首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies of push moraines have concluded that structural architecture is controlled by a combination of stress exerted by flowing ice and the rheology of the deforming sediment. However, the relationship between deformation processes and the thermal/hydrologic conditions within the sediment remains ambiguous. Using a combination of surface mapping, logging exposures and ground penetrating radar we examine the relationships between surface morphology, material properties and development of deformation structures in deeply frozen sediment that has been deformed by Joyce Glacier, a cold-based glacier in the McMurdo Dry Valleys. The structural architecture of the push moraines is characterized by a combination of brittle and ductile deformation structures that have produced a structurally complex pattern of thrust faults, low angle listric thrusts and recumbent folds that extend 400 m beyond the glacier margin. Deformation is ductile where the ice concentration exceeds c. 65% volume and predominantly brittle where the ice concentration is less than c. 65%. The change in rheology reflects transition in behaviour from the material having a predominantly frictional character when the ice is limited to pore spaces to a non-frictional character in which strength is primarily determined by the cohesive strength of the ice. This work shows that glaciotectonic deformation can occur in deeply frozen permafrost where there is no liquid pore water. We conclude that the presence of liquid porewater is not a necessary condition for the development of glaciotectonic deformation or for the formation of push moraines. © 2019 John Wiley & Sons, Ltd.  相似文献   

2.
3.
Snow in the McMurdo Dry Valleys is a potential source of moisture for subnivian soils in a cold desert ecosystem. In a water‐limited environment, enhanced soil moisture is expected to provide more favourable conditions for subnivian soil communities. In addition, snow cover insulates the underlying soil from air temperature extremes. Quantifying the spatial and temporal patterns of seasonal snow accumulation and ablation is necessary to understand these dynamics. Repeat high‐resolution imagery acquired for the 2009–2010 austral summer was used to map the seasonal distribution of snow across Taylor and Wright valleys, Southern Victorialand, Antarctica. An edge detection algorithm was used to perform an object‐based classification of snow‐covered area. Coupled with topographic parameters obtained from a 30‐m digital elevation model, unique distribution patterns were characterized for five regions within the neighbouring valleys. Time lapses of snow distribution in each region provide insight into spatially variable aerial ablation rates (change in area of landscape covered by snow) across the region. A strong coastal to interior gradient of decreasing snow‐covered area was evident for both Taylor and Wright valleys. The surrounding regions of Lake Fryxell, Lake Hoare, Lake Bonney, Lake Brownworth, and Lake Vanda exhibited losses of snow‐covered area of 9.61 km2 (?93%), 1.63 km2 (?72%), 1.07 km2 (?97%), 2.60 km2 (?82%), and 0.25 km2 (?96%), respectively, as measured from peak accumulation in October to mid‐January. Differences in aerial ablation rates within and across local regions suggest that both topographic variation and regional microclimates influence the ablation of seasonal snow cover. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Cold‐based glaciers exist in low temperature and low humidity environments in which shortwave radiation is the largest source of energy to the glacier surface and the energy budget is very sensitive to the surface albedo. Consequently, the presence of relatively low volumes of debris on glacier surfaces has a significant impact on the timing, magnitude and rate of ablation at the surface. The aim of this study is to understand how the presence of sediment on the glacier surface at the start of the melt season can affect meltwater generation and delivery on a cold‐based glacier. A combination of field measurements, energy balance modelling and chemical mixing modelling were used on the Wright Lower Glacier, McMurdo Dry Valleys, Antarctica, between October 2005 and January 2006 to address this aim. In this system, sediment was transported onto the glacier surface during the winter months (March–October) by foehn winds, which reduced surface albedo at the start of the summer melt season. The areas of the glacier on which sediment accumulated began to melt earlier than other parts of the glacier and experienced a longer melt season. Over the study period, the total ablation on the dirty surfaces was nine times greater than for clean ice. Ablation on the dirty surfaces is dominated by melting, whereas sublimation dominates the clean ice. As the sediment was unevenly distributed over the glacier surface, the variation in melt amount and timing drove the development of a cryoconite hole system. