首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Exploring the chemical characterization of dissolved organic matter (DOM) is important for understanding the fate of laterally transported organic matter in watersheds. We hypothesized that differences in water-extractable organic matter (WEOM) in soils of varying land uses and rainfall events may significantly affect the quality and the quantity of stream DOM. To test our hypotheses, characteristics of rainfall-runoff DOM and WEOM of source materials (topsoil from different land uses and gullies, as well as typical vegetation) were investigated at two adjacent catchments in the Loess Plateau of China, using ultraviolet–visible absorbance and excitation emission matrix fluorescence with parallel factor analysis (PARAFAC). Results indicated that land-use types may significantly affect the chemical composition of soil WEOM, including its aromaticity, molecular weight, and degree of humification. The PARAFAC analysis demonstrated that the soils and stream water were dominated by terrestrial/allochthonous humic-like substances and microbial transformable humic-like fluorophores. Shifts in the fluorescence properties of stream DOM suggested a pronounced change in the relative proportion of allochthonous versus autochthonous material under different rainfall patterns and land uses. For example, high proportions of forestland could provide more allochthonous DOM input. This study highlights the relevance of soils and hydrological dynamics on the composition and fluxes of DOM issuing from watersheds. The composition of DOM in soils was influenced by land-use type. Precipitation patterns influenced the proportion of terrestrial versus microbial origins of DOM in surface runoff. Contributions of allochthonous, terrestrially derived DOM inputs were highest from forested landscapes.  相似文献   

2.
At the global scale, the population density of coastal areas is nearly three times that of inland areas, and consequently, land development represents a threat to coastal ecosystems. It is critical to understand how increasing urbanization affects coastal watersheds. To that end, the objective of this study was to examine the influence of urban development on stream water quality and hydrology in a coastal setting, a scenario that has received less attention than other physiographic regions. Stream hydrologic, physicochemical, and microbial data were collected in watersheds near Apalachicola, Florida with a range of impervious surfaces from 0 to 15%. Watersheds with greater impervious cover exhibited higher pH, specific conductance, and temperature, elevated nutrient concentrations and loads (, and total phosphorus), higher bacterial concentrations (fecal coliform and Escherichia coli), and increased maximum flow and hydrograph flashiness. Different responses to development here compared to other physiographic regions included lower total suspended solid concentrations, higher total dissolved solid concentrations, and a lack of response of base flow to increased urbanization. Additionally, Na+ and Cl? concentrations were elevated to a greater extent than is often the case in non‐coastal areas. In the coming years, urban development is projected to increase substantially in coastal zones and thus there is risk of further stream degradation in coastal watersheds. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Coastal wetlands represent an ecotone between ocean and terrestrial ecosystems, providing important services, including flood mitigation, fresh water supply, erosion control, carbon sequestration, and wildlife habitat. The environmental setting of a wetland and the hydrological connectivity between a wetland and adjacent terrestrial and aquatic systems together determine wetland hydrology. Yet little is known about regional‐scale hydrological interactions among uplands, coastal wetlands, and coastal processes, such as tides, sea level rise, and saltwater intrusion, which together control the dynamics of wetland hydrology. This study presents a new regional‐scale, physically based, distributed wetland hydrological model, PIHM‐Wetland, which integrates the surface and subsurface hydrology with coastal processes and accounts for the influence of wetland inundation on energy budgets and evapotranspiration (ET). The model was validated using in situ hydro‐meteorological measurements and Moderate Resolution Imaging Spectroradiometer (MODIS) ET data for a forested and herbaceous wetland in North Carolina, USA, which confirmed that the model accurately represents the major wetland hydrological behaviours. Modelling results indicate that topographic gradient is a primary control of groundwater flow direction in adjacent uplands. However, seasonal climate patterns become the dominant control of groundwater flow at lower coastal plain and land–ocean interface. We found that coastal processes largely influence groundwater table (GWT) dynamics in the coastal zone, 300 to 800 m from the coastline in our study area. Among all the coastal processes, tides are the dominant control on GWT variation. Because of inundation, forested and herbaceous wetlands absorb an additional 6% and 10%, respectively, of shortwave radiation annually, resulting in a significant increase in ET. Inundation alters ET partitioning through canopy evaporation, transpiration, and soil evaporation, the effect of which is stronger in cool seasons than in warm seasons. The PIHM‐Wetland model provides a new tool that improves the understanding of wetland hydrological processes on a regional scale. Insights from this modelling study provide benchmarks for future research on the effects of sea level rise and climate change on coastal wetland functions and services.  相似文献   

