output file containing the hourly and daily rates, and the totals of the energy fluxes is generated. The main advantages of the model are: first, that it requires only a PC or laptop computer running standard Microsoft Windows software, enabling it to be used at a desktop or in the field; and second, that it can be adapted quickly to different sites, meteorological data formats and other application requirements. Model calculations are compared with measured surface melt rates at five points on Haut Glacier d'Arolla, Switzerland, over a 115 day ablation period. Allowing for differences in shading between the meteorological station and the glacier, the root mean square error of the calculated melt rates is 2·0 mm day−1 water equivalent melt (mean error +1·2 mm day−1), for measured melt rates in the range 23 to 42 mm day−1 water equivalent melt. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

4.
Discharge was calculated from a mountainous area, including discharge from glaciers, in the Qilian Shan (Qilian Mountains) of northwest China. The studied Yingluoxia basin is 9983 km2 in area, with glaciers making up 0·3% of the basin. The calculation method was based on the heat balance, requiring only daily temperature and precipitation. Calculated annual discharge from the basin corresponded well with the observed data. Calculated annual discharge from glaciers was 3·6% of the total discharge from the basin. The temporal trend of the calculated equilibrium line altitude (ELA) at the July 1st Glacier (western side of the Yingluoxia basin) was similar to that of the observed ELA. The calculated annual mass balance of glaciers within the Yingluoxia basin has a larger negative value than the other glaciers in China, as the ratio of accumulation area to the total glacier area in the Yingluoxia basin is much lower than in neighbouring basins to the west. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Sustainable water management in semi-arid agriculture practices requires quantitative knowledge of water fluxes within the soil-vegetation-atmosphere system. Therefore, we used stable-isotope approaches to evaluate evaporation (Ea), transpiration (Ta), and groundwater recharge (R) at sites in Senegal's Groundnut basin and Ferlo Valley pasture region during the pre-monsoon, monsoon, and post-monsoon seasons of 2021. The approaches were based upon (i) the isothermal evaporation model (for quantifying Ea); (ii) water and isotope mass balances (to partition Ea and Ta for groundnut and pasture); and (iii) the piston displacement method (for estimating R). Ea losses derived from the isothermal evaporation model corresponded primarily to Stage II evaporation, and ranged from 0.02 to 0.09 mm d−1 in the Groundnut basin, versus 0.02–0.11 mm d−1 in Ferlo. At the groundnut site, Ea rates ranged from 0.01 to 0.69 mm d−1; Ta was in the range 0.55–2.29 mm d−1; and the Ta/ETa ratio was 74%–90%. At the pasture site, the ranges were 0.02–0.39 mm d−1 for Ea; 0.9–1.69 mm d−1 for Ta; and 62–90% for Ta/ETa. The ETa value derived for the groundnut site via the isotope approach was similar to those from eddy covariance measurements, and also to the results from the previous validated HYDRUS-1D model. However, the HYDRUS-1D model gave a lower Ta/ETa ratio (23.2%). The computed groundwater recharge for the groundnut site amounted to less than 2% of the local annual precipitation. Recommendations are made regarding protocols for preventing changes to isotopic compositions of water in samples that are collected in remote arid regions, but must be analysed days later. The article ends with suggestions for studies to follow up on evidence that local aquifers are being recharged via preferential pathways.  相似文献   

6.
In order to assess the annual mass balance of the Mandrone glacier in the Central Alps an energy-balance model was applied, supported by snowpack, meteorological and glaciological observations, together with satellite measurements of snow covered areas and albedo. The Physically based Distributed Snow Land and Ice Model (PDSLIM), a distributed multi-layer model for temperate glaciers, which was previously tested on both basin and point scales, was applied.Verification was performed with a network of ablation stakes over two summer periods. Satellite images processed within the Global Land Ice Measurements from Space (GLIMS) project were used to estimate the ice albedo and to verify the position of the simulated transient snowline on specific dates. The energy balance was estimated for the Mandrone and Presena glaciers in the Central Italian Alps. Their modeled balances (−1439 and −1503 mm w.e. year−1, respectively), estimated over a 15 year period, are in good agreement with those obtained with the glaciological method for the Caresèr glacier, a WGMS (World Glacier Monitoring Service) reference located in the nearby Ortles-Cevedale group.Projections according to the regional climate model COSMO-CLM (standing for COnsortium for Small-scale MOdeling model in CLimate Mode) indicate that the Mandrone glacier might not survive the current century and might be halved in size by 2050.  相似文献   