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Water is a limiting factor for life in the McMurdo Dry Valleys (MDV), Antarctica. The active layer (seasonally thawed soil overlying permafrost) accommodates dynamic hydrological and biological processes for 10–16 weeks per year. Wetted margins (visually wetted areas with high moisture content) adjacent to lakes and streams are potential locations of great importance in the MDV because of the regular presence of liquid water, compared with the rest of the landscape where liquid water is rare. At 11 plots (four adjacent to lakes, seven adjacent to streams), soil particle size distribution, soil electrical conductivity, soil water content and isotopic signature, width of the wetted margin, and active layer thaw depth were characterised to determine how these gradients influence physicochemical properties that determine microbial habitat and biogeochemical cycling. Sediments were generally coarse‐grained in wetted margins adjacent to both lakes and streams. Wetted margins ranged from 1·04 to 11·01 m in average length and were found to be longer at lakeside sites than streamside. Average thaw depths ranged from 0·12 to 0·85 m, and were found to be deepest under lake margins. Lake margins also had much higher soil electrical conductivity, steeper topographic gradients, but more gradual soil moisture gradients than stream margins. Patterns of soil water δ18O and δD distribution indicate capillary action and evaporation from wetted margins; margin pore waters generally demonstrated isotopic enrichment with distance from the shore, indicating evaporation of soil water. Lake margin pore waters were significantly more negative in DXS (DXS = δD‐8δ18O) than streamside pore waters, indicating a longer history of evaporation there. Differences between lake and stream margins can be explained by the more consistent availability of water to lake margins than stream margins. Differences in margin characteristics between lakes and streams have important consequences for the microbial habitat of these margins and their functional role in biogeochemical cycling at these terrestrial–aquatic interfaces. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Relict (perched) lacustrine deltas around the perennially ice-covered lakes in the Taylor Valley, Antarctica, imply that these lakes were up to 40 times larger in area than at present since the last glacial maximum (LGM). These deltas have been used to constrain ice-margin positions in Taylor Valley, and the boundaries of the proposed LGM ice-damned Glacial Lake Washburn. The timing of these high lake levels has depended on 14C chronologies of algal layers within relict lacustrine deltas. To provide additional geochronometric data for the post-LGM lake-level history, we applied photon-stimulated-luminescence (PSL) sediment dating to polymineral fine silt and sand-size quartz from 7 perched-delta and 3 active-delta sites of different elevations along 3 major meltwater streams entering Lake Fryxell. Our PSL dating of 4 quartz-sand samples from core tops in the seasonal ice-free moat of Lake Fryxell (elevation ∼18 m a.s.l.) and two core-top moat samples from the seasonal moat of Lake Vanda in nearby Wright Valley establish that adequate PSL clock zeroing (by daylight) occurs in regional, modern shoreline deposits. Minimum-age micro-hole PSL results from the moats are consistently near 100 a. Minimum-age micro-hole age estimates for the deltas range from ∼50 to 100 a near the present lake level up to 13.4 ± 1.3 ka at 240 m. These are systematically younger than the comparable, reservoir-uncorrected, 14C ages that range from 7 ka (cal yr BP) to 13 ka (cal yr BP) near lake level up to 20 ka (cal yr BP) at 220–240 m elevation. Our results indicate the occurrence of a dramatic discrepancy between PSL minimum-age and 14C age estimates that is presently unresolved.  相似文献   

7.
