首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
有限单元法是研究地球科学问题的重要工具之一.本文概述了国内外学者利用以连续介质理论为基础的有限单元法研究地学,特别是地震学、地壳形变学科时,对具有非连续性特点的断层所采用的几大主流处理方法,并阐述了各断层模型基础上(弱化带模型、劈节点模型、接触模型以及块体模型)所展开的地学研究.  相似文献   

2.
The data on citations of 51 academics in earthquake engineering are analyzed to estimate their relative standing within the category of engineering, as used by HighlyCited.com of the Thomson Institute for Scientific Information. HighlyCited.com publishes names of up to 250 of the world's most cited researchers in each of 21 categories including life sciences, medicine, physical sciences, engineering and medical sciences. At present, there are no earthquake engineers in their category of engineering. In terms of an approximate metric used in this paper, citation threshold for engineering academics who work in related fields of mechanics and finite elements, and who are included in HiglyCited.com list, is about 6000 total citations. The most cited earthquake engineers in our sample have about half that many citations. It appears that the absence of earthquake engineers from the engineering category of HighlyCited.com is mainly the consequence of 2 facts, that (1) near 80% of journal papers in civil engineering are not cited within 5 years after publication, and (2) that the cohort of earthquake engineers is very small relative to the membership of all other engineering disciplines combined.  相似文献   

3.
Marine and river bedforms are rhythmic features driven by unidirectional or reversing currents and waves. They are ubiquitous on the floors of rivers, estuaries, coastal and marine settings. Despite a considerable history of dedicated studies, many aspects of their origin, development and dynamics are still the subject of scientific debate in various disciplines. The MARID conferences series hosts experts from geosciences, physics, engineering and other disciplines to provide a platform for the interdisciplinary exchange of fundamental and applied knowledge of marine and river dune dynamics. MARID VI took place in April 2019 in Bremen, Germany. Related scientific contributions are presented in this special issue of Earth Surface Processes and Landforms. An overview of the conference series and the specifics of MARID VI, as well as considerations in the context of equity, diversity and inclusion, are given. This introduction highlights the progress made with the papers published in the special issue.  相似文献   

4.
We lay out the ramifications of the 2020 pandemic for all people in geosciences, especially the young, and argue for significant changes on training and career development. We focus primarily on its devastating impact in USA and compare with that in other countries especially China. We review the potential effect for the next four years or so on the aspirations of an academic career versus more realistic career goals. We urge people in mid-career about the need to reassess previous goals. We stress the need for students or researchers to acquire technical skills in high-performance computing (HPC), data analytics, artificial intelligence, and/or visualization along with a broad set of technical skills in applied computer science and mathematics. We give advice about hot prospects in several areas that have great potential for advancement in the coming decade, such as visualization, deep learning, quantum computing and information, and cloud computing, all of which lie within the aegis of HPC. Our forecast is that the pandemic will significantly reshape the job landscape and career paths for both young and established researchers and we discuss bluntly the dire situation facing junior people in geosciences in the aftermath of the pandemic around the world until 2024.  相似文献   

