首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Gully morphology characteristics can be used effectively to describe the status of gully development. The Chabagou watershed, located in the hilly‐gully region of the Loess Plateau in China, was selected to investigate gully morphological characteristics using a 3D laser scanning technique (LIDAR). Thirty‐one representative gullies located at different watershed locations and gully orders were chosen to quantitatively describe gully morphology and establish empirical equations for estimating gully volume based on gully length and gully surface area. Images and point cloud data for the 31 gullies were collected, and digital elevation models (DEMs) with 10‐cm resolution were generated. ArcGIS 10.1 was then used to extract fundamental gully morphological parameters covering gully length (L), gully width (WT) and gully depth (D), and some derivative morphological parameters, including gully head curvature (C), gully width–depth ratio (w/d), gully bottom‐to‐top width ratio (WB/WT), gully surface area (Ag) and gully volume (Vg). The results indicated that gullies in the upper watershed and the second order were more developed based on their high values of gully head curvature. The potential for gully development increased from the second order to the fourth order. Within the same gully orders, gullies in the lower watershed were more active with more development potential. A method for differentiating between gully head and gully sidewalls based on the gully head curvature value was proposed with a mean relative error of 8.77%. U‐shaped cross‐sections were widely distributed in the upper watershed and upper positions of a gully, while V‐shaped cross‐sections were widely distributed in the lower watershed and lower positions of a gully. V–L and V–Ag empirical equations with acceptable accuracy were established and can be used to estimate gully erosion in the Loess hilly‐gully region. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
An empirical approach was used to examine the morphology and behaviour of gullies along the eastern shoreline of Lake Huron, Canada. Gully and watershed dimensions and percentage vegetation cover of a sample of 44 gullies were measured from aerial photographs between 1930 and 1992. Gullies with larger watersheds had higher area growth rates. Larger gullies continue to expand over time while small gullies are more likely to become stable. Growth rates increased between 1955 and 1978 because of increased snowfall, extreme flow events, the extension of municipal drains, and the use of subsurface drainage. After 1970, efforts to rehabilitate gullies using drain pipes and check dams contributed to a decrease in gully growth rates. © 1997 John Wiley & Sons, Ltd.  相似文献   

3.
The inhomogeneous and non-flat paleotopography in a depositional landform area profoundly controls the process of modern gully evolution and shapes the structure of a gully network.However,this controlling effect of paleotopography on modern gully evolution is mostly ignored because of the difficulties in paleotopography reconstruction.In this study,loess area in China is selected as case area for its typical depositional landform area and inhomogeneous and non-flat paleotopography during the Quaternary.The paleotopography underlying loess is considered while evaluating its controlling effects on the gully evolutionary process.On the basis of the geophysical prospecting,detailed geological information,and high-resolution digital elevation model,we reconstruct the pre-Quaternary paleotopographic surface in the case area.Comparative analysis is conducted to reveal the modern gully evolution in relation to the paleotopography.Results show that the concave area of the paleotopography acts as the basement of the high-order modern gully evolution in the hilly-gully area,although this concave area can be covered and buried by the loess depositional process during the Quaternary.A significant controlling effect of paleotopography on high-order modern gully evolution can be observed in a depositional landform with a hilly-gully underlying topography,whereas a relatively weak controlling effect exists in a flat underlying topographical area because of the strong horizontal shift effect of gully formation process.Several low-order modern gullies also exist and limit the controlling effect of paleotopography.These results reveal a controlled high-order modern gully evolutionary process and a rather dynamic low-order modern gully evolutionary process in the hilly-gully area.These results also help us understand the variations in different modern gully evolution in relation to paleotopography and the different management schemes for soil conservation and ecological restoration during the gully evolutionary process.  相似文献   

4.
As a result of serious soil erosion on the Loess Pla-teau of China, about 1.6 billion tons of silt discharge into the downstream and 0.4 billion tons deposit on the riverbed every year, causing serious threat to the life and property of the local people on both banks of the lower Yellow River[1]. Since the 1950s, the Chinese government has initiated the work on soil and water conservation and environmental management on the Loess Plateau and formulated the guiding principle of hillslope and …  相似文献   