4.
Stream and rainfall gauging and runoff sampling were used to determine changes in hydrology and export of nutrients and suspended sediment from a June 2004 wildfire that burned 3010 ha in chaparral coastal watersheds of the Santa Ynez Mountains, California. Precipitation during water year 2005 exceeded average precipitation by 200–260%. Burned watersheds had order of magnitude higher peak discharge compared with unburned watersheds but similar annual runoff. Suspended sediment export of 181 mt ha?1 from a burned watershed was approximately ten times greater than from unburned watersheds. Ammonium export from burned watersheds largely occurred during the first three storms and was 32 times greater than from unburned watersheds. Nitrate, dissolved organic nitrogen, and phosphate export from burned watersheds increased by 5.5, 2.8, and 2.2 times, respectively, compared with unburned chaparral watersheds. Storm runoff and peak discharge increase in burned compared with unburned sites were greatest during early season storms when enhanced runoff occurred. As the winter progressed, closely spaced storms and above average precipitation reduced the fire‐related impacts that resulted in significant increases in annual post‐fire runoff and export in other studies in southern California chaparral. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
The input and fate of dissolved organic matter (DOM) can have important consequences for coastal zone productivity in large lakes and oceans. Chromophoric DOM (CDOM) is often delivered to coastal zones from rivers and streams and affects light penetration in a water column. CDOM can protect biota from damaging ultraviolet (UV) light by acting as sunscreen, resulting in increased ecosystem productivity. Alternatively, CDOM can decrease ecosystem productivity by absorbing light needed for photosynthesis and forming photoreaction products that are harmful to coastal zone biota. Increased urbanization of watersheds and seasonal differences in weather patterns change the delivery pathways, reactivity, input, and energy flow of DOM (and its CDOM component) into aquatic systems. This study investigated the effects of watershed and season on the concentrations and potential photodegradation of stream-derived DOM in Lake Superior tributaries, chosen to be geographically and geologically similar but differing in land use. Organic carbon analysis, UV–Visible spectrophotometry, and terrestrial (land use) analysis were used to investigate differences among samples and sample treatments. The major differences in DOM concentration and photochemical response appeared seasonal rather than site specific, with snow-melt samples showing stronger and more consistent changes in UV–Visible parameters while base-flow samples showed stronger and more consistent losses in DOC.  相似文献   

6.
Cold‐based polar glacier watersheds contain well‐defined supraglacial, ice‐marginal, and proglacial elements that differ in their degree of hydrologic connectivity, sources of water (e.g., snow, ice, and/or sediment pore water), meltwater residence times, allochthonous and autochthonous nutrient, and sediment loads. We investigated 11 distinct hydrological units along the supraglacial, ice marginal, and proglacial flow paths that drain Joyce Glacier in the McMurdo Dry Valleys of Antarctica. We found that these units play unique and important roles as sources and/or sinks for dissolved inorganic nitrogen and dissolved inorganic phosphorus and for specific fractions of dissolved organic matter (DOM) as waters are routed from the glacier into nutrient‐poor downstream ecosystems. Changes in nutrient export from the glacial system as a whole were observed as the routing and residence times of meltwater changed throughout the melt season. The concentrations of major ions in the proglacial stream were inversely proportional to discharge, such that there was a relatively constant “trickle” of these solutes into downstream ecosystems. In contrast, NO3? concentrations generally increased with discharge, resulting in delivery of episodic pulses of dissolved inorganic nitrogen‐rich water (“treats”) into those same ecosystems during high discharge events. DOM concentrations or fluorescence did not correlate with discharge rate, but high variability in DOM concentrations or fluorescence suggests that DOM may be exported downstream as episodic treats, but with spatial and/or temporal patterns that remain poorly understood. The strong, nutrient‐specific responses to changes in hydrology suggest that polar glacier drainage systems may export meltwater with nutrient compositions that vary within and between melt seasons and watersheds. Because nutrient dynamics identified in this study differ between glacier watersheds with broadly similar hydrology, climate, and geology, we emphasize the need to develop conceptual models of nutrient export that thoroughly integrate the biogeochemical and hydrological processes that control the sources, fate, and export of nutrients from each system.  相似文献   