7.
Glaciers are commonly located in mountainous terrain subject to highly variable meteorological conditions. High resolution meteorological (HRM) data simulated by atmospheric models can complement meteorological station observations in order to assess changes in glacier energy fluxes and mass balance. We examine the performance of two snow models, SnowModel and Alpine3D, forced by different meteorological data for winter mass balance simulations at four glaciers in the Canadian portion of the Columbia Basin. The Weather Research and Forecasting model (WRF) with resolution of 1 km and the North American Land Data Assimilation System with ~12 km resolution, provide HRM data for the two snow models. Evaluation is based on the ability of the snow models to simulate snow depth at both point locations (automated snow weather stations) and over the entire glacier surface (airborne LiDAR [Light Detection and Ranging] surveys) during the 2015/2016 winter accumulation. When forced with HRM data, both models can reproduce snow depth to within ±15% of observed values. Both models underestimate winter mass balance when forced by HRM data. When driven with WRF data, SnowModel underestimates winter mass balance integrated over the glacier area by 1 and 10%, whilst Alpine3D underestimates winter mass balance by 12 and 22% compared with LiDAR and stake measurements, respectively. The overall results show that SnowModel forced by WRF simulated winter mass balance the best.  相似文献   

8.
ABSTRACT

The spatial variability of the lake surface energy balance and its causes are not well-understood. Energy balance maps (90 m resolution) of Lake Kasumigaura (172 km2), Japan, obtained by interpolating station data and bulk equations, allowed an investigation of these issues. Due to lake-scale variations in meteorological variables and small-scale fluctuations of surface temperature, Ts, surface heat fluxes differed horizontally at two distinct scales, while radiative fluxes were more uniform. As the key variable to surface flux Ts was only homogeneous for directions with a longer fetch or under calm wind conditions. Using these findings, the suitability of two flux station locations, one at the centre of the lake and another within a cove, was considered. Although both locations satisfied the fetch requirements, Ts was not always found to be homogeneous in the cove, making this location less suitable for flux measurements, an issue that, to date, has been overlooked.  相似文献   

9.
Abstract

Most Latin American glaciers are located in the tropical Andes. The melting processes of Glacier “15” on Antisana volcano were studied to understand the relationship between glacier retreat and natural climate variability and global climate change. Glaciers on the Antisana volcano are crucial sources of water as they feed the headwater rivers that supply Quito with potable water. The aim of this study was to build empirical models based on multiple correlations to reconstruct the mass loss of glaciers over a period of 10 years at three scales: local (data recorded by meteorological stations located around the volcano), regional (data from stations located around the country) and global (re-analysis data). Data quality was checked using graphical and statistical methods. Several empirical models based on multiple correlations were created to generate longer time series (42 and 115 years) of the mass balance for the glacier ablation zone. The long mass balance series were compared with the temperature variation series of the Earth’s surface in the Southern Hemisphere to estimate the relation between the mass balance and global warming. Our results suggest that the meteorological factors that best correlate with mass balance are temperature and wind.
Editor D. Koutsoyiannis  相似文献   

10.
Abstract

Field observations and geodetic measurements suggest that in the Karakoram Mountains, glaciers are either stable or have expanded since 1990, in sharp contrast to glacier retreats that are prevalently observed in the Himalayas and adjoining high-altitude terrains of central Asia. Decreased discharge in the rivers originating from this region is cited as a supporting evidence for this somewhat anomalous phenomenon. Here, we show that river discharge during the melting season of the glaciers in the eastern and western Karakoram, respectively, exhibits rising and falling trends. We have implemented a statistical procedure involving non-parametric tests combined with a benchmark smoothing technique that has proven to be a powerful method for separating the stochastic component from the trend component in a time series. Precipitation patterns determined from ERA-40 and GPCP data indicate that summer-monsoonal precipitation has increased over the Karakoram Mountains in recent decades. Increasing flows in June and July in the eastern Karakoram are due to an increase in summer-monsoonal precipitation. The rising trend of August discharge is due to an increase in the loss of glacier storage at an approximate average rate of 0.186–0.217 mm d-1 year-1 during the period 1973–2010. Moreover, this rate is higher than the rate of increase in monsoonal snowfall during the months of August and September. Therefore, most plausibly, glacier mass balance in the eastern Karakoram is negative. In the western Karakoram, river flows show declining trends for all summer months for the period 1966–2010, corresponding to a rate of increase of glacier storage by approximately 0.552–0.644 mm d-1 year-1, which is also higher than the rate of increase in summer-monsoonal precipitation. The gain of the cryospheric mass in the western Karakoram is in the form of increased thickness of the glaciers and perennial snowpacks instead of areal expansion. This investigation shows two contrasting patterns of trends of river flows that signify both negative and positive mass balance of the Karakoram glaciers. Trends of river flows are spatially and temporally integrated responses of a watershed to changing climate and thereby are important signals of the conditions of the cryospheric component of a watershed where it is highly significant. However, they cannot unequivocally provide indications of the state and fate of the glaciers in the complex hydrometeorological setting of the Karakoram. Extreme caution and care must be exercised in interpreting trends of river discharge in conjunction with climatic data.  相似文献   