5.
1 INTRODUCTION Erosion caused by ephemeral flows is a frequent phenomenon in nature and contributes to the shape of the landscape. This type of erosion may cause great soil losses in agricultural areas, which are quickly transferred to the watershed outlets through the rill and gully network (Bennett et al., 2000; Poesen et al., 2003). Concentrated flow erosion is controlled by the erodibility of surface materials, climate, soil use and management, and watershed topography. Several metho…  相似文献   

6.
The underlying pre‐existing paleotopography directly influences the loess deposition process and shapes the morphology of current loess landforms. An understanding of the controlling effects of the underlying paleotopography on loess deposition is critical to revealing the mechanism of loess‐landform formation. However, these controlling effects exhibit spatial variation as well as uncertainty, depending on a study's data sources, methodologies and particular research scope. In this study, the geological history of a study area in the Loess Plateau of China that is subject to severe soil erosion is investigated using detailed geological information and digital elevation models (DEMs), and an underlying paleotopographic model of the area is constructed. Based on the models of modern terrain and paleotopography, we introduce a watershed hierarchy method to investigate the spatial variation of the loess‐landform inheritance relationship and reveal the loess deposition process over different scales of drainage. The landform inheritance relationships were characterized using a terrain‐relief change index (TRCI) and a bedrock terrain controllability index (BTCI). The results show that the TRCI appears to have an inverse relationship with increasing research scope, indicating that, compared with the paleotopography of the region, modern terrain has lower topographic relief over the entire area, while it has higher topographic relief in the smaller, local areas. The BTCI strengthens with increasing drainage area, which demonstrates a strong controlling effect over the entire study area, but a weak effect in the smaller, local areas because of the effect of paleotopography on modern terrain. The results provide for an understanding of the spatial variation of loess deposition in relation to paleotopography and contribute to the development of a process‐based loess‐landform evolution model. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
The loess landform in the Loess Plateau of China is with typical dual structure, namely, the upper smooth positive terrain and the lower cliffy negative terrain (P–N terrain for short). Obvious differences in their morphological feature, geomorphological mechanism, and hydrological process could be found in the both areas. Based on the differences, a flow‐routing algorithm that separately addresses the dual‐structure terrain would be necessary to encompass this spatial variation in their hydrological behaviour. This paper proposes a mixed flow‐routing algorithm to address aforementioned problems. First, the loess landform surface is divided into P–N terrains based on digital elevation models. Then, specific catchment area is calculated with the new algorithm to simulate the water flows in both positive and negative terrain areas. The mixed algorithm consists of the multiple flow‐routing algorithm (multiple‐flow direction) for positive areas and the D8 algorithm for negative areas, respectively. The approach is validated in two typical geomorphologic areas with low hills and dense gullies in the northern Shaanxi Loess Plateau. Four indices are used to examine the results, which show that the new algorithm is more suitable for loess terrain in simulating the spatial distribution of water accumulation, as well as in modeling the flow characteristics of the true surface by considering the morphological structures of the terrain. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
This study explores the frequency of bedrock exposure in a soil‐mantled low‐relief (i.e. non‐mountainous) landscape. In the High Plains of eastern Colorado, gully headcuts are among the few erosional features that will incise through the soil mantle to expose bedrock. We measured the last time of bedrock exposure using optically stimulated luminescence dating of alluvial sediment overlying bedrock in gully headcuts. Our dating suggests that headcuts in adjacent gullies expose bedrock asynchronously, and therefore, the headcuts are unlikely to have been triggered by a base‐level drop in the trunk stream. This finding supports the hypothesis that headcuts can develop locally in gullies as a result of focused scour in locations where hydraulic stress during a flash flood is sufficiently high, and/or ground cover is sufficiently weak, to generate a scour hole that undermines vegetation. Alluvium dating also reveals that gullies have been a persistent part of this landscape since the early Holocene. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Erosion caused by concentrated flows in agricultural areas is responsible for important soil losses, and rapid sediment transfer through the channel network. The main factors controlling concentrated flow erosion rates include the erodibility of soil materials, soil use and management, climate and watershed topography. In this paper, two topographic indices, closely related to mathematical expressions suggested by different authors, are used to characterize the influence of watershed topography on gully erosion. The AS1 index is defined as the product of the watershed area and the partial area‐weighted average slope. The AS2 index is similar to the AS1 but uses the swale slope as the weighting factor. Formally, AS2 is the product of the watershed area and the length‐weighted average swale slope. From studies made using different ephemeral gully erosion databases, it is shown that a high correlation consistently exists between the topographic indices and the volume of eroded soil. The resulting relationships are therefore useful to assess soil losses from gully erosion, to identify the most susceptible watersheds within large areas, and to compare the susceptibility to gully erosion among different catchments. This information is also important in studying the response of natural drainage network systems to different rainfall inputs. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
Sediment yield is a complex function of many environmental factors including climate,hydrology,vegetation,basin topography,soil types,and land cover.We present a new semi-physical watershed sediment yield model for the estimation of suspended sediment in loess region.This model is composed by three modules in slope,gully,and stream phases.For slope sediment yield,a balance equation is established based on the concept of hydraulic erosion capacity and soil erosion resistance capacity.According to the statistical analysis of watershed characteristics,we use an exponential curve to approximately describe the spatial variability of watershed soil erosion resistance capacity.In gully phase,the relationship between gully sediment concentration and flow velocity is established based on the Bagnold'stream power function.In the stream phase,we assume a linear dependence of the sediment volume in the reach on the weighted sediment input and output.The proposed sediment yield model is operated in conjunction with a conceptual hydrologic model,and is tested over 16 regions including testing grounds,and small,medium and large watersheds in the loess plateau region in the mid-reach of Yellow River.Our results indicate that the model is reasonable in structure and is able to provide a good simulation of sediment generation and transportation processes at both flood event scale and inter-annual time scale.The proposed model is generally applicable to the watersheds with soil texture similar to that of the loess plateau region in the Yellow River basin in China.  相似文献   