Streams in the McMurdo Dry Valleys (MDVs) of Antarctica moderate an important hydrologic and biogeochemical connection between upland alpine glaciers, valley‐bottom soils, and lowland closed‐basin lakes. Moreover, MDV streams are simple but dynamic systems ideal for studying interacting hydrologic and ecological dynamics. This work synthesizes 20 years of hydrologic data, collected as part of the MDVs Long‐Term Ecological Research project, to assess spatial and temporal dynamics of hydrologic connectivity between glaciers, streams, and lakes. Long‐term records of stream discharge (Q), specific electrical conductance (EC), and water temperature (T) from 18 streams were analysed in order to quantify the magnitude, duration, and frequency of hydrologic connections over daily, annual, and inter‐annual timescales. At a daily timescale, we observe predictable diurnal variations in Q, EC, and T. At an annual timescale, we observe longer streams to be more intermittent, warmer, and have higher median EC values, compared to shorter streams. Longer streams also behave chemostatically with respect to EC, whereas shorter streams are more strongly characterized by dilution. Inter‐annually, we observe significant variability in annual runoff volumes, likely because of climatic variability over the 20 record years considered. Hydrologic connections at all timescales are vital to stream ecosystem structure and function. This synthesis of hydrologic connectivity in the MDVs provides a useful end‐member template for assessing hydrologic connectivity in more structurally complex temperate watersheds. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
In an effort to identify biomonitors for contamination of Antarctic marine benthos by sewage, this study determines whether the US Antarctic Program’s McMurdo Station produces a benthic sewage footprint and whether resident megafauna are assimilating sewage-derived material. We identified strong C and N isotopic gradients in benthic sediment as a function of downstream distance from McMurdo Station’s point-source sewage addition. Sediment C and N isotope ratios approached marine background levels at the sampling end-point 612 m downcurrent. Based on isotope abundances in their tissues, at least some sewage C and N were assimilated by the sedentary, suspension feeding soft coral Alcyonium antarcticum, ascidian Cnemidocarpa verrucosa and bivalve Laternula elliptica. However, as inferred by tissue-sediment differences in downstream isotope trends, such assimilation was not in proportion to sewage exposure and input, therefore implying non-generalist feeding behavior by these species. In contrast, the motile, generalist feeding sea urchin Sterechinus neumayeri, sea star Odontaster validus and ribbon worm Parborlasia corrugatus showed isotopic evidence of sewage C and N assimilation roughly in proportion to sewage input. We recommend these generalist feeders for further use as biomonitors at this site now that sewage treatment has been implemented. As these species are circumpolar in distribution, they may also prove useful elsewhere in the Antarctic.  相似文献   

9.
Tephra fallout from the 2011 Grímsvötn eruption onto Svínafellsjökull, Iceland, created an ice‐ash landscape of a type that is rarely studied but is nevertheless common in glacio‐volcanic regions. We used terrestrial laser scanning (TLS) to measure ice surface topography and absorption at high spatial resolution, confirming ablation rates either reduce or increase under thick (insulating) and thin (reduced albedo) ash deposits, respectively. Fourier transform analysis of the TLS data identified that a three‐fold increase in aerodynamic roughness was attributable to an increase in larger (> 0·2 m) surface features. Moreover, TLS measurements revealed the importance of ash redistribution by meltwater in generating differential melting which modifies roughness and ash patchiness, such that the net effect of these spatial ash–ice feedbacks was to reduce ablation rates by up to 59%. The modulating effects of these previously undocumented feedbacks on ablation rates are, therefore, significant and must be correctly parameterized if ash‐covered glacier mass balances are to be predicted correctly. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Potential changes in glacier area, mass balance and runoff in the Yarkant River Basin (YRB) and Beida River Basin (BRB) are projected for the period from 2011 to 2050 employing the modified monthly degree‐day model forced by climate change projection. Future monthly air temperature and precipitation were derived from the simple average of 17, 16 and 17 General Circulation Model (GCM) projections following the A1B, A2 and B1 scenarios, respectively. These data were downscaled to each station employing the Delta method, which computes differences between current and future GCM simulations and adds these changes to observed time series. Model parameters calibrated with observations or results published in the literature between 1961 and 2006 were kept unchanged. Annual glacier runoff in YRB is projected to increase until 2050, and the total runoff over glacier area in 1970 is projected to increase by about 13%–35% during 2011–2050 relative to the average during 1961–2006. Annual glacier runoff and the total runoff over glacier area in 1970 in BRB is projected to increase initially and then to reach a tipping point during 2011–2030. There are prominent increases in summer, but only small increase in May and October of glacier runoff in YRB, and significant increases during late spring and early summer and significant decreases in July and late summer of glacier runoff in BRB. This study highlights the great differences among basins in their response to future climate warming. The specific runoff from areas exposed after glacier retreat relative to 1970 is projected to general increasing, which must be considered when evaluating the potential change of glacier runoff. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
A deeper knowledge of the hydrological response of semi-arid Mediterranean watersheds would be useful in the prediction of runoff production for assessing flood risks and planning flood mitigation works. This study was conducted to identify the runoff generation mechanisms and their controlling factors at the hillslope scale in a Mediterranean semi-arid watershed. Four zero-order microcatchments were selected to measure rainfall and runoff for a three-year period. Two groups of soil were differentiated with respect to the hydrological response. The fine textured, poorly permeable soils of low organic carbon content had a greater runoff coefficient (9%) and lower runoff threshold (3·6 mm) than more permeable, coarser textured soils of medium organic carbon content (<3%, and 8 mm, respectively). The influence of rainfall characteristics on the hydrological response was different. Rain intensity was the major rainfall parameter controlling the runoff response in the microcatchments on fine textured, low infiltrability soils with a poor plant cover, while total rainfall was more closely correlated with runoff in coarser textured, highly permeable soils with a denser plant cover. It can be concluded that there are two runoff generation mechanisms: (i) an infiltration-excess overland flow in the more degraded areas with low organic carbon content (<0·5%) and low infiltrability (>5 mm h−1); and (ii) a saturation-excess overland flow in the less degraded areas with a high organic carbon content (>2%), high infiltrability (>8 mm h−1) and covered by a dense plant cover (>50%). © 1998 John Wiley & Sons, Ltd.  相似文献   

12.
