首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The quantitative evaluation of the effects of bedrock groundwater discharge on spatial variability of stream dissolved organic carbon (DOC), dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorous (DIP) concentrations has still been insufficient. We examined the relationships between stream DOC, DIN and DIP concentrations and bedrock groundwater contribution to stream water in forest headwater catchments in warm-humid climate zones. We sampled stream water and bedrock springs at multiple points in September and December 2013 in a 5 km2 forest headwater catchment in Japan and sampled groundwater in soil layer in small hillslopes. We assumed that stream water consisted of four end members, groundwater in soil layer and three types of bedrock groundwater, and calculated the contributions of each end member to stream water from mineral-derived solute concentrations. DOC, DIN and DIP concentrations in stream water were compared with the calculated bedrock groundwater contribution. The bedrock groundwater contribution had significant negative linear correlation with stream DOC concentration, no significant correlation with stream DIN concentration, and significant positive linear correlation with stream DIP concentration. These results highlighted the importance of bedrock groundwater discharge in establishing stream DOC and DIP concentrations. In addition, stream DOC and DIP concentrations were higher and lower, respectively, than those expected from end member mixing of groundwater in soil layer and bedrock springs. Spatial heterogeneity of DOC and DIP concentrations in groundwater and/or in-stream DOC production and DIP uptake were the probable reasons for these discrepancies. Our results indicate that the relationships between spatial variability of stream DOC, DIN and DIP concentrations and bedrock groundwater contribution are useful for comparing the processes that affect stream DOC, DIN and DIP concentrations among catchments beyond the spatial heterogeneity of hydrological and biogeochemical processes within a catchment.  相似文献   

2.
The relationship between stream water DOC concentrations and soil organic C pools was investigated at a range of spatial scales in subcatchments of the River Dee system in north‐east Scotland. Catchment percentage peat cover and soil C pools, calculated using local, national and international soils databases, were related to mean DOC concentrations in streams draining small‐ (<5 km2), medium‐ (12–38 km2) and large‐scale (56–150 km2) catchments. The results show that, whilst soil C pool is a good predictor of stream water DOC concentration at all three scales, the strongest relationships were found in the small‐scale catchments. In addition, in both the small‐ and large‐scale catchments, percentage peat cover was as a good predictor of stream water DOC concentration as catchment soil C pool. The data also showed that, for a given soil C pool, streams draining lowland (<700 m) catchments had higher DOC concentrations than those draining upland (>700 m) catchments, suggesting that disturbance and land use may have a small effect on DOC concentration. Our results therefore suggest that the relationship between stream water DOC concentration and catchment soil C pools exists at a range of spatial scales and this relationship appears to be sufficiently robust to be used to predict the effects of changes in catchment soil C storage on stream water DOC concentration. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
Dissolved organic carbon (DOC) was measured at four or eight hour intervals between mid-1989 and mid-1991 in two catchments in west central Scotland. The experimental catchment had been recently clear-felled and the control remained under forest. The amount of DOC varied during individual storm events following the stream hydro-graph. Maximum variations were found in the summer half-year and in the clear-felled catchment. There was also evidence of the exhaustion of DOC in the later events of a sequence. Differences between the catchments were related to catchment characteristics and to land-use change. The reduced magnitude of variation in DOC with discharge in the control stream was due to the influence of a wetland area through which the stream flowed. The mean DOC concentrations were similar in the two streams and annual exports were 15 g m?2 from the control and 16g m?2 from the felled catchment. The stream draining the clear-felled catchment had greater high flow DOC concentrations in the summer half-year, probably due to the effect of greater mean summer temperatures on DOC release and of the greater supply of organic debris in the stream channel.  相似文献   

4.