11.
Sequential aerial photographs of a small headwater catchment in the Waiapu basin, East Coast Region, North Island, New Zealand, were interpreted to measure and analyse temporal changes in active area of gullies and gully complexes for a longer time span (1939–2003) and with higher temporal resolution compared to previous studies. We focus on the conditions leading to the development of gullies and gully complexes under pasture and forest by using topographic thresholds (slope–area relationships) of catchments for the initiation of gullies and gully complexes. In addition, the influence of two different lithologies as well as the occurrence of major rainfall events was related to gully activity. Twenty gullies and four gully complexes (occupying 62·5 ha or 12·5 per cent of the catchment area) occurred in the study catchment between 1939 and 2003. However, the majority of these were not active at all of the dates studied. Gullies developed in the sandstone‐dominated Tapuwaeroa Formation tended to attain their maximum size by 1957 with a mean catchment area of 2·1 ha. Gullies developed in mudstone of the Whangai Formation attained their maximum size in 1939 with a mean catchment area of 4·31 ha. Exceptions are gullies which developed into mass movement deposits or into an earth flow deposit as well as gullies developed under indigenous forest. Topographic threshold values for gullies under pasture and indigenous forest show that values for gullies under forest plot far above the threshold line of gullies under pasture, indicating that the topographical threshold for gully development under forest is higher compared to under pasture. A threshold value of 9·4 ha in catchment area is needed for the development of gully complexes under pasture, all located in the Whangai Formation and with the same orientation as the strike of the mudstones. Gully‐complex area and dominance of mass‐movement erosion increased with larger catchment area. A decreasing distance to the threshold line for gullies under pasture indicates a later development for gully complexes. No gully complexes developed under indigenous forest, indicating that the threshold value for gully‐complex development is higher than for gully complexes under pasture and was not reached in the study area. A model of shifting topographical threshold for gully development for a given catchment is developed which depends on land use. When a catchment has an indigenous forest cover the topographical threshold is very high. After conversion to pasture, threshold values decrease drastically. With the invasion of scrub, the threshold slowly increases and returns to a similar level to that under indigenous forest after reforestation. Development of gullies and gully complexes is a highly dynamic phenomenon, and phases of expansion and inactivity indicate that models describing only unidirectional advancing stages without periods of inactivity are not suitable. Therefore, this study adds more phases to models of gully and gully‐complex development in the East Coast Region. The threshold line for gully initiation under pasture and a value of 9·4 ha in catchment area for gully‐complex initiation permits one to predict which catchments, under similar environmental settings, develop gullies and gully complexes on a physical basis. This enables land managers to implement sustainable land‐use strategies to reduce erosion rates of gullies and gully complexes. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
FORMATION AND EROSION PROCESSES OF THE LOESS PLATEAU   总被引:2,自引:0,他引:2  
IPROCESSANDZONINGOFLOESSACCUMULATIONLoessisatypicalkindofaeoliansediment,theprocessesofitsgeomorphicformationcanbesummarizedasfollows.l.lWell-distributedDustFalloutfromHighAltitudeThedustisdefinedasthefineparticles(<0.1mm)whichcanbeliftedandcarriedupasdustcloudsintheaiLIftheoriginallandsurfaceofaregionisanevenhighlandsurroundedbyriversandgullies,thefallingdustremainedonthesurfaceofthisevenhighland,butthedustfallingonslopesoftheriverandgullieswastransportedoutoftheregion.Onthet…  相似文献   