In the discontinuous permafrost zone of the Northwest Territories (NWT), Canada, snow covers the ground surface for half the year. Snowmelt constitutes a primary source of moisture supply for the short growing season and strongly influences stream hydrographs. Permafrost thaw has changed the landscape by increasing the proportional coverage of permafrost-free wetlands at the expense of permafrost-cored peat plateau forests. The biophysical characteristics of each feature affect snow water equivalent (SWE) accumulation and melt rates. In headwater streams in the southern Dehcho region of the NWT, snowmelt runoff has significantly increased over the past 50 years, despite no significant change in annual SWE. At the Fort Simpson A climate station, we found that SWE measurements made by Environment and Climate Change Canada using a Nipher precipitation gauge were more accurate than the Adjusted and Homogenized Canadian Climate Dataset which was derived from snow depth measurements. Here, we: (a) provide 13 years of snow survey data to demonstrate differences in end-of-season SWE between wetlands and plateau forests; (b) provide ablation stake and radiation measurements to document differences in snow melt patterns among wetlands, plateau forests, and upland forests; and (c) evaluate the potential impact of permafrost-thaw induced wetland expansion on SWE accumulation, melt, and runoff. We found that plateaus retain significantly (p < 0.01) more SWE than wetlands. However, the differences are too small (123 mm and 111 mm, respectively) to cause any substantial change in basin SWE. During the snowmelt period in 2015, wetlands were the first feature to become snow-free in mid-April, followed by plateau forests (7 days after wetlands) and upland forests (18 days after wetlands). A transition to a higher percentage cover of wetlands may lead to more rapid snowmelt and provide a more hydrologically-connected landscape, a plausible mechanism driving the observed increase in spring freshet runoff.  相似文献   

13.
In?ltration tests, soil mapping and soil property analysis were used to assess the effect of within‐storm rainfall conditions on spatial patterns of surface characteristics relevant for runoff generation, continuity and erosion in the Zin Valley Badlands. Runoff and erosion differ strongly between ridges and slopes. Soils at both locations are susceptible to sealing, but on the sideslopes deep desiccation cracks inhibit continuous ?ow, even during high magnitude rainstorms. The discontinuous nature of runoff has a feedback on surface conditions. Erosion on the ridges maintains shallow soils prone to sealing while in?ltration and deposition on the sideslopes enhance soil depth, a prerequisite for stable desiccation cracks. Some runoff generated on the ridges is transmitted to the valley via rills. On straight sideslopes, rills are single and often discontinuous, indicating limited frequency of continuous runoff. Along concave valley heads, rill systems are well integrated and continuous, concentrating runoff and reducing in?ltration losses along slopes. The longitudinal, V‐shaped valley morphology of small catchments in the Zin Valley Badlands re?ects the long‐term effect of different erosion rates in valley heads and on sideslopes. Over time, valley incision lengthened the sideslopes, reducing the portion of annual rainfall that was runoff‐effective. Once sideslopes reached a critical length that inhibited frequent continuous ?ow, a colluvium with an increased in?ltration capacity developed, reducing runoff frequency even further. Consequently, erosion on the valley sideslopes decreased. Continuous ?ow from ridges to the valley channel remained more common in integrated rill systems in concavities and valley heads, leading to more erosion and retreat of the valley heads. The spatial patterns of runoff and erosion in the Zin Valley Badlands demonstrate that landscape development is strongly affected by processes that lead to differentiation of soil properties on hillslopes with uniform lithology. The patterns of surface characteristics and their role in landscape development are strongly dependent on rainfall conditions, highlighting the need for geomorphologists to identify the dynamic spatial and temporal scales relevant for landscape development. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
