共查询到20条相似文献,搜索用时 15 毫秒
1.
Rill erosion is a serious concern in the hilly region of China with purple soil, and maize is extensively cultivated in this region. Evaluations of the dynamic mechanisms of rill erosion in sloping farmland areas are particularly important during the maize growing season to determine whether rill erosion can occur. A new ridge tillage (RT) system was designed using local agricultural methods in China. Twelve artificial rainfall experiments were conducted in three 1 × 2 m experimental plots with a slope of 15°, which is a typical slope in the study area. The rainfall intensities were designated as 1.0, 1.5, and 2.0 mm min?1. The rainfall experiments were performed in the field to determine the characteristics of run‐off and sediment transport related to rill erosion processes during different stages of maize growth and to analyse how hydraulic parameters and the sediment yield of the rill erosion process are related. The results showed that rill flow patterns were mainly classified as subcritical transition flow during all the growth stages of maize. The effects of hydrodynamic parameters on the sediment yield were ordered as follows: Reynolds number > stream power > Froude number > shear stress. The total sediment yield varied by stage as follows: seedling stage > jointing stage > mature stage > tasseling stage. The sediment yield and run‐off rate exhibited a linear relationship that was well described at the hillslope scale. To initiate soil loss in sloping farmland areas with purple soil during the maize growing season, the critical hydrodynamic shear stress and stream power must be at least 46.505 Pa and 1.541 N m?1 s?1, respectively. 相似文献
2.
Spatial variation in soil resistance to flowing water erosion along a regional transect in the Loess Plateau 总被引:4,自引:0,他引:4 下载免费PDF全文
The factors influencing soil erosion may vary with scale. It remains unclear whether the spatial variation in soil erosion resistance is controlled by regional variables (e.g. precipitation, temperature, and vegetation zone) or by local specific variables (e.g. soil properties, root traits, land use, and farming operations) when the study area enlarges from a hillslope or catchment to the regional scale. This study was performed to quantify the spatial variations in soil erosion resistance to flowing water under three typical land uses along a regional transect on the Loess Plateau and to identify whether regional or local specific variables are responsible for these changes. The results indicated that the measured soil detachment capacities (Dc) of cropland exhibited an irregular trend along the regional transect. The Dc of grassland increased with mean annual precipitation, except for two sites (Yijun and Erdos). The measured Dc of woodland displayed an inverted ‘U’ shape. The changes in rill erodibility (Kr) of three land uses were similar to Dc, whereas no distinguishable trend was found for critical shear stress (τc). No significant correlation was detected between Dc, Kr and τc, and the regional variables. The spatial variation in soil erosion resistance could be explained reasonably by changes in soil properties, root traits, land use, and farming operations, rather than regional variables. The adjustment coefficient of Kr for grassland and woodland could be well simulated by soil cohesion and root mass density (R2 = 0.70, P < 0.01), and the adjustment coefficient of critical shear stress could be estimated with aggregate stability (R2 = 0.57, P < 0.01). The results are helpful for quantifying the spatial variation in soil detachment processes by overland flow and to develop process‐based erosion model at a regional scale. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
3.