13.
Gully erosion is a major environmental threat on the Moldavian Plateau (MP) of eastern Romania. The permanent gully systems consist of two main gully types. These are: (1) discontinuous gullies, which are mostly located on hillslopes and (2) large continuous gullies in valley bottoms. Very few studies have investigated the evolution of continuous gullies over the medium to longer term. The main objective of this study was to quantitatively analyse the development of continuous gullies over six decades (1961–2020). The article aimed at predicting temporal patterns of gully head erosion based on field data from multiple gullies. Fourteen representative continuous gullies were selected near the town of Barlad, most of them having catchment areas < 500 ha. Linear gully head retreat (LGHR) and areal gully growth (AGG) rates were quantified for six decades. Two main periods were distinguished and compared (i.e., the wet 1961–1980 period and the drier 1981–2020 period). Results indicate that gully erosion rates have significantly decreased since 1981. The mean LGHR of 7.7 m yr−1 over 60 years was accompanied by a mean AGG of 213 m2 yr−1. However, erosion rates between 1961 and 1980 were 4.0 times larger for LGHR and 5.9 times more for AGG compared to those for 1981–2020. Two regression models indicate that annual precipitation depth (P) is the primary controlling factor, explaining 57% of LGHR and 53% of AGG rate. The contributing area (CA) follows, with ~33%. Only 43% of total change in LGHR and 46% of total change in AGG results from rainfall-induced runoff during the warm season. Accordingly, the cold season (with associated freeze–thaw processes and snowmelt runoff) has more impact on gully development. The runoff pattern, when flow enters the trunk gully head, is largely controlled by the upper approaching discontinuous gully.  相似文献   

14.
The morphological consequences of paraglacial modification of valley-side drift slopes are investigated at six sites in Norway. Here, paraglacial slope adjustment operates primarily through the development of gully systems, whereby glacigenic sediment is stripped from the upper drift slope and redeposited in debris cones downslope. This results in an overall lowering of average gradient by up to 4·5° along gully axes. In general, slope profile adjustment appears to be characterized by a convergence of slope profiles towards an ‘equilibrium form’ with an upper rectilinear slope gradient at 29°± 4° and a range of concavities of approximately 0·0 to 0·4. After initial rapid incision, further gully deepening is limited, but gullies become progressively wider as sidewall gradients decline to c. 25°, after which parallel retreat appears to predominate. The final form of mature paraglacial gully systems consists of an upper bedrock-floored source area, a mid-slope area of broad gullies whose sidewalls rest at stable, moderate gradients, and a lower slope zone where gullies discharge onto the surfaces of debris cones and fans. Some gullies appear to have attained this final form and have stabilized following exhaustion of readily entrainable sediment within decades of gully initiation. At most sites, paraglacial activity has transformed steep drift-mantled valley sides into gullied slopes where an average of c. 2–3 m of surface lowering has taken place. At the most active sites, these average amounts imply minimum erosion rates averaging c. 90 mm a−1 since gully initiation, which highlights the extreme rapidity of paraglacial erosion of deglaciated drift-mantled slopes. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