We present concentrations of environmentally available (unfiltered acidified 2% v/v HNO3) As, Cu, Cd, Pb, V, Sr, and major ions including Ca2+, Cl?, and SO42? in a July 2005 and a March 2006 shallow snow profile from the lower Eliot Glacier, Mount Hood, Oregon, and its proglacial stream, Eliot Creek. Low enrichment factors (EF) with respect to crustal averages suggests that in fresh March 2006 snow environmentally available elements are derived primarily from lithogenic sources. Soluble salts occurred in lower and less variable concentrations in July 2005 snow than March 2006. Conversely, environmentally available trace elements occurred in greater and more variable concentrations in July 2005 than March 2006 snow. Unlike major solutes, particulate‐associated trace elements are not readily eluted during the melt season. Additionally, elevated surface concentrations suggest that they are likely added throughout the year via dry deposition. In a 1‐h stream sampling, ratios of dissolved (<0·45 µm) V:Cl?, Sr:Cl?, and Cu:Cl? are enriched in the Eliot Stream with respect to their environmentally available trace element to Cl? ratios in Eliot Glacier snow, suggesting chemical weathering additions in the stream waters. Dissolved Pb:Cl? is depleted in the Eliot Stream with respect to the ratio of environmentally available Pb to Cl? in snow, corresponding to greater adsorption onto particles at greater pH values. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Modelling melt and runoff from snow‐ and ice‐covered catchments is important for water resource and hazard management and for the scientific study of glacier hydrology, dynamics and hydrochemistry. In this paper, a distributed, physically based model is used to determine the effects of the up‐glacier retreat of the snowline on spatial and temporal patterns of melt and water routing across a small (0·11 km2) supraglacial catchment on Haut Glacier d'Arolla, Switzerland. The melt model uses energy‐balance theory and accounts for the effects of slope angle, slope aspect and shading on the net radiation fluxes, and the effects of atmospheric stability on the turbulent fluxes. The water routing model uses simplified snow and open‐channel hydrology theory and accounts for the delaying effects of vertical and horizontal water flow through snow and across ice. The performance of the melt model is tested against hourly measurements of ablation in the catchment. Calculated and measured ablation rates show a high correlation (r2 = 0·74) but some minor systematic discrepancies in the short term (hours). These probably result from the freezing of surface water at night, the melting of the frozen layer in the morning, and subsurface melting during the afternoon. The performance of the coupled melt/routing model is tested against hourly discharge variations measured in the supraglacial stream at the catchment outlet. Calculated and measured runoff variations show a high correlation (r2 = 0·62). Five periods of anomalously high measured discharge that were not predicted by the model were associated with moulin overflow events. The radiation and turbulent fluxes contribute c. 86% and c. 14% of the total melt energy respectively. These proportions do not change significantly as the surface turns from snow to ice, because increases in the outgoing shortwave radiation flux (owing to lower albedo) happen to be accompanied by decreases in the incoming shortwave radiation flux (owing to lower solar incidence angles) and increases in the turbulent fluxes (owing to higher air temperatures and vapour pressures). Model sensitivity experiments reveal that the net effect of snow pack removal is to increase daily mean discharges by c. 50%, increase daily maximum discharges by >300%, decrease daily minimum discharges by c. 100%, increase daily discharge amplitudes by >1000%, and decrease the lag between peak melt rates and peak discharges from c. 3 h to c. 50 min. These changes have important implications for the development of subglacial drainage systems. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
Observed rainfall and flow data from the Dongjiang River basin in humid southern China were used to investigate runoff changes during low‐flow and flooding periods and in annual flows over the past 45 years. We first applied the non‐parametric Mann–Kendall rank statistic method to analyze the change trend in precipitation, surface runoff and pan evaporation in those three periods. Findings showed that only the surface runoff in the low‐flow period increased significantly, which was due to a combination of increased precipitation and decreased pan evaporation. The Pettitt–Mann–Whitney statistical test results showed that 1973 and 1978 were the change points for the low‐flow period runoff in the Boluo sub‐catchment and in the Qilinzui sub‐catchment, respectively. Most importantly, we have developed a framework to separate the effects of climate change and human activities on the changes in surface runoff based on the back‐propagation artificial neural network (BP‐ANN) method from this research. Analyses from this study indicated that climate variabilities such as changes in precipitation and evaporation, and human activities such as reservoir operations, each accounted for about 50% of the runoff change in the low‐flow period in the study basin. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