11.
A raster‐based glacier sub‐model was successfully introduced in the distributed hydrological model FEST‐WB to simulate the water balance and surface runoff of large Alpine catchments. The glacier model is based on temperature‐index approach for melt, on linear reservoir for melt water propagation into the ice and on mass balance for accumulation; the initialization of the volume of ice on the basin was based on a formulation depending on surface topography. The model was first tested on a sub‐basin of the Rhone basin (Switzerland), which is for 62% glaciated; the calibration and validation were based on comparison between simulated and observed discharge from 1999 to 2008. The model proved to be suitable to simulate the typical discharge seasonality of a heavily glaciated basin. The performance of the model was also tested by simulating discharge in the whole Swiss Rhone basin, in which glaciers contribution is not negligible, in fact, in summer, about the 40% of the discharge is due to glacier melt. The model allowed to take into account the volume of water coming from glaciers melt and its simple structure is suitable for analysis of the effects of climate change on hydrological regime of high mountain basins, with available meteorological forcing from current RCM. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Arctic glaciers are rapidly responding to global warming by releasing organic carbon (OC) to downstream ecosystems. The glacier surface is arguably the most biologically active and biodiverse glacial habitat and therefore the site of important OC transformation and storage, although rates and magnitudes are poorly constrained. In this paper, we present measurements of OC fluxes associated with atmospheric deposition, ice melt, biological growth, fluvial transport and storage (in superimposed ice and cryoconite debris) for a supraglacial catchment on Foxfonna glacier, Svalbard (Norway), across two consecutive years. We found that in general atmospheric OC input (averaging 0.63 ± 0.25 Mg a-1 total organic carbon, i.e. TOC, and 0.40 ± 0.22 Mg a-1 dissolved organic carbon, i.e. DOC) exceeded fluvial OC export (0.46 ± 0.04 Mg a-1 TOC and 0.36 ± 0.03 Mg a-1 DOC). Early in the summer, OC was mobilised in snowmelt but its release was delayed by temporary storage in superimposed ice on the glacier surface. This delayed the export of 28.5% of the TOC in runoff. Biological production in cryoconite deposits was a negligible potential source of OC to runoff, while englacial ice melt was far more important on account of the glacier's negative ice mass balance (–0.89 and –0.42 m a-1 in 2011 and 2012, respectively). However, construction of a detailed OC budget using these fluxes shows an excess of inputs over outputs, resulting in a net retention of OC on the glacier surface at a rate that would require c. 3 years to account for the OC stored as cryoconite debris. © 2018 John Wiley & Sons, Ltd.  相似文献   