15.
ROCESSES OF EPHEMERAL GULLY EROSION   总被引:2,自引:0,他引:2  
IINTRoDUCTIONEphemeralgulliesaresmallerosionalchannelsonagriculturalIandscapescausedbytheconcentrationofoverlandflowtypicallybetweentwoopposingslopes(ahollow),oftenformedduringasingIerainfaIlevent.Sincethescouredsoilvolumeisnotverylargewithinthesegullies,farmerscaneasilyrefillthem.Ingeneral,ephemeralgulliescanreappearatornearthesamelocationonayearlybasisbecausethesurfacetopograPhyofthefielddoesnotchangeappreciably.Mostephemeralgulliesoccuroncultivatedfieldswithhighlyerodiblesoils,withlit…  相似文献   

16.
For sake of improving our current understanding on soil erosion processes in the hilly–gully loess regions of the middle Yellow River basin in China, a digital elevation model (DEM)-based runoff and sediment processes simulating model was developed. Infiltration excess runoff theory was used to describe the runoff generation process while a kinematic wave equation was solved using the finite-difference technique to simulate concentration processes on hillslopes. The soil erosion processes were modelled using the particular characteristics of loess slope, gully slope, and groove to characterize the unique features of steep hillslopes and a large variety of gullies based on a number of experiments. The constructed model was calibrated and verified in the Chabagou catchment, located in the middle Yellow River of China and dominated by an extreme soil-erosion rate. Moreover, spatio-temporal characterization of the soil erosion processes in small catchments and in-depth analysis between discharge and sediment concentration for the hyper-concentrated flows were addressed in detail. Thereafter, the calibrated model was applied to the Xingzihe catchment, which is dominated by similar soil erosion processes in the Yellow River basin. Results indicate that the model is capable of simulating runoff and soil erosion processes in such hilly–gully loess regions. The developed model are expected to contribute to further understanding of runoff generation and soil erosion processes in small catchments characterized by steep hillslopes, a large variety of gullies, and hyper-concentrated flow, and will be beneficial to water and soil conservation planning and management for catchments dealing with serious water and soil loss in the Loess Plateau.  相似文献   

17.
A series of housing collapses and other serious damage was caused by the 2008 Wenchuan MS 8.0 earthquake in the seismic intensity Ⅵ areas of the Loess Plateau, which is hundreds of kilometers away from the epicenter, and which showed a remarkable seismic intensity anomaly. The seismic disasters are closely related to the seismic response characteristics of the site, therefore, the systematic study of the far-field seismic response law of the Wenchuan earthquake in the Loess Plateau is of great significance to prevent the far-field disaster of great earthquake. In this paper, the seismic acceleration records of several bedrock stations and loess stations from the seismogenic fault of the Wenchuan earthquake to the Loess Plateau were collected, and the attenuation law of ground motion along the propagation path and the characteristics of seismic response on the loess site are studied, and the mechanism of amplification effect of ground motion is analyzed based on the dynamic feature parameters of the loess site obtained through the HVSR method. Taking a typical loess site of thick deposit as the prototype, a series of shaking table tests of dynamic response of loess site models with different thicknesses were carried out. Amplification effect, spectral characteristics of acceleration in model sites were analyzed under the action of a far-field seismic wave of the Wenchuan earthquake. The results show that seismic attenuation on the propagation path along the NE strike of the seismogenic fault to the Loess Plateau is slower than that in other directions, and the predominant period range of ground motion on bedrock site of the Loess Plateau presents broadband characteristics. Because the natural periods of loess sites with thick deposits are within the predominant period range of bedrock input wave, loess sites appear significant amplification effect of ground motion, the horizontal acceleration of ground motion exceeds 0.1 ?g, the seismic intensity reaches 7°. The thicker the loess deposit is, the more significant the change of spectral characteristics of ground motion on loess sites, and the narrower the predominant period range of ground motion becomes, and the closer it is to the natural period of loess sites. Therefore, for some old houses on thick loess sites, the poor seismic performance and strong seismic response eventually led to their collapses and damages because their natural periods are very close to the predominant period of ground motion of the Wenchuan earthquake on thick loess sites; For these damaged high-rise buildings, the resonance effect might be the main reason for their damages because their natural periods are included in the predominant period range of ground motion of the Wenchuan earthquake on thick loess sites.These research results would provide a basis for seismic disasters prediction and evaluation and seismic design of construction engineering in the Loess Plateau.  相似文献   