Increasing dissolved organic carbon (DOC) concentrations have been reported during the last 15 years in streams from the United Kingdom, Northern Europe and North America. Identifying the sources of DOC and the controls of the delivery to the stream is important to understand the significance of these trends. This relies on the availability of observations of DOC dynamics during storm events, since much of the DOC export from soils to streams occurs during high flows. This study analyses DOC data for eight storm events during winter 2005–2006 in a small agricultural experimental catchment—the Kervidy‐Naizin experimental catchment—located in Western France. A four end‐member mixing approach was applied to the eight monitored storm events to identify DOC sources and quantify their respective contribution to DOC stream fluxes, using DOC, nitrate, sulphate and chloride as tracers. The results show that DOC concentrations in the stream at the outlet of this catchment increase markedly during storm events. The slope of the linear regression between DOC concentration and discharge was not constant for the eight events and depended on pre‐event hydrological conditions. Between 64 and 86% of the DOC that enter the stream during storms originated from the upper layers of the riparian wetland soils. The variation of the delivery of DOC seems to be controlled by hydrological processes only, the wetland soils acting as a non‐limiting store. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
C. Soulsby 《Journal of Hydrology》1995,170(1-4):159-179
The hydrochemistry of stream water in an acidic afforested catchment in the Welsh uplands was monitored routinely between 1985 and 1990. Nineteen storm episodes were sampled intensively during this period. Although the general storm response of the stream can be characterised by increased concentrations of H+, Al and dissolved organic carbon (DOC), and a dilution of Ca and SiO2, the detailed hydrochemistry of individual acid episodes exhibited marked contrasts. The minimum pH reached during specific episodes ranged from 4.1 to 5.0, and peak dissolved Al concentrations varied from 9 to 44 μmol l−1. The reasons for such differences in the hydrochemical response can be identified for each individual episode by examining the complex interactions between (1) the quantity and quality of event precipitation, (2) antecedent patterns of weather and atmospheric deposition and (3) the hydrological processes which dominate the storm runoff response. The dynamic nature of catchment hydrology was found to exert a particularly strong influence on the hydrochemistry of specific acid episodes.  相似文献   

6.
Hydrology and solute concentrations of two intermittent Mediterranean streams draining two nested catchments were compared. The two catchments were mainly underlain by granitic rocks and different types of sericitic schists. Only the lowland catchment had an alluvial zone and a well‐developed riparian forest. The rainfall–runoff relationship and the correlation between daily flow concentrations showed that hydrological behaviour was similar at both sites during most of the year. However, reverse fluxes were detected during the wetting and drying up periods only in the stream with an alluvial zone. The intermittence in stream flow also had effects on absolute solute concentrations, temporal solute dynamics and streamwater stoichiometry. Streamwater chemistry was not affected by drainage area, except for cations produced mainly by bedrock dissolution (i.e. calcium and magnesium) that increased with increasing catchment size. Differences in the relationship among cations and anions were detected between the two streams, which could be attributed to biogeochemical processes occurring in the alluvial zone. The multivariate model used in this study showed that stoichiometry was more useful than absolute concentrations when analyzing the influence of different lithologies on streamwater chemistry. Such differences were amplified in autumn, likely due to a low hydrological connectivity between the two nested catchments. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Dissolved organic matter (DOM) is integral to fluvial biogeochemical functions, and wetlands are broadly recognized as substantial sources of aromatic DOM to fluvial networks. Yet how land use change alters biogeochemical connectivity of upland wetlands to streams remains unclear. We studied depressional geographically isolated wetlands on the Delmarva Peninsula (USA) that are seasonally connected to downstream perennial waters via temporary channels. Composition and quantity of DOM from 4 forested, 4 agricultural, and 4 restored wetlands were assessed. Twenty perennial streams with watersheds containing wetlands were also sampled for DOM during times when surface connections were present versus absent. Perennial watersheds had varying amounts of forested wetland (0.4–82%) and agricultural (1–89%) cover. DOM was analysed with ultraviolet–visible spectroscopy, fluorescence spectroscopy, dissolved organic carbon (DOC) concentration, and bioassays. Forested wetlands exported more DOM that was more aromatic‐rich compared with agricultural and restored wetlands. DOM from the latter two could not be distinguished suggesting limited recovery of restored wetlands; DOM from both was more protein‐like than forested wetland DOM. Perennial streams with the highest wetland watershed cover had the highest DOC levels during all seasons; however, in fall and winter when temporary streams connect forested wetlands to perennial channels, perennial DOC concentrations peaked, and composition was linked to forested wetlands. In summer, when temporary stream connections were dry, perennial DOC concentrations were the lowest and protein‐like DOM levels the highest. Overall, DOC levels in perennial streams were linked to total wetland land cover, but the timing of peak fluxes of DOM was driven by wetland connectivity to perennial streams. Bioassays showed that DOM linked to wetlands was less available for microbial use than protein‐like DOM linked to agricultural land use. Together, this evidence indicates that geographically isolated wetlands have a significant impact on downstream water quality and ecosystem function mediated by temporary stream surface connections.  相似文献   

8.