In this study our main objective was to quantify water interrill erosion in the sloping lands of Southeast Asia, one of the most bio‐geochemically active regions of the world. Investigations were performed on a typical hillslope of Northern Laos subjected to slash and burn agriculture practiced as shifting cultivation. Situations with different periods of the shifting cultivation cycle (secondary forest, upland rice cultivation following a four‐year fallow period and three‐year continuous upland rice cultivation) and soil orders (Ultisols, Alfisols, Inceptisols) were selected. One metre square micro‐plots were installed to quantify the soil material removed by either detachment of entire soil aggregate or aggregate destruction, and the detached material transported by thin sheet flow, the main mechanisms of interrill erosion. In addition, laboratory tests were carried out to quantify the aggregate destruction in the process of water erosion by slaking, dispersion and mechanical breakdown. The average runoff coefficient (R) evaluated throughout the 2002 rainy season was 30·1 per cent and the interrill erosion was 1413 g m?2 yr?1 for sediments and 68 g C m?2 yr?1 for soil organic carbon, which was relatively high. Among the mechanisms of interrill water erosion, aggregate destruction was low and mostly caused by mechanical breakdown due to raindrops, thus leading to the conclusion that detachment and further transport by the shallow runoff of macro‐aggregates predominates. R ranged from 23·1 to 35·8 per cent. It decreased with the proportion of mosses on the soil surface and soil surface coverage, and increased with increasing proportion of structural crust, thus confirming previous results. Water erosion varied from 621 to 2433 g m?2 yr?1 for sediments and from 31 to 146 g C m?2 yr?1 for soil organic carbon, and significantly increased with increasing clay content of the surface horizon, probably due to the formation of easily detachable and transportable sand‐size aggregates, and proportion of macro‐aggregates not embedded in the soil matrix and prone to transport. In addition, water erosion decreased with increasing proportion of structural crusts, probably due to their higher hardness, and when cultivation follows a fallow period rather than after a long period of cultivation due to the greater occurrence of algae on the soil surface, which affords physical protection and greater aggregate stability through binding and gluing. This study based on simultaneous field and laboratory investigations allowed successful identification and quantification of the main erosion mechanisms and controlling factors of interrill erosion, which will give arguments to further set up optimal strategies for sustainable use of the sloping lands of Southeast Asia. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
4.
Surface roughness and slope gradient are two important factors influencing soil erosion. The objective of this study was to investigate the interaction of surface roughness and slope gradient in controlling soil loss from sloping farmland due to water erosion on the Loess Plateau, China. Following the surface features of sloping farmland in the plateau region, we manually prepared rough surfaces using four tillage practices (contour drilling, artificial digging, manual hoeing, and contour plowing), with a smooth surface as the control measure. Five slope gradients (3°, 5°, 10°, 15°, and 20°) and two rainfall intensities (60 and 90 mm/hr) were considered in the artificial rainfall simulation experiment. The results showed that the runoff volume and sediment yield increased with increasing slope gradient under the same tillage treatment. At gentle slope gradients (e.g., 3° and 5°), the increase in surface roughness prevented the runoff and sediment production, that is, the surface roughness reduced the positive effect of slope gradient on the runoff volume and sediment yield to a certain extent. At steep slope gradients, however, the enhancing effect of slope gradient on soil erosion gradually increased and surpassed the reduction effect of surface roughness. This study reveals the existence of a critical slope gradient that influences the interaction of surface roughness and slope gradient in controlling soil erosion on sloping farmland. If the slope gradient is equal to or less than the critical value, an increase in surface roughness would decrease soil erosion. Otherwise, the increase in surface roughness would be ineffective for preventing soil erosion. The critical slope gradient would be smaller under higher rainfall intensity. These findings are helpful for us to understand the process of soil erosion and relevant for supporting soil and water conservation in the Loess Plateau region of China. 相似文献
5.
6.
Soil erosion by water in abandoned dry terraces is one of the most important environmental problems in semiarid areas, enhancing biological degradation and reducing possible resources that can be obtained. However, little is known about the effects of the types of lithology and soil properties on the early stages of soil erosion. Therefore, the main aim of this research was to assess the effect of different lithologies (marls, limestones, and metamorphic—phyllites, schists, and greywackes—materials) and soil properties on the early stages of soil erosion by water in abandoned dry terraces, compared with similar terraces still in agricultural use. Soil analyses (texture, aggregate stability, and bulk density) and 22 rainfall simulations were carried out under dry conditions. During the experiments, local inclination, vegetation and stone cover, total organic matter, and antecedent soil moisture were also quantified. The results showed that the highest soil loss (41.41 g/m2 in cultivated plots and 17.05 g/m2 in the abandoned plots) and runoff (3.79 L/m2 in the abandoned plot) occurred on marl substrata. Marls also showed the shallowest infiltration front (9 cm) and lowest infiltration rate (4.3 cm/min). Limestones and, especially, metamorphic areas, showed a lower degree of soil erosion, higher infiltration rates, and deeper infiltration fronts. 相似文献
7.