7.
Tidal flats, which are important reserved land resources, have a vital role in climate change. To evaluate the contribution of coastal saline soils to carbon sequestration, field tests were performed over a 3 year period at the Dafeng Wanggang Experimental Station in Jiangsu Province, China. Six artificial agro‐ecosystems, including wasteland (WL), freshwater fish culture (FC), Sesbania culture (SC), barley culture (BC), mixed culture of fish and Sesbania (MCFS) and mixed culture of fish and barley (MCFB), were established according to developmental processes of coastal saline soils. At the initial stage of tidal flat reclamation, the soil organic carbon (SOC) increased by 59.4 t ha?1 in the FC system during 3 years, which was much higher than that of the WL system (40.7 t ha?1). When the tidal flats evolved into high saline soils, the MCFS system sequestered SOC more effectively than the FC or SC systems with increases of 53.1, 16.9 and 8.3 t ha?1, respectively. Subsequently, in the low saline soils, the maximum soil carbon sequestration was obtained in the MCFB system (35.8 t ha?1) followed by the BC (17.5 t ha?1) and FC (13.5 t ha?1) systems. Therefore, proper development of tidal flats to farmland and the subsequent establishment of optimised artificial agro‐ecosystems make an important contribution to carbon sequestration and climate changes in coastal areas.  相似文献   

8.
Acid‐neutralizing capacity (ANC) is an important index for streamwater acidification caused by external factors (i.e. chronic acid deposition) and internal factors such as soil acidification due to nitrification. In this study, the influence of forest clear‐cutting and subsequent regrowth on internal acidification was investigated in central Japan, where stream pH (near 7·0) and ANC (above 0·1 meq L?1) are high. pH, the concentrations of major cations (Na+, K+, Mg2+ and Ca2+), major anions (NO3?, Cl? and SO42?) and dissolved silica (Si), and ANC were measured in 33 watersheds of various stand ages, during 2002 to 2004. Only NO3? concentration decreased with stand age, whereas pH, ANC, and concentrations of the sum of base cations (BC) and Si were negatively correlated with the minimum elevation of the watershed. The correlation between the BC/Si ratio and minimum elevation suggested that factors contributing to acid neutralization changed at 1100 m above sea level. In watersheds at lower elevations (?1100 m), the relatively high contribution of soil water with longer soil contact times should result in higher ANC, and cation exchange reactions should be the dominant process for acid neutralization due to deposition of colluvial soils on the lower slope. In contrast, in higher‐elevation watersheds (≥1100 m), weathered residual soils are thin and the small contribution of deeper groundwater results in lower ANC. These results suggest that the local acid sensitivity is determined by the hydrological and geomorphologic factors generated by steep topography. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
The processes that control run‐off quantity and quality in urban watersheds are complex and not well understood. Although impervious surface coverage has traditionally been used to examine altered hydrologic response in urban watersheds, several studies suggest that other elements of the urban landscape, particularly those associated with urban infrastructure and the drainage system, play an equally important role. The relative importance of impervious surfaces, stormwater ponds, expansion of the drainage network, and drainage network structures in controlling hydrologic response was examined in the subwatersheds of the Kromma Kill, an urban watershed located in Albany County, NY. In this study, geographic information systems was used to compute geospatial land surface and drainage network properties of 5 Kromma Kill subwatersheds. In these same subwatersheds, water quantity (rainfall and run‐off) and quality (macroinvertebrates, nitrate, total nitrogen, dissolved oxygen, total dissolved solids, and nonpurgable organic carbon) parameters were measured. Strong and significant correlations were identified between land surface and drainage network properties and field observations. Causal relationships were then tested using the Environmental Protection Agency's Stormwater Management Model. Field and model analyses suggest that whereas percent imperviousness is a dominant control on water quality, drainage density and slope are equally important. However, for water quantity, whereas imperviousness is positively correlated with increased run‐off volumes, drainage network properties and slope are the dominant controls on run‐off volumes. Results have important implications for stormwater management plans, especially those aimed at reducing the effective impervious surface coverage of urban watersheds. Reducing the percentage of effective imperviousness in a watershed is not a “one size fits all” solution and can help to meet some management objectives, such as reducing nitrogen concentrations and improving water quality, but may not serve as the most effective, and therefore economical, solution for every management objective including reducing run‐off volumes.  相似文献   