In 2002–2004 we undertook six sampling campaigns during representative hydrological stages in a 901 km2 Estonian lowland catchment to quantify the spatial and seasonal variability of in‐stream dissolved inorganic nitrogen (DIN) and dissolved reactive phosphorus (DRP) concentrations and to identify the influence of land cover and landscape structure. Using a synoptic approach we mapped concentrations in all stream orders. Using linear regression, the relations between the share of agricultural land and log‐transformed in‐stream concentrations were explored. Both the share of agricultural land in the entire ‘area of influence’ upstream from a sampling location, as well as the share in a 150‐m buffer around the stream were used as linear regression input variables. Log‐transformed DIN and DRP concentration variability was highest for lower order streams, while it averaged out in higher order streams during all seasons. Between‐season variation in export can mainly be attributed to discharge variation. In extremely dry periods, there are no significant relations between land cover/structure and in‐stream ln(DIN) concentrations and only weak relations for ln(DRP) concentrations. In other seasons, the share of agricultural land in the upstream area can explain concentrations in higher order streams better than in lower order streams. The prediction of ln(DIN) concentrations in lower order streams can be improved by using the share of agricultural land in a 150‐m buffer as an input variable. This indicates that hydrological connectivity must be taken into account for lower order streams, while land cover shares are enough to explain concentrations for higher order streams. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Hydrological events transport large proportions of annual or seasonal dissolved organic carbon (DOC) loads from catchments to streams. The timing, magnitude and intensity of these events are very sensitive to changes in temperature and precipitation patterns, particularly across the boreal region where snowpacks are declining and summer droughts are increasing. It is important to understand how landscape characteristics modulate event-scale DOC dynamics in order to scale up predictions from sites across regions, and to understand how climatic changes will influence DOC dynamics across the boreal forest. The goal of this study was to assess variability in DOC concentrations in boreal headwater streams across catchments with varying physiographic characteristics (e.g., size, proportion of wetland) during a range of hydrological events (e.g., spring snowmelt, summer/fall storm events). From 2016 to 2017, continuous discharge and sub-daily chemistry grab samples were collected from three adjacent study catchments located at the International Institute for Sustainable Development-Experimental Lakes Area in northwestern Ontario, Canada. Catchment differences were more apparent in summer and fall events and less apparent during early spring melt events. Hysteresis analysis suggested that DOC sources were proximal to the stream for all events at a catchment dominated by a large wetland near the outlet, but distal from the stream at the catchments that lacked significant wetland coverage during the summer and fall. Wetland coverage also influenced responses of DOC export to antecedent moisture; at the wetland-dominated catchment, there were consistent negative relationships between DOC concentrations and antecedent moisture, while at the catchments without large wetlands, the relationships were positive or not significant. These results emphasize the utility of sub-daily sampling for inferring catchment DOC transport processes, and the importance of considering catchment-specific factors when predicting event-scale DOC behaviour.  相似文献   

10.
11.