Sediment yields from the rolling hills area of the Loess Plateau in northern China (10000–25000 t km−2 yr−1) are amongst the highest in the world. The sediment is believed to derive from both the deep gullies that dissect the rolling plateau and the steep cultivated fields on the slopes of the mounds between the gullies. However, there are few reliable data for erosion rates on the cultivated fields and it is suspected that current estimates (10000–16000 t km−2 yr−1) based on empirical relationships (derived from erosion plot studies) exceed the true values. This study sought to address the need for more information concerning erosion of the cultivated fields through derivation of erosion rates from measurements of rill volume and caesium-137 (137Cs) inventories for typical fields near the village of Ansai, Shaanxi Province. The derived erosion rates are discussed and compared with estimates based on empirical relationships derived from erosion plot data. Where erosion rate estimates based on both rill volume data and 137Cs inventories are available, they show good agreement in the pattern of downslope variation. Both show a sharp decline in erosion rates at a slope length of c. 50 m. This is tentatively attributed to a change from transport-limited to detachment-limited conditions, where rill incision reaches the undisturbed loess at the base of the plough layer. No such decline is visible in the predictions based on empirical relationships derived from erosion plot data. Further evidence is presented that supports the suggestion that these empirical relationships overestimate erosion rates at slope lengths in excess of c. 50 m. It is tentatively suggested that the rates of soil erosion from sloping cultivated fields in the rolling hills area are more likely to lie in the range 8000–10000 t km−2 yr−1 than in the higher range suggested by the empirical relationships. © 1998 John Wiley & Sons, Ltd. 相似文献
8.
Plant litter can either cover on soil surface or be incorporated into top-soil layer in natural ecosystems. Their effects on infiltration and soil erosion are likely quite different. This study was performed to compare the effects of litter covering on soil surface and being incorporated into top-soil layer on infiltration and soil erosion under simulated rainfall. Four litter types (needle-leaf, broad-leaf, brush, and herb) were collected from fields and applied to cover on soil surface or to be incorporated into top-soil layer (5 cm) at the same rate (0.2 kg/m2). The simulated rainfalls (40 and 80 mm/hr) were run at two slope angles (10° and 20°). The results showed that the mean infiltration rate of litter covering treatment was 1.4 times as great as that of litter incorporated. Litter covering enhanced infiltration via protecting surface from soil sealing. Whereas, litter incorporation affected infiltration by its water repellency. Soil erosion of litter incorporated treatment was 5.4 times as large as that of litter covered treatment, which was attributed to the changes in surface litter coverage and soil erosion resistance. Litter type affected soil erosion through the variations in litter coverage and litter morphology. For litter covering treatment, litter coverage can explain the major variance of soil loss on the slopes. Whereas, for litter incorporated treatment, both the influences of litter coverage and litter length on soil erosion resistance were considered necessary to well explain the variance of soil loss. The results also showed that the benefits of litter to control soil erosion declined with rainfall intensity and slope gradient for both covering and incorporated treatments. The results of this study are helpful to understand the mechanisms of litter influencing hydrological and erosion processes on hillslopes. 相似文献
9.