13.
Solute and runoff time-series at Finsterwalderbreen, Svalbard, provide evidence for considerable basal routing of water and the existence of at least two contrasting subglacial chemical weathering environments. The hydrochemistry of a subglacial upwelling provides evidence for a snowmelt-fed subglacial reservoir that dominates bulk runoff during recession flow. High concentrations of Cl and crustal ions, high pCO2 and ratios of [*SO2−4/(*SO2−4+HCO3)] close to 0·5 indicate the passage of snowmelt through a subglacial weathering environment characterized by high rock:water ratios, prolonged residence times and restricted access to the atmosphere. At higher discharges, bulk runoff becomes dominated by icemelt from the lower part of the glacier that is conveyed through a chemical weathering environment characterized by low rock:water ratios, short residence times and free contact with atmospheric gases. These observations suggest that icemelt is routed via a hydrological system composed of basal/ice-marginal, englacial and supraglacial components and is directed to the glacier margins by the ice surface slope. Upwelling water flows relatively independently of icemelt to the terminus via a subglacial drainage system, possibly constituting flow through a sediment layer. Cold basal ice at the terminus forces it to take a subterranean routing in its latter stages. The existence of spatially discrete flow paths conveying icemelt and subglacial snowmelt to the terminus may be the norm for polythermal-based glaciers on Svalbard. Proglacial mixing of these components to form the bulk meltwaters gives rise to hydrochemical trends that resemble those of warm-based glaciers. These hydrochemical characteristics of bulk runoff have not been documented on any other glacier on Svalbard to date and have significance for understanding interactions between thermal regime and glacier hydrology. © 1998 John Wiley & Sons, Ltd.  相似文献   