In order to investigate the relation between water chemistry and functional landscape elements, spatial data sets of characteristics for 68 small (0·2–1·5 km2) boreal forest catchments in western central Sweden were analysed in a geographical information system (GIS). The geographic data used were extracted from official topographic maps. Water sampled four times at different flow situations was analysed chemically. This paper focuses on one phenomenon that has an important influence on headwater quality in boreal, coniferous forest streams: generation and export of dissolved organic carbon (DOC). It is known that wetland cover (bogs and fens) in the catchment is a major source of DOC. In this study, a comparison was made between a large number of headwater catchments with varying spatial locations and areas of wetlands. How this variation, together with a number of other spatial variables, influences the DOC flux in the streamwater was analysed by statistical methods. There were significant, but not strong, correlations between the total percentages of wetland area and DOC flux measured at a medium flow situation, but not at high flow. Neither were there any significant correlations between the percentage of wetland area connected to streams, nor the percentage of wetland area within a zone 50 m from the stream and the DOC flux. There were, however, correlations between catchment mean slope and the DOC flux in all but one flow situations. This study showed that, considering geographical data retrieved from official sources, the topography of a catchment better explains the variation in DOC flux than the percentage and locations of distinct wetland areas. This emphasizes the need for high‐resolution elevation models accurate enough to reveal the sources of DOC found in headwater streams. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
The conversion of forests into agriculture has been identified as a key process for stream homogenization. However, the effects of this conversion can be scale-dependent. In this context, our aim was to identify the influence of different land uses at different spatial scales (catchment, drainage network and local) on instream features in agricultural streams. We defined six classes of land use: native forest, reforestation, herbaceous and shrubs, pasture, sugarcane and other categories. We obtained 22 variables related to instream, riparian area, stream morphology and water physicochemical characteristics in 86 stream reaches. To identify and isolate the effect of different land uses at different spatial scales on instream features, we performed a partial redundancy analysis (p-RDA). Different land uses and scales influenced instream features and defined two stream groups: (i) homogeneous streams with a higher proportion of sand substrate and instream grasses that were associated with the proportion of herbaceous vegetation at the local scale and with pasture at all scales and (ii) heterogeneous streams with a higher physical habitat integrity associated with the proportion of forest and sugarcane at the local and catchment scales. Land use at the catchment scale affected the physicochemical water properties and stream morphology, whereas stream physical habitat (i.e., substrate, instream cover, marginal vegetation and stream physical habitat condition) was mainly influenced by land use at the local scale (i.e., 150 m radius). Pure catchment, drainage network and local land uses explained 9%, 7% and 4%, respectively, of the total variation of instream features. Thus, to be most effective, stream conservation and restoration efforts should not be limited to only one scale.  相似文献   

13.
Stream chemistry is often used to infer catchment‐scale biogeochemical processes. However, biogeochemical cycling in the near‐stream zone or hydrologically connected areas may exert a stronger influence on stream chemistry compared with cycling processes occurring in more distal parts of the catchment, particularly in dry seasons and in dry years. In this study, we tested the hypotheses that near‐stream wetland proportion is a better predictor of seasonal (winter, spring, summer, and fall) stream chemistry compared with whole‐catchment averages and that these relationships are stronger in dryer periods with lower hydrologic connectivity. We evaluated relationships between catchment wetland proportion and 16‐year average seasonal flow‐weighted concentrations of both biogeochemically active nutrients, dissolved organic carbon (DOC), nitrate (NO3‐N), total phosphorus (TP), as well as weathering products, calcium (Ca), magnesium (Mg), at ten headwater (<200 ha) forested catchments in south‐central Ontario, Canada. Wetland proportion across the entire catchment was the best predictor of DOC and TP in all seasons and years, whereas predictions of NO3‐N concentrations improved when only the proportion of wetland within the near‐stream zone was considered. This was particularly the case during dry years and dry seasons such as summer. In contrast, Ca and Mg showed no relationship with catchment wetland proportion at any scale or in any season. In forested headwater catchments, variable hydrologic connectivity of source areas to streams alters the role of the near‐stream zone environment, particularly during dry periods. The results also suggest that extent of riparian zone control may vary under changing patterns of hydrological connectivity. Predictions of biogeochemically active nutrients, particularly NO3‐N, can be improved by including near‐stream zone catchment morphology in landscape models.  相似文献   

14.