10.
The Arctic hydrologic cycle is intensifying, as evidenced by increased rates of precipitation, evapotranspiration, and riverine discharge. However, the controls on water fluxes from terrestrial to aquatic systems in upland Arctic landscapes are poorly understood. Upland landscapes account for one third of the Arctic land surface and are often drained by zero‐order geomorphic flowpath features called water tracks. Previous work in the region attributed rapid runoff response at larger stream orders to water tracks, but models suggest water tracks are hydrologically disconnected from the surrounding hillslope. To better understand the role of water tracks in upland landscapes, we investigated the surface and subsurface hydrologic responses of 6 water tracks and their hillslope watersheds to natural patterns of rainfall, soil thaw, and drainage. Between storms, both water track discharge and the water table in the hillslope watersheds exhibited diel fluctuations that, when lagged by 5 hr, were temporally correlated with peak evapotranspiration rate. Water track soils remained saturated for more of the summer season than soils in their surrounding hillslope watersheds. When rainfall occurred, the subsurface response was nearly instantaneous, but the water tracks took significantly longer than the hillslopes to respond to rainfall, and longer than the responses previously observed in nearby larger order Arctic streams. There was also evidence for antecedent soil water storage conditions controlling the magnitude of runoff response. Based on these observations, we used a broken stick model to test the hypothesis that runoff production in response to individual storms was primarily controlled by rainfall amount and antecedent water storage conditions near the water track outlet. We found that the relative importance of the two factors varied by site, and that water tracks with similar watershed geometries and at similar landscape positions had similar rainfall–runoff model relationships. Thus, the response of terrestrial water fluxes in the upland Arctic to climate change depends on the non‐linear interactions between rainfall patterns and subsurface water storage capacity on hillslopes. Predicting these interactions across the landscape remains an important challenge.  相似文献   

11.
In many mountain regions, large land areas with heterogeneous soils have become ice‐free with the ongoing glacier retreat. On these recently formed proglacial fields, the melt of the remaining glaciers typically drives pronounced diurnal stream level fluctuations that propagate into the riparian zone. This behaviour was measured on the Damma glacier forefield in central Switzerland with stage recorders in the stream and groundwater monitoring wells along four transects. In spite of the large groundwater stage variations, radon measurements in the near‐stream riparian zone indicate that there is little mixing between stream water and groundwater on daily time scales. At all four transects, including both losing and gaining reaches, the groundwater level fluctuations lagged the stream stage variations and were often damped with distance from the stream. Similar behaviours have been modelled using the diffusion equation in coastal regions influenced by tidal sea level variations. We thus tested the ability of such a model to predict groundwater level fluctuations in proglacial fields. The model reproduced several key features of the observed fluctuations at three of four locations, although discrepancies also arise due to non representative input data and model simplifications. Nevertheless, calibration of the model for the individual transects yielded realistic estimates of hydraulic diffusivities between the stream and groundwater monitoring wells. We conclude that studying diurnal groundwater fluctuations can provide important information about the subsurface hydrology of alpine watersheds dominated by glacier melt. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
The temporal variability of the physical and chemical conditions of coastal waters off Ensenada, Baja California (Mexico) was characterized. A historical analysis was made based on 11 years (1998–2008) of temperature and salinity data records measured quarterly by IMECOCAL, along a transect perpendicular to the coast (CalCOFI line 100). Moreover, the physical and chemical conditions at a coastal monitoring observatory called station ENSENADA were described using a 2-year data series (October 2006–November 2008) obtained with improved temporal resolution. The historical analysis of line 100 showed marked seasonal variability in the thermohaline conditions associated with fluctuations in the flow of the equatorward California Current and the poleward California Undercurrent, as well as with coastal upwelling events whose magnitude and frequency increase towards spring–summer. Interannual variability was also observed, related to warm and/or cold ENSO phases that modify the characteristics of the water column in this coastal region. The most striking characteristics of the interannual variability at station ENSENADA were La Niña conditions recorded from summer 2007 to mid 2008. During this cold ENSO phase, temperature, salinity, dissolved oxygen, density, and dissolved inorganic carbon data revealed the anomalous presence of subsurface water at the surface layers in spring 2008. Results suggest that the coastal observatory is sensitive to the temporal variability of hydrographic conditions on shelf coastal waters (<50 km) off Ensenada in the northern BC region. Consequently, station ENSENADA would be a good location to high-frequency monitors the oceanographic conditions of the transitional region between tropical/subtropical and subarctic systems of the California Current System.  相似文献   