We investigated sea surface temperature (SST) variability over large spatial and temporal scales for the continental shelf region located off the northeast coast of the United States between Cape Hatteras, North Carolina, and the Gulf of Maine using the extended reconstruction sea surface temperature (ERSST) dataset. The ERSST dataset consists of 2°×2° (latitude and longitude) monthly mean values computed from in situ data derived from the International Comprehensive Ocean Atmosphere Data Set (ICOADS). Nineteen 2°×2° bins were chosen that cover the shelf region of interest between the years of 1854 and 2005. Mean annual and range of SST were examined using dynamic factor analysis to estimate trends in both parameters, while chronological clustering was used to determine temporal SST patterns and breakpoints in the time series that are believed to signal regime shifts in SST. Both SST and SST trend analysis show that interannual variability of SST fluctuations shows strong coherence between bins, with declining SST at the beginning of the last century, followed by increasing SST through 1950, and then rapidly decreasing between 1950 and mid-1960s, with somewhat warmer SST thereafter to present. Annual SST range decreases in a seaward direction for all bins, with strong coherence for interannual variability of range fluctuations between bins. The trend in SST range shows a decreasing range at the beginning of the last century followed by an increase in range from 1920 to the late-1980s, remaining high through present with some spatial variability. A more detailed spatial analysis was conducted by grouping the data into 7 regions using principal component analysis. We analyzed regional trends in mean annual SST, seasonal SST range (summer SST−winter SST), and normalized SST minima and maxima. Both the summer and winter seasons were also analyzed using the length of each season and amplitude of the warming and cooling season, respectively, along with the spring warming and fall cooling rates. Trends in all of the parameters were examined after low-pass filtering using a 10-point convolution filter (n=10 years) and regime shifts were identified using the sequential t-test analysis of regime shifts (STARS) method. The analysis shows some difference between regions in the timing of minimum SST with minima being reached 1 month earlier in the south (February) relative to more northern regions (March). Regional annual SST range decreased in a seaward direction. Amplitude of summer warming and the length of summer have shown fluctuations with recent years showing stronger warming and longer summers but generally not exceeding past levels. Overall, the difference in SST range, with recent larger values may be the most significant finding of this work. SST range changes have the potential to disrupt species important to local fisheries due to combinations of differing temperature tolerances, changes in reproduction potential, and changes in the distributional range of species.  相似文献   

18.
19.
The glaciers on Tibetan Plateau play an important role in the catchment hydrology of this region. However, our knowledge with respect to water circulation in this remote area is scarce. In this study, the HBV light model, which adopts the degree‐day model for glacial melting, was employed to simulate the total runoff, the glacier runoff and glacier mass balance (GMB) of the Dongkemadi River Basin (DRB) at the headwater of the Yangtze River on the Tibetan Plateau, China. Firstly, the daily temperature and precipitation of the DRB from 1955 to 2008 were obtained by statistical methods, based on daily meteorological data observed in the DRB (2005–2008) and recorded by four national meteorological stations near the DRB (1955–2008). Secondly, we used 4‐year daily air temperature, precipitation, runoff depth and monthly evaporation, which were observed in the DRB, as input to obtain a set of proper parameters. Then, the annual runoff, the glacier runoff and GMB (1955–2008) were calculated using the HBV model driven by interpolated meteorological data. The calculated GMB fits well with the observed results. At last, using the temperature and precipitation predicted by climate models, we predicted the changes of runoff depth and GMB of the DRB in the next 40 years. Under all climate‐change scenarios, annual glacier runoff shows a significant increase due to intensified ice melting. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.

Some analytical results of the measured runoff during 1950s to 1980s at outlet hydrological stations of 33 main rivers and climatic data collected from 84 meteorological stations in Xinjiang Autonomous Region are presented. Comparison of hydrological and climatic parameters before and after 1980 shows that the spring runoff for most rivers after 1980s increased obviously at a rate of about 10%, though the spring air temperature did not rise very much. Especially. an increment by 20% for alpine runoff is observed during May when intensive snow melting occurred in the alpine region. To the contmy, the runoff in June decreased about 5%. When the summer or annual runoff is taken into account. direct relationship can be found between the change in runoff and the ratio of glacier-coverage, except the runoff in August when the glacier melting is strong, indicating that climatic warming has an obvious effect on the contribution of glacier melting to the runoff increase

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号