Waterborne carbon (C) export from terrestrial ecosystems is a potentially important flux for the net catchment C balance and links the biogeochemical C cycling of terrestrial ecosystems to their downstream aquatic ecosystems. We have monitored hydrology and stream chemistry over 3 years in ten nested catchments (0.6–15.1 km2) with variable peatland cover (0%–22%) and groundwater influence in subarctic Sweden. Total waterborne C export, including dissolved and particulate organic carbon (DOC and POC) and dissolved inorganic carbon (DIC), ranged between 2.8 and 7.3 g m–2 year–1, representing ~10%–30% of catchment net ecosystem exchange of CO2. Several characteristics of catchment waterborne C export were affected by interacting effects of peatland cover and groundwater influence, including magnitude and timing, partitioning into DOC, POC, and DIC and chemical composition of the exported DOC. Waterborne C export was greater during the wetter years, equivalent to an average change in export of ~2 g m–2 year–1 per 100 mm of precipitation. Wetter years led to a greater relative increase in DIC export than DOC export due to an inferred relative shift in dominance from shallow organic flow pathways to groundwater sources. Indices of DOC composition (SUVA254 and a250/a365) indicated that DOC aromaticity and average molecular weight increased with catchment peatland cover and decreased with increased groundwater influence. Our results provide examples on how waterborne C export and DOC composition might be affected by climate change. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
There are few multibasin analyses of the effects of urban land cover on seasonal stream flow patterns within northern watersheds where winter snow cover is the norm. In this study, the effects of urban cover on stream flow were evaluated at nine catchments in southern Ontario, Canada, which vary greatly in urban impervious cover (1–84%) but cluster into two groups having ≥54% urban impervious area (‘urban’) and ≤11% impervious cover (‘rural’), respectively. Annual and seasonal run‐off totals (millimetres) were similar between the rural and urban groups and were relatively insensitive to urban cover. Instead, urban streams had significantly greater high flow frequency, flow variability and quickflow and lower baseflow compared with rural streams. Furthermore, differences in high flow frequency between urban and rural stream groups were largest in the summer and fall and less extreme in the winter and spring, perhaps because of the homogenizing effect of winter snow cover, frozen ground and spring melt on surface imperviousness. Although the clear clustering of streams into urban and rural groups precluded the identification of a threshold above which urban cover is the primary cause of flow differences, relatively high extreme flow frequency and flow variability in the two most urbanized of the rural streams (10–11% impervious) suggest that it may lie close to this range. Furthermore, whereas total run‐off volumes were not affected by urban cover, increases in stream flashiness and a greater frequency of high flow events particularly during the summer and fall may negatively impact stream biota and favour the transfer of surface‐deposited pollutants to urban streams. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Processes occurring at various scales interact to influence the export of organic carbon from watersheds to freshwater ecosystems and eventually the ocean. The goal of this study was to determine if and how differences in wetland extent and presence of lakes influenced dissolved organic carbon (DOC) concentrations and yields in streams. We monitored stream flow, DOC and dissolved inorganic carbon concentrations periodically for 2 years at four sites with forested watersheds, four sites with wetland watersheds, and four sites with wetland watersheds that also contained in-network lakes. As expected, the presence of wetlands resulted in higher DOC concentrations and yields, but the impact of lakes was less clear on the magnitude of DOC concentrations and yields. With respect to temporal dynamics, we found positive relationships between stream flow and DOC concentration (median r2 = 0.89) in streams without upstream lakes. The relationships for forested sites are among the strongest reported in the literature, and suggest a clear shift in hydrologic flowpath from intersecting mineral soils at low flow, to organic soils at high flow. In streams with upstream lakes, the relationship between flow and concentration was non-significant for three of four sites unless time lags with flow were applied to the concentration data, after which the relationship was similar to the non-lake streams (median r2 = 0.95). These findings suggest that lakes buffering temporal patterns in streams by hydrologically delaying pulses of carbon, but provide little support that in-line lakes have a net effect on carbon exports in this region.  相似文献   

17.
Transportation, sublimation and accumulation of snow dominate snow cover development in the Arctic and produce episodic high evaporative fluxes. Unfortunately, blowing snow processes are not presently incorporated in any hydrological or meteorological models. To demonstrate the application of simple algorithms that represent blowing snow processes, monthly snow accumulation, relocation and sublimation fluxes were calculated and applied in a spatially distributed manner to a 68-km2 catchment in the low Arctic of north-western Canada. The model uses a Landsat-derived vegetation classification and a digital elevation model to segregate the basin into snow ‘sources’ and ‘sinks’. The model then relocates snow from sources to sinks and calculates in-transit sublimation loss. The resulting annual snow accumulation in specific landscape types was compared with the result of intensive surveys of snow depth and density. On an annual basis, 28% of annual snowfall sublimated from tundra surfaces whilst 18% was transported to sink areas. Annual blowing snow transport to sink areas amounted to an additional 16% of annual snowfall to shrub–tundra and an additional 182% to drifts. For the catchment, 19·5% of annual snowfall sublimated from blowing snow, 5·8% was transported into the catchment and 86·5% accumulated on the ground. The model overestimated snow accumulation in the catchment by 6%. The application demonstrates that winter precipitation alone is insufficient to calculate snow accumulation and that blowing snow processes and landscape patterns govern the spatial distribution and total accumulation of snow water equivalent over the winter. These processes can be modelled by relatively simple algorithms, and, when distributed by landscape type over the catchment, produce reasonable estimates of snow accumulation and loss in wind-swept regions. © 1997 John Wiley & Sons, Ltd.  相似文献   

18.