Temporal variation in soil detachment under different land uses in the Loess Plateau of China 总被引:9,自引:0,他引:9
Measurements of temporal variations in soil detachability under different land uses are badly needed to develop new algorithms or evaluate the existing ones for temporal adjustment of soil detachability in continuous soil erosion models. Few studies have been conducted in the Loess Plateau to quantify temporal variations in detachment rate of runoff under different land uses. The objectives of this study were to investigate the temporal variations of soil detachment rate under different land uses and to further identify the potential factors causing the change in detachment rate in the Loess Plateau. Undisturbed soil samples were collected in the fields of arable land (millet, soybean, corn, and potato), grassland, shrub land, wasteland, and woodland and tested in a laboratory flume under a constant hydraulic condition. The measurements started in mid‐April and ended in early October, 2006. The results showed that soil detachment rate of each land use fluctuated considerably over time. Distinctive temporal variation in detachment rate was found throughout the summer growing season of measurement in each land use. The maximum detachment rates of different land uses varied from 0·019 to 0·490 kg m–2 s–1 and the minimum detachment rates ranged from 0·004 to 0·092 kg m–2 s–1. Statistical analysis using a paired‐samples t‐test indicated that variations in soil detachment rate differed significantly at the 0·05 level between land uses in most cases. The major factors responsible for the temporal variation of soil detachment were tillage operations (such as planting, ploughing, weeding, harvesting), soil consolidation, and root growth. The influence of tillage operations on soil detachment depended on the degree of soil disturbance caused by the operations. The consolidation of the topsoil over time after tillage was reflected by increases in soil bulk density and soil cohesion. As soil bulk density and cohesion increased, detachment rate decreased. The impact of root density was inconclusive in this study. Further studies are needed to quantify the effects of root density on temporal variations of soil detachment. This work provides useful information for developing temporal adjustments to soil detachment rate in continuous soil erosion models in the Loess Plateau. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
10.
Volker Prasuhn 《地球表面变化过程与地形》2020,45(7):1539-1554
Long-term field assessments of soil erosion on the landscape scale are very scarce. Such monitoring programmes create sound data regarding severity, extent, frequency and types of soil erosion and the vulnerability of particular crops. In a 20-year monitoring programme between 1997 and 2017, accurate erosion damage mapping was carried out on 203 fields on arable land in the Canton of Berne (Switzerland). During 115 field inspections, 4060 field years and 2165 mapped erosion systems were recorded. Because several soil conservation programmes were implemented during this period, two 10-year time periods (1st October 1997 to 30th September 2007 [P1] and 1st October 2007 to 30th September 2017 [P2]) were established and compared. The soil erosion rate was already low in P1 (mean: 0.74 t ha−1 year−1), but decreased significantly in P2 (mean: 0.20 t ha−1 year−1). During P1 and P2, respectively, 12 and 42% of the fields were without any visible erosion. Within 10 years, erosion occurred on each field on average 3.2 times in P1 and only 1.3 times in P2. Soil losses are spatially concentrated and linked to topographically defined pathways (thalwegs, slope depressions) or human-made flow pathways (wheel tracks, tramlines, headlands). Financial incentives, rising awareness among farmers, innovative contractor farmers and good extension service of cantonal agencies helped conserve 85% of the arable land in the study area with conservation tillage methods by 2015. As a result, soil erosion was significantly reduced. The field-based measurements show that a significant decrease in soil erosion is possible by changes in soil tillage practices and that erosion control is feasible almost everywhere under real-life conditions on farmers’ fields. In this respect, the Frienisberg region is a case example of successful erosion control. © 2020 John Wiley & Sons, Ltd. 相似文献
11.
Modifications are made to the revised Morgan–Morgan–Finney erosion prediction model to enable the effects of vegetation cover to be expressed through measurable plant parameters. Given the potential role of vegetation in controlling water pollution by trapping clay particles in the landscape, changes are also made to the way the model deals with sediment deposition and to allow the model to incorporate particle‐size selectivity in the processes of erosion, transport and deposition. Vegetation effects are described in relation to percentage canopy cover, percentage ground cover, plant height, effective hydrological depth, density of plant stems and stem diameter. Deposition is modelled through a particle fall number, which takes account of particle settling velocity, flow velocity, flow depth and slope length. The detachment, transport and deposition of soil particles are simulated separately for clay, silt and sand. Average linear sensitivity analysis shows that the revised model behaves rationally. For bare soil conditions soil loss predictions are most sensitive to changes in rainfall and soil parameters, but with a vegetation cover plant parameters become more important than soil parameters. Tests with the model using field measurements under a range of slope, soil and crop covers from Bedfordshire and Cambridgeshire, UK, give good predictions of mean annual soil loss. Regression analysis of predicted against observed values yields an intercept value close to zero and a line slope close to 1·0, with a coefficient of efficiency of 0·81 over a range of values from zero to 38·6 t ha?1. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
12.