13.
The spatial and temporal distributions of chromophoric dissolved organic matter (CDOM) and dissolved organic carbon (DOC) was studied in the East-Frisian Wadden Sea (Southern North Sea) during several cruises between 2002 and 2005. The spatial distribution of CDOM in the German Bight shows a strong gradient towards the coast. Tidal and seasonal variations of dissolved organic matter (DOM) identify freshwater discharge via flood-gates at the coastline and pore water efflux from tidal flat sediments as the most important CDOM sources within the backbarrier area of the Island of Spiekeroog. However, the amount and pattern of CDOM and DOC is strongly affected by various parameters, e.g. changes in the amount of terrestrial run-off, precipitation, evaporation, biological activity and photooxidation. A decoupling of CDOM and DOC, especially during periods of pronounced biological activity (algae blooms and microbial activity), is observed in spring and especially in summer. Mixing of the endmembers freshwater, pore water, and open sea water results in the formation of a coastal transition zone. Whilst an almost conservative behaviour during mixing is observed in winter, summer data point towards non-conservative mixing.  相似文献   

14.
Water samples collected during April 1982–April 1983 from Red Sea coastal waters at Jeddah, Saudi Arabia, were investigated for dissolved organic carbon, dissolved organic nitrogen, dissolved lipid, dissolved organic phosphorus, dissolved monosaccharides, total dissolved sugars and dissolved polysaccharides. All showed extremely high values at two stations. This can be attributed to the direct effect of untreated wastes on these two locations and the limited water exchange between the study area and the open sea.  相似文献   

15.
Simulation of watershed scale hydrologic and water quality processes is important for watershed assessments. Proper characterization of the accuracy of these simulations, particularly in cases with limited observed data, is critical. The Soil & Water Assessment Tool (SWAT) is frequently used for watershed scale simulation. The accuracy of the model was assessed by extrapolating calibration results from a well studied Coastal Plain watershed in Southwest Georgia, USA, to watersheds within the same geographic region without further calibration. SWAT was calibrated and validated on a 16.7‐km2 subwatershed within the Little River Experimental Watershed by varying six model parameters. The optimized parameter set was then applied to a watershed of similar land use and soils, a smaller watershed with different land use and soils and three larger watersheds within the same drainage system without further calibration. Simulation results with percent bias (PB) ±15% ≤ PB < ±25% and Nash–Sutcliffe efficiency (NSE) 0.50 < NSE ≤ 0.65 were considered to be satisfactory, whereas those with PB < ±10% and 0.75 < NSE ≤ 1.00 were considered very good. With these criteria, simulation results for the five non‐calibration watersheds were satisfactory to very good. Differences across watersheds were attributed to differences in soils, land use, and surficial aquifer characteristics. These results indicate that SWAT can be a useful tool for predicting streamflow for ungauged watersheds with similar physical characteristics to the calibration watershed studied here and provide an indication of the accuracy of hydrologic simulations for ungauged watersheds. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
We applied stable carbon isotopes, ultraviolet-visible absorption(UV-Vis), fluorescence excitation-emission matrices spectroscopy(EEMs), and Fourier transform ion cyclotron resonance mass spectrometry(FT-ICR-MS) to investigate the chemical composition and sources of the dissolved organic matter(DOM) in both the water column and pore water in Xiangshan Bay, a representative semi-enclosed and eutrophic bay in Zhejiang Province, China. One protein-like fluorescent component(C1) and two humic-like fluorescent components(C2 and C3) were identified by PARAFAC modeling. The concentration of dissolved organic carbon(DOC), the relative intensities of C2, C3, and black carbon-like compounds are all negatively correlated with salinity, indicating that there is a dilution effect of terrestrial signals by seawater in Xiangshan Bay. The differences in light penetration ability of Xiangshan Bay cause different degrees of photo-degradation, which may play an important role in the transformation of organic matter in Xiangshan Bay. The weak correlation between the C1 fluorescent component and salinity indicates that autochthonous sources cannot dominate the protein-like FDOM in the Xiangshan Bay drainage area. Multiple sources(such as anthropogenic inputs and release of pore water) also affect the distribution of the protein-like fluorescent component under eutrophication conditions. The relative proportion of the protein-like fluorescent component in Xiangshan Bay is on a medium level in China and anthropogenic inputs may be a significant source of DOM in coastal bays.  相似文献   