14.
Modelling melt and runoff from snow‐ and ice‐covered catchments is important for water resource and hazard management and for the scientific study of glacier hydrology, dynamics and hydrochemistry. In this paper, a distributed, physically based model is used to determine the effects of the up‐glacier retreat of the snowline on spatial and temporal patterns of melt and water routing across a small (0·11 km2) supraglacial catchment on Haut Glacier d'Arolla, Switzerland. The melt model uses energy‐balance theory and accounts for the effects of slope angle, slope aspect and shading on the net radiation fluxes, and the effects of atmospheric stability on the turbulent fluxes. The water routing model uses simplified snow and open‐channel hydrology theory and accounts for the delaying effects of vertical and horizontal water flow through snow and across ice. The performance of the melt model is tested against hourly measurements of ablation in the catchment. Calculated and measured ablation rates show a high correlation (r2 = 0·74) but some minor systematic discrepancies in the short term (hours). These probably result from the freezing of surface water at night, the melting of the frozen layer in the morning, and subsurface melting during the afternoon. The performance of the coupled melt/routing model is tested against hourly discharge variations measured in the supraglacial stream at the catchment outlet. Calculated and measured runoff variations show a high correlation (r2 = 0·62). Five periods of anomalously high measured discharge that were not predicted by the model were associated with moulin overflow events. The radiation and turbulent fluxes contribute c. 86% and c. 14% of the total melt energy respectively. These proportions do not change significantly as the surface turns from snow to ice, because increases in the outgoing shortwave radiation flux (owing to lower albedo) happen to be accompanied by decreases in the incoming shortwave radiation flux (owing to lower solar incidence angles) and increases in the turbulent fluxes (owing to higher air temperatures and vapour pressures). Model sensitivity experiments reveal that the net effect of snow pack removal is to increase daily mean discharges by c. 50%, increase daily maximum discharges by >300%, decrease daily minimum discharges by c. 100%, increase daily discharge amplitudes by >1000%, and decrease the lag between peak melt rates and peak discharges from c. 3 h to c. 50 min. These changes have important implications for the development of subglacial drainage systems. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
Lithological and hydrological influence on fluvial physical and chemical erosion was studied in a glacierized sedimentary basin with high evaporite presence. Suspended particulate matter (SPM), total dissolved solids (TDS) and major ion concentrations were analysed for 2 years of different hydrologic condition: (i) 2009–2010, Q = 100% average; and (ii) 2010–2011, Q = 60% average. Annual hydrograph was simple regime‐type with one peak in summer related to snow melting. The intra‐annual SPM and TDS variations were directly and inversely associated to Q, respectively. Snow chemistry showed continental influence (Na+/Ca2+ = 0.17), and atmospheric input of TDS was <1% of the total exported flux. River water was highly concentrated in Ca2+ and SO42− (~4 mmol l−1) and in Na+ and Cl (~3 mmol l−1). Ca2+/SO42− and Na+/Cl molar ratios were ~1 and related to Q, directly and inversely, respectively. Major ion relationships suggest that river chemistry is controlled by evaporite (gypsum and halite) dissolution having a summer input from sulfide oxidation and carbonate dissolution, and a winter input from subsurface flow loaded with silicate weathering products. This variation pattern resulted in nearly chemostatic behaviour for Ca+, Mg2+ and SO42−, whereas Na+, Cl and SiO2 concentrations showed to be controlled by dilution/concentration processes. During the 2009–2010 hydrological year, the fluxes of water, SPM and TDS registered in the snow melting–high Q season were, respectively, 71%, 92% and 67% of the annual total, whereas for equal period in 2010–2011, 56% of water, 86% of SPM and 54% of TDS annual fluxes were registered. The SPM fluxes for 2009–2010 and 2010–2011 were 1.19 × 106 and 0.79 × 106 t year−1, whereas TDS fluxes were 0.68 × 106 and 0.55 × 106 t year−1, respectively. Export rates for 2009–2010 were 484 t km2 year−1 for SPM and 275 t km2 year−1 for TDS. These rates are higher than those observed in glacierized granite basins and in non‐glacierized evaporite basins, suggesting a synergistic effect of lithology and glaciers on physical and chemical erosion. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Land surface energy fluxes are required in many environmental studies, including hydrology, agronomy and meteorology. Surface energy balance models simulate microscale energy exchange processes between the ground surface and the atmospheric layer near ground level. Spatial variability of energy fluxes limits point measurements to be used for larger areas. Remote sensing provides the basis for spatial mapping of energy fluxes. Remote‐sensing‐based surface energy flux‐mapping was conducted using seven Landsat images from 1997 to 2002 at four contiguous crop fields located in Polk County, northwestern Minnesota. Spatially distributed surface energy fluxes were estimated and mapped at 30 m pixel level from Landsat Thematic Mapper and Enhanced Thematic Mapper images and weather information. Net radiation was determined using the surface energy balance algorithm for land (SEBAL) procedure. Applying the two‐source energy balance (TSEB) model, the surface temperature and the latent and sensible heat fluxes were partitioned into vegetation and soil components and estimated at the pixel level. Yield data for wheat and soybean from 1997 to 2002 were mapped and compared with latent heat (evapotranspiration) for four of the fields at pixel level. The spatial distribution and the relation of latent heat flux and Bowen ratio (ratio of sensible heat to latent heat) to crop yield were studied. The root‐mean‐square error and the mean absolute percentage of error between the observed and predicted energy fluxes were between 7 and 22 W m−2 and 12 and 24% respectively. Results show that latent heat flux and Bowen ratio were correlated (positive and negative) to the yield data. Wheat and soybean yields were predicted using latent heat flux with mean R2 = 0·67 and 0·70 respectively, average residual means of −4·2 bushels/acre and 0·11 bushels/acre respectively, and average residual standard deviations of 16·2 bushels/acre and 16·6 bushels/acre respectively (1 bushel/acre ≈ 0·087 m3 ha−1). The flux estimation procedure from the SEBAL‐TSEB model was useful and applicable to agricultural fields. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
The glacier mass balance, area change, and glacier runoff in the Yarkant River Basin (YRB) and the Beida River Basin (BRB) were estimated from 1961 to 2006 by employing a modified monthly degree‐day model. Comparisons between the simulated and observed mass balance, equilibrium line altitude, and glacier runoff suggest that the model can be used to analyze the long‐term changes of glacier mass balance and runoff in the YRB and the BRB. The glacier mass balances of the YRB and the BYB both have a significantly decreasing trend with ?4.39 mm a‐1 and ?8.15 mm a‐1 from 1961 to 2006 because of a significant increase in ablation caused by increasing summer air temperatures, especially since 1996. The total runoff in glacier areas has a significant increasing trend with 0.23 × 108 m3 a‐1 and 0.02 × 108 m3 a‐1 in the YRB and the BRB, respectively. By comparing the mean mass balance during the period 1961 to 1986 with that of the 1987 to 2006, the BRB glacier mass balance's sensitivity to temperature is at 0.33 m a‐1 °C, nearly twice as much as that of the YRB at 0.16 m a‐1 °C. The difference between the glacier temperature sensitivity in the YRB and the BRB is primarily because the glacier elevation band area weighted altitude of the YRB is about 700 m higher than that of BRB. The glacier elevation band area weighted summer air temperature in the YRB is around 2 °C lower than that of the BRB. Therefore, the annual positive degree‐day of the YRB and the BRB increases by about 21.0 °C and 77.3 °C respectively when the summer air temperature increases by 1 °C, resulting into more glacier ablation and runoff in the BRB than in the YRB. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
This study was undertaken to test the utility of a geographical information systems (GIS) approach to problems of watershed mass balance. This approach proved most useful in exploring the effects that watershed scale, lithology and land use have on chemical weathering rates, and in assessing whether mass balance calculations could be applied to large multilithological watersheds. Water quality data from 52 stations were retrieved from STORET and a complete GIS database consisting of the watershed divide, lithology and land use was compiled for each station. Water quality data were also obtained from 7 experimental watersheds to develop a methodology to estimate annual fluxes from incomplete data sets. The methodology consists of preparing a composite of daily flux data, calculating a best fit sinusoid and integrating the equation to obtain an annual flux. Comparison with annual fluxes calculated from high resolution data sets suggests that this method predicts fluxes within about 10% of the true annual flux. Annual magnesium fluxes (moles km−2 yr−1) were calculated for all stations and adjusted for fluxes from atmospheric deposition. Magnesium flux was found to be a strong function of the amount of carbonate in the watershed, and silica fluxes were found to increase with the fraction of sandstone present in the watershed. All fluxes were strongly influenced by mining practices, with magnesium fluxes from affected watersheds being 6–10 times higher than fluxes from comparable pristine watersheds. Mining practices enhance chemical weathering by increasing the surface area of unweathered rock to which water has access and by increasing acidity and rate of mineral weathering. Fluxes were also found to increase with watershed size. This scale dependence is most likely caused by the sensitivity of weathering fluxes to even minor quantities of carbonates, which are likely to be found in all lithologies at larger scales. Mass balances were carried out in watersheds where gauged sub-watersheds made up more than 95% of the area. The calculations show large magnesium flux and water balance discrepancies. These errors may be a result of significant groundwater inputs to streams between gauges. The results suggest that improvements in how we measure discharge and estimate fluxes may be required before we can apply mass balance techniques to larger scales. © 1997 John Wiley & Sons, Ltd.  相似文献   