Hairu Li Gang Liu Ju Gu Hong Chen Hongqiang Shi Mohamed A. M. Abd Elbasit Feinan Hu 《水文研究》2021,35(2):e14060
Aggregate disintegration is a critical process in soil splash erosion. However, the effect of soil organic carbon (SOC) and its fractions on soil aggregates disintegration is still not clear. In this study, five soils with similar clay contents and different contents of SOC have been used. The effects of slaking and mechanical striking on splash erosion were distinguished by using deionized water and 95% ethanol as raindrops. The simulated rainfall experiments were carried out in four heights (0.5, 1.0, 1.5 and 2.0 m). The result indicated that the soil aggregate stability increased with the increases of SOC and light fraction organic carbon (LFOC). The relative slaking and the mechanical striking index increased with the decreases of SOC and LFOC. The reduction of macroaggregates in eroded soil gradually decreased with the increase of SOC and LFOC, especially in alcohol test. The amount of macroaggregates (>0.25 mm) in deionized water tests were significantly less than that in alcohol tests under the same rainfall heights. The contribution of slaking to splash erosion increased with the decrease of heavy fractions organic carbon. The contribution of mechanical striking was dominant when the rainfall kinetic energy increased to a range of threshold between 9 J m−2 mm−1 and 12 m−2 mm−1. This study could provide the scientific basis for deeply understanding the mechanism of soil aggregates disintegration and splash erosion. 相似文献
13.
Obtaining good quality soil loss data from plots requires knowledge of the factors that affect natural and measurement data variability and of the erosion processes that occur on plots of different sizes. Data variability was investigated in southern Italy by collecting runoff and soil loss from four universal soil‐loss equation (USLE) plots of 176 m2, 20 ‘large’ microplots (0·16 m2) and 40 ‘small’ microplots (0·04 m2). For the four most erosive events (event erosivity index, Re ≥ 139 MJ mm ha?1 h?1), mean soil loss from the USLE plots was significantly correlated with Re. Variability of soil loss measurements from microplots was five to ten times greater than that of runoff measurements. Doubling the linear size of the microplots reduced mean runoff and soil loss measurements by a factor of 2·6–2·8 and increased data variability. Using sieved soil instead of natural soil increased runoff and soil loss by a factor of 1·3–1·5. Interrill erosion was a minor part (0·1–7·1%) of rill plus interrill erosion. The developed analysis showed that the USLE scheme was usable to predict mean soil loss at plot scale in Mediterranean areas. A microplot of 0·04 m2 could be used in practice to obtain field measurements of interrill soil erodibility in areas having steep slopes. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
14.
Nikolaos Efthimiou 《水文科学杂志》2019,64(9):1095-1116
The study aims to investigate the effect of soil properties delineation on erosion modelling. To that end, the soil attributes of the Venetikos River catchment, northwestern Greece, are described using two pedological datasets, i.e. field samples and classification maps. The goal is to select the most appropriate for the accurate estimation of erosion. The Revised Morgan-Morgan-Finney (RMMF) model is developed per base map (annual or multi-annual), keeping all other parameters unchanged. Modelled sediment yield (SY) values are validated against “observed” ones, calculated utilizing the sediment rating curve methodology. Overall, the classification maps approach (164.35 t km-2 year?1) performed better than the soil samples one (82.97 t km-2 year?1), displaying higher convergence to the synthetic SY (548.9 t km-2 year?1). The discrepancy among approaches is attributed to the different computation methodologies (thus pedological background) used. Both approximations successfully identified the high-risk erosion areas. The same conclusions arose from the multi-annual application of the model. 相似文献
15.