18.
Rapid East Asian Monsoon oscillations recorded by Chinese loess are thought to be dynamically linked to north Atlantic climate. However, few efforts have been made to assess the effects of post-depositional processes (e.g., surface mixing and pedogenesis) on loess paleoclimatic records. Here a detailed optically stimulated luminescence dating of a thick loess sequence from the western Loess Plateau is presented, offering a reliable chronology for last glacial deposits. Magnetic susceptibility and mean grain size records from three loess–paleosol sequences along a northwest–southeast transect are investigated to evaluate impacts of post-depositional processes on these loess-based proxy records. Our results indicate that: (1) loess sequences developed within the flat tableland of the central and western Loess Plateau are nearly continuous during the last glaciation; and (2) post-depositional processes have distinct impacts on rapid monsoon signals recorded in loess sequences from different regions. In the central Loess Plateau, rapid monsoon signals have been attenuated to various degrees depending on the sedimentation rate and pedogenic intensity. In the northwestern Loess Plateau, however, due to high sedimentation rate and relatively weak pedogenesis, high-resolution grain size oscillations reliably record rapid monsoon changes and can be well correlated to rapid climate changes recorded in the Greenland ice core and Hulu cave stalagmite.  相似文献   

19.
A typical gully sub-basin with a complex geomorphological form is used to do a model test of gravity erosion of loess by considering the sequence of slopes in a prototype gully creating a sequence of underlying surface forms in the upper reaches. The results show that the runoff from heavy rainfall is the main external force for the erosion of loess, and also is an important influencing factor to stimulate and intensify the development of gravity erosion. The soil structure and the height of the...  相似文献   

20.
Intensive agricultural land use in the 18th to early 20th centuries on the southeastern Piedmont resulted in substantial soil erosion and gully development. Today, many historically farmed areas have been abandoned and afforested, and such landscapes are an opportunity to study channel network recovery from disturbance by gullying. Channel initiation mapping, watershed area–slope relationships, and field monitoring of flow generation processes are used to identify channel network extent and place it in hydrologic, historical and landscape evolution context. In six study areas in the North Carolina Piedmont, 100 channel heads were mapped in fully‐forested watersheds, revealing a channel initiation relationship of 380 = AS1.27, where A is contributing area (m2) and S is local slope (m/m). Flow in these channels is generated by subsurface and overland flow. The measured relative slope exponent is lower than expected based on literature values of ~2 for forested watersheds with subsurface and overland flow, suggesting that the channel network extent may reflect a former hydrological regime. However, geomorphic evidence of recovery in channel heads within fully forested watersheds is greater than those with present day pasture. Present day channel heads lie within hollows or downslope of unchanneled valleys, which may be remnants of historical gullies, and area–slope relationships provide evidence of colluvial aggradation within the valleys. Channel network extent appears to be sensitive to land use change, with recovery beginning within decades of afforestation. Channel initiation mapping and area–slope relationships are shown to be useful tools for interpreting geomorphic effects of land use change. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号