19.
Abstract

Ice-capped volcanoes of the Chilean Lake District have shown significant glacier retreat during recent decades, probably in response to tropospheric warming and precipitation decrease. Volcán Mocho-Choshuenco (39°55′S, 72°02′W) is one of the main active volcanoes in this part of the country. A mass balance programme was initiated on its southeastern glacier in 2003, in view of its representative conditions as an ice body that is presumably not affected by current volcanic activity. The glaciers of this volcano have been retreating and shrinking in recent decades; by 2003 there had been a reduction of 40% of the original area of 28.4 km2 in 1976. A maximum decrease of area was observed in the most recently analysed period, a rate of 0.45 km2 year-1 between 1987 and 2003. The glacier average net mass balance of 2003/04 yielded ?0.88 m w.e. (water equivalent) per year (±0.18), with an average net accumulation and ablation of 2.59 and ?3.47 m w.e. per year, respectively. This is the first direct measurement of glacier mass balance in southern Chile, where very little is known about glacier variations and glacier–volcano interactions.  相似文献   

20.
The impact of surface melt patterns and the Indian summer monsoon (ISM) is examined on the varying contributions of end member (snow, glacier ice, and rain) to proglacial streamflow during the ablation period (June–October) in the Chhota Shigri glaciated basin, Western Himalaya. Isotopic seasonality observed in the catchment precipitation was generally reflected in surface runoff (supraglacial melt and proglacial stream) and shows a shift in major water source during the melt season. Isotopically correlated (δ18O–δD) high deuterium intercept in the surface runoff suggests that westerly precipitation acts as the dominant source, augmenting the other snow- and ice-melt sources in the region. The endmember contributions to the proglacial stream were quantified using a three-component mixing. Overall, glacier ice melt is the major source of proglacial discharge. Snowmelt is the predominant source during the early ablation season (June) and the peak ISM period (August and September), whereas ice melt reaches a maximum in the peak melt period (July). The monthly contribution of rain is on the lower side and shows a steady rise and decline with onset and retreat of the monsoon. These results are persistent with the surface melt pattern observed in Chhota Shigri glacier, Upper Chandra basin. Moreover, the role of the ISM in Chhota Shigri glacier is unvarying to that observed in other glacierized catchments of Upper Ganga basin. Thus, this study augments the significant role of the ISM in glacier mass balance up to the boundary of the central-western Himalayan glaciated region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号