Groundwater provides an important source of water for maize cultivation where the water table is shallow in the semi-arid Hailiutu River catchment of the Maowusu Desert on the Erdos Plateau in Northwest China. A HYDRUS-1D model of the unsaturated flow beneath a maize (Zea mays L.) field was calibrated and validated with measured soil water contents at various depths during the maize growing period from 30 April to 1 October 2011, and from 23 May to 27 September 2012, respectively. The model computed the actual maize evapotranspiration (ETa) as 580 mm during the whole growing period from 30 April to 1 October 2011. The groundwater contribution to ETa was calculated to be 220 mm, accounting for 38% of maize water use during the growing season in 2011. When the groundwater level drops below a depth of 157 cm, maize can no longer use groundwater for transpiration. The irrigation water requirement increases with the increase of groundwater table depth. These results are very important for managing crop irrigation in the area.
EDITOR D. KoutsoyiannisASSOCIATE EDITOR L. Ruiz 相似文献
16.
Effects of microbiotic crusts under cropland in temperate environments on soil erodibility during concentrated flow 总被引:6,自引:0,他引:6
Several studies illustrate the wind and water erosion‐reducing potential of semi‐permanent microbiotic soil crusts in arid and semi‐arid desert environments. In contrast, little is hitherto known on these biological crusts on cropland soils in temperate environments where they are annually destroyed by tillage and quickly regenerate thereafter. This study attempts to fill the research gap through (a) a field survey assessing the occurrence of biological soil crusts on loess‐derived soils in central Belgium in space and time and (b) laboratory flume (2 m long) experiments simulating concentrated runoff on undisturbed topsoil samples (0.4 × 0.1 m2) quantifying the microbiotic crust effect on soil erosion rates. Three stages of microbiotic crust development on cropland soils are distinguished: (1) development of a non‐biological surface seal by raindrop impact, (2) colonization of the soil by algae and gradual development of a continuous algal mat and (3) establishment of a well‐developed microbiotic crust with moss plants as the dominant life‐form. As the silt loam soils in the study area seal quickly after tillage, microbiotic soil crusts are more or less present during a large part of the year under maize, sugar beet and wheat, representing the main cropland area. On average, the early‐successional algae‐dominated crusts of stage 2 reduce soil detachment rates by 37%, whereas the well‐developed moss mat of stage 3 causes an average reduction of 79%. Relative soil detachment rates of soil surfaces with microbiotic crusts compared with bare sealed soil surfaces are shown to decrease exponentially with increasing microbiotic cover (b = 0·024 for moss‐dominated and b = 0·006 for algae‐dominated crusts). In addition to ground surface cover by vegetation and crop residues, microbiotic crust occurrence can therefore not be neglected when modelling small‐scale spatial and temporal variations in soil loss by concentrated flow erosion on cropland soils in temperate environments. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
17.
This study aimed to investigate the changing characteristics of microrelief of purple soil and its erosional response during successive stages of water erosion, including splash erosion, sheet erosion, and rill erosion. Methods employed included a rainfall simulator and the use of a laser scanner to generate a digital elevation model. Three artificial tillage practices, including conventional tillage (CT), artificial digging (AD), and ridge tillage (RT), were used to simulate different microrelief patterns. Eighteen artificial rainfall experiments were conducted using three 2 × 1 m boxes with a rainfall intensity of 1.5 mm min?1 on a 15° slope. The results showed that the soil roughness (SR) index values for the tillage slopes were RT > AD > CT. The combined effects of detachment by raindrop impact and transport by run‐off decreased the SR index, whereas rill erosion increased the SR index during rainfall event. Microtopography and drainage networks have strong multifractal behaviours. The multifractal parameters of microtopography reflect the overall characteristics as well as the characteristics of the local soil surface. Within a certain range of threshold values, higher microrelief causes less soil erosion. However, when the parameters of spatial heterogeneity of microtopography exceed the threshold values, a higher degree of microrelief can increase soil erosion. These results help clarify the effect of microtopography on soil erosion and provide a theoretical foundation to guide future tillage practices on sloping farmland of purple soil. 相似文献
18.