The spatial distribution of source areas and associated residence times of water in the catchment are significant factors controlling the annual cycles of dissolved organic carbon (DOC) concentration in Deer Creek (Summit County, Colorado). During spring snowmelt (April–August 1992), stream DOC concentrations increased with the rising limb of the hydrograph, peaked before maximum discharge, then declined rapidly as melting continued. We investigated catchment sources of DOC to streamflow, measuring DOC in tension lysimeters, groundwater wells, snow and streamflow. Lysimeter data indicate that near-surface soil horizons are a primary contributor of DOC to streamflow during spring snowmelt. Concentrations of DOC in the lysimeters decrease rapidly during the melt period, supporting the hypothesis that hydrological flushing of catchment soils is the primary mechanism affecting the temporal variation of DOC in Deer Creek. Time constants of DOC flushing, characterizing the exponential decay of DOC concentration in the upper soil horizon, ranged from 10 to 30 days for the 10 lysimeter sites. Differences in the rate of flushing are influenced by topographical position, with near-stream riparian soils flushed more quickly than soils located further upslope. Variation in the amount of distribution of accumulated snow, and asynchronous melting of the snowpack across the landscape, staggered the onset of the spring flush throughout the catchment, prolonging the period of increased concentrations of DOC in the stream. Streamflow integrates the catchment-scale flushing responses, yielding a time constant associated with the recession of DOC in the stream channel (84 days) that is significantly longer than the time constants observed for particular locations in the upper soil. © 1997 John Wiley & Sons, Ltd.  相似文献   

19.
The Mediterranean domain is characterized by a specific climate resulting from the close interplay between atmospheric and marine processes and strongly differentiated regional topographies. Corsica Island, a mountainous area located in the western part of the Mediterranean Sea is particularly suitable to quantify regional denudation rates in the framework of a source‐to‐sink approach. Indeed, fluvial sedimentation in East‐Corsica margin is almost exclusively limited to its alluvial plain and offshore domain and its basement is mainly constituted of quartz‐rich crystalline rocks allowing cosmogenic nuclide 10Be measurements. In this paper, Holocene denudation rates of catchments from the eastern part of the island of Corsica are quantified relying on in situ produced 10Be concentrations in stream sediments and interpreted in an approach including quantitative geomorphology, rock strength measurement (with a Schmidt Hammer) and vegetation cover distribution. Calculated denudation rates range from 15 to 95 mm ka‐1. When compared with rates from similar geomorphic domains experiencing a different climate setting, such as the foreland of the northern European Alps, they appear quite low and temporally stable. At the first order, they better correlate with rock strength and vegetation cover than with morphometric indexes. Spatial distribution of the vegetation is controlled by morpho‐climatic parameters including sun exposure and the direction of the main wet wind, so‐called ‘Libecciu’. This distribution, as well as the basement rock strength seems to play a significant role in the denudation distribution. We thus suggest that the landscape reached a geomorphic steady‐state due to the specific Mediterranean climate and that Holocene denudation rates are mainly sustained by weathering processes, through the amount of regolith formation, rather than being transport‐limited. Al/K measurements used as a proxy to infer present‐day catchment‐wide chemical weathering patterns might support this assumption. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Based on measured stream nitrogen concentrations at outlets of 12 small sub‐areas (1·3–54·7 km2) in a largely forested catchment during the base flow period, we investigated the influences of discharges and different catchment characteristics on stream nitrogen concentration. Our field surveys were carried out during the 11‐month's period from April 2001 to February 2002 and the correlations between nitrogen concentrations and catchment characteristics were studied. The results showed that the vegetation cover was strongly correlated to total nitrogen (TN) and nitrate + nitrite ? nitrogen (NOx‐N) concentrations. That is, the TN and NOx‐N concentrations had positive correlations with mean normalized difference vegetation cover index (NDVI) of each sub‐area during dormant seasons (mean NDVI < 0 · 70) and had negative correlations during the growing season (mean NDVI ≥ 0 . 70). The significance of catchment characteristics to TN and NOx‐N concentrations was ranked as vegetation cover > soil > topography > land use, and the best models can account for 55–64% of the variance of TN and NOx‐N concentrations. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号