17.
Processes occurring at various scales interact to influence the export of organic carbon from watersheds to freshwater ecosystems and eventually the ocean. The goal of this study was to determine if and how differences in wetland extent and presence of lakes influenced dissolved organic carbon (DOC) concentrations and yields in streams. We monitored stream flow, DOC and dissolved inorganic carbon concentrations periodically for 2 years at four sites with forested watersheds, four sites with wetland watersheds, and four sites with wetland watersheds that also contained in-network lakes. As expected, the presence of wetlands resulted in higher DOC concentrations and yields, but the impact of lakes was less clear on the magnitude of DOC concentrations and yields. With respect to temporal dynamics, we found positive relationships between stream flow and DOC concentration (median r2 = 0.89) in streams without upstream lakes. The relationships for forested sites are among the strongest reported in the literature, and suggest a clear shift in hydrologic flowpath from intersecting mineral soils at low flow, to organic soils at high flow. In streams with upstream lakes, the relationship between flow and concentration was non-significant for three of four sites unless time lags with flow were applied to the concentration data, after which the relationship was similar to the non-lake streams (median r2 = 0.95). These findings suggest that lakes buffering temporal patterns in streams by hydrologically delaying pulses of carbon, but provide little support that in-line lakes have a net effect on carbon exports in this region.  相似文献   

18.
The impact of continental hydrological loading from land water, snow and ice on polar motion excitation, calculated as hydrological angular momentum (HAM), is difficult to estimate, and not as much is known about it as about atmospheric angular momentum (AAM) and oceanic angular momentum (OAM). In this paper, regional hydrological excitations to polar motion are investigated using monthly terrestrial water storage data derived from the Gravity Recovery and Climate Experiment (GRACE) mission and from the five models of land hydrology. The results show that the areas where the variance shows large variability are similar for the different models of land hydrology and for the GRACE data. Areas which have a small amplitude on the maps make an important contribution to the global hydrological excitation function of polar motion. The comparison of geodetic residuals and global hydrological excitation functions of polar motion shows that none of the hydrological excitation has enough energy to significantly improve the agreement between the observed geodetic excitation and geophysical ones.  相似文献   

19.
Submarine groundwater discharge (SGD) is a global phenomenon that carries large volumes of groundwater and dissolved chemical species such as nutrient, metals, and organic compounds to coastal zones. We report the influence of SGD on the coastal waters of Jeju Island, Korea, using high‐resolution aerial thermal infrared (TIR) mapping techniques and field investigations. An aircraft‐based system was implemented using a cost‐effective TIR camera for aerial TIR mapping. Ground‐based calibrations and system integration with GPS/IMU (global positioning system/inertial measurement unit) were performed for the aerial systems. The aerial surveys showed distinct low‐temperature signatures of SGD along the coasts of Jeju Island, revealing large groundwater inputs from the coastal aquifers to the ocean. Multiple aerial surveys over a range of seasons and tidal stages revealed that SGD rates dynamically affect the sea surface temperature (SST) of the coastal zone. The in‐situ measurements supported that SGD has a substantial influence on the coastal water chemistry as well as SST. Our observations highlight the extent to which aerial‐based TIR mapping can serve as a powerful tool for studying SGD and other coastal processes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号