Modelling the effect of soil burn severity on soil erosion at hillslope scale in the first year following wildfire in NW Spain 总被引:1,自引:0,他引:1 下载免费PDF全文
Fire severity is recognized as a key factor in explaining post‐fire soil erosion. However, the relationship between soil burn severity and soil loss has not been fully established until now. Sediment availability may also affect the extent of post‐fire soil erosion. The objective of this study was to determine whether soil burn severity, estimated by an operational classification system based on visual indicators, can significantly explain soil loss in the first year after wildfire in shrubland and other areas affected by crown fires in northwest (NW) Spain. An additional aim was to establish indicators of sediment availability for use as explanatory variables for post‐fire soil loss. For these purposes, we measured hillslope‐scale sediment production rates and site characteristics during the first year after wildfire in 15 experimental sites using 65 plots. Sediment yields varied from 0.2 Mg ha?1 to 50.1 Mg ha?1 and soil burn severity ranged from low (1.8) to very high (4.5) in the study period. A model that included soil burn severity, annual precipitation and a land use factor (as a surrogate for sediment availability) as explanatory variables reasonably explained the erosion losses measured during the first year after fire. Model validation confirmed the usefulness of this empirical model. The proposed empirical model could be used by forest managers to help evaluate erosion risks and to plan post‐fire stabilization activities. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
19.
Arjun M. Heimsath William E. Dietrich Kunihiko Nishiizumi Robert C. Finkel 《地球表面变化过程与地形》2001,26(5):531-552
Landscapes in areas of active uplift and erosion can only remain soil‐mantled if the local production of soil equals or exceeds the local erosion rate. The soil production rate varies with soil depth, hence local variation in soil depth may provide clues about spatial variation in erosion rates. If uplift and the consequent erosion rates are sufficiently uniform in space and time, then there will be tendency toward equilibrium landforms shaped by the erosional processes. Soil mantle thickness would adjust such that soil production matched the erosion. Previous work in the Oregon Coast Range suggested that there may be a tendency locally toward equilibrium between hillslope erosion and sediment yield. Here results from a new methodology based on cosmogenic radionuclide accumulation in bedrock minerals at the base of the soil column are reported. We quantify how soil production varies with soil thickness in the southern Oregon Coast Range and explore further the issue of landscape equilibrium. Apparent soil production is determined to be an inverse exponential function of soil depth, with a maximum inferred production rate of 268 m Ma?1 occurring under zero soil depth. This rate depends, however, on the degree of weathering of the underlying bedrock. The stochastic and large‐scale nature of soil production by biogenic processes leads to large temporal and spatial variations in soil depth; the spatial variation of soil depth neither supports nor rejects equilibrium morphology. Our observed catchment‐averaged erosion rate of 117 m Ma?1 is, however, similar to that estimated for the region by others, and to soil production rates under thin and intermediate soils typical for the steep ridges. We suggest that portions of the Oregon Coast Range may be eroding at roughly the same rate, but that local competition between drainage networks and episodic erosional events leads to landforms that are out of equilibrium locally and have a spatially varying soil mantle. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
20.
Effects of rock fragments incorporated in the soil matrix on concentrated flow hydraulics and erosion 总被引:6,自引:0,他引:6
Rock fragments can act as a controlling factor for erosional rates and patterns in the landscape. Thus, the objective of this study is to better understand the role that rock fragments incorporated into the soil matrix play in concentrated flow hydraulics and erosion. Laboratory flume experiments were conducted with soil material that was mixed with rock fragments. Rock fragment content ranged from 0 to 40 per cent by volume. Other treatments were slope (7 and 14%) and flow discharge (5·7 and 11·4 l min?1). An increase in rock fragment content resulted in lower sediment yield, and broader width of flow. Rock fragment cover at the soil surface, i.e. surface armour, increased with time in experiments with rock fragments. Flow energy was largely dissipated by rock fragment cover. For more turbulent flow conditions, when roughness elements were submerged in the flow, hydraulic roughness was similar for different rock fragment contents. In experiments with few or no rock fragments a narrow rill incised. Flow energy was dissipated by headcuts. Total sediment yield was much larger than for experiments with rock fragments in the soil. Adding just a small number of rock fragments in the soil matrix resulted in a significant reduction of sediment yield. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献