5.
One ‘2020 vision’ for fluvial geomorphology is that it sits alongside stream ecology and hydraulic engineering as a key element of an integrated, interdisciplinary river science. A challenge to this vision is that scientists from these three communities may approach problems from different perspectives with different questions and have different methodological outlooks. Refining interdisciplinary methodology is important in this context, but raises a number of issues for geomorphologists, ecologists and engineers alike. In particular, we believe that it is important that there is greater dialogue about the nature of mutually‐valued questions and the adoption of mutually‐acceptable methods. As a contribution to this dialogue we examine the benefits and challenges of using physical experimentation in flume laboratories to ask interdisciplinary questions. Working in this arena presents the same challenges that experimental geomorphologists and engineers are familiar with (scaling up results, technical difficulties, realism) and some new ones including recognizing the importance of biological processes, identifying hydraulically meaningful biological groups, accommodating the singular behaviour of individuals and species, understanding biological as well as physical stimuli, and the husbandry and welfare of live organisms. These issues are illustrated using two examples from flume experiments designed (1) to understand how the movement behaviours of aquatic insects through the near‐bed flow field of gravelly river beds may allow them to survive flood events, and (2) how an understanding of the way in which fish behaviours and swimming capability are affected by flow conditions around artificial structures can lead to the design of effective fish passages. In each case, an interdisciplinary approach has been of substantial mutual benefit and led to greater insights than discipline‐specific work would have produced. Looking forward to 2020, several key challenges for experimentalists working on the interface of fluvial geomorphology, stream ecology and hydraulic engineering are identified. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
The archetypal badass is individualistic, non‐conformist, and able to produce disproportionate results. The badass concept is applied here to geomorphology. The individualistic concept of landscape evolution (ICLE) is introduced, based on three propositions: excess evolution space, capacity of all landforms to change, and variable selection pressure from environmental factors within and encompassing landscapes. ICLE indicates that geomorphic systems are idiosyncratic to some extent, and that even where two systems are similar, this is a happenstance of similar environmental selection, not an attractor state. As geomorphic systems are all individualistic, those that are also non‐conformist with respect to conventional wisdoms and have amplifier effects are considered badass. Development of meander bends on a section of the Kentucky River illustrates these ideas. The divergence of karst and fluvial forms on the inner and outer bends represents unstable amplifying effects. The divergence is also individualistic, as it can be explained only by combining general laws governing surface and subsurface flow partitioning with a specific geographical and environmental setting and the history of Quaternary downcutting of the Kentucky River. Landscape evolution there does not conform to any conventional theories or conceptual frameworks of geomorphology. The badass traits of many geomorphic systems have implications for the systems themselves, attitudes toward geomorphic practice, and appreciation of landforms. Badass geomorphology and the ICLE reflect a view, and approach to the study of, landforms as the outcome of the interplay of general laws, place‐specific controls, and history. Badass geomorphology also implies a research style receptive to contraventional wisdoms. Aesthetically, amplifier effects and individualism guarantee an essentially infinite variety of landforms and landscapes that geoscientists can appreciate both artistically and scientifically. Non‐conformity makes the interpretation and understanding of this variety more challenging – and while that increases the degree of difficulty, it also makes for more interesting and compelling professional challenges. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Biogeomorphology is an umbrella term given to a highly‐active research area within geomorphology that focusses on the many and varied interactions and feedbacks between organisms and the physical Earth. In the last 25 years this interest has developed and diversified to include the direct and indirect influences of microorganisms, plants, animals and humans on earth surface processes and landform dynamics, and the roles of geomorphology in ecological functioning, resilience and evolution. This Commentary introduces a virtual special issue of 16 research papers and three ‘State of Science’ pieces, illustrating the diversity of the field, its continued theoretical and conceptual progression, and the applied relevance of biogeomorphological science in tackling environmental problems. Collectively, these papers demonstrate the merits of – and opportunities for – biogeomorphology as an inherently integrative science in understanding and managing the complexity of living landscapes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
The ‘Anthropocene’, as used to describe the interval of recent Earth history during which humans have had an ‘overwhelming’ effect on the Earth system, is now being formally considered as a possible new geological Epoch. Such a new geological time interval (possibly equivalent to the Pleistocene Epoch) requires both theoretical justification as well as empirical evidence preserved within the geological record. Since the geological record is driven by geomorphological processes that produce terrestrial and near‐shore stratigraphy, geomorphology has to be an integral part of this consideration. For this reason, the British Society for Geomorphology (BSG) has inaugurated a Fixed Term Working Group to consider this issue and advise the Society on how geomorphologists can engage with debates over the Anthropocene. This ESEX Commentary sets out the initial case for the formalisation of the Anthropocene and a priori considerations in the hope that it will stimulate debate amongst, and involvement by, the geomorphological community in what is a crucial issue for the discipline. The Working Group is now considering the practical aspects of such a formalization including the relative magnitude problem, the boundary problem and the spatial diachrony of ‘anthropogenic geomorphology’. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Despite an increasing recognition that human activity is currently the dominant force modifying landscapes, and that this activity has been increasing through the Holocene, there has been little integrative work to evaluate human interactions with geomorphic processes. We argue that agent‐based models (ABMs) are a useful tool for overcoming the limitations of existing, highly empirical approaches. In particular, they allow the integration of decision‐making into process‐based models and provide a heuristic way of evaluating the compatibility of knowledge gained from a wide range of sources, both within and outwith the discipline of geomorphology. The application of ABMs to geomorphology is demonstrated from two different perspectives. The SPASIMv1 (Special Protection Area SIMulator version 1) model is used to evaluate the potential impacts of land‐use change – particularly in relation to wildfire and subsequent soil conditions, runoff and erosion – over a decadal timescale from the present day to the mid‐twenty‐first century. It focuses on the representation of farmers with traditional versus commercial perspectives in central Spain, and highlights the importance of land‐tenure structure and historical contingencies of individuals' decision‐making. CYBEROSION, however, considers changes in erosion and deposition over the scale of at least centuries. It represents both wild and domesticated animals and humans as model agents, and investigates the interactions of them in the context of early agriculturalists in southern France in a prehistoric context. We evaluate the advantages and disadvantages of the ABM approach, and consider some of the major challenges. These challenges include potential process‐scale mismatches, differences in perspective between investigators from different disciplines, and issues regarding model evaluation, analysis and interpretation. If the challenges can be overcome, this fully integrated approach will provide geomorphology a means to conceptualize soundly the study of human–landscape interactions by bridging the gap between social and physical approaches. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
海洋地球物理研究与海底探测声学技术的发展   总被引:13,自引:5,他引:8       下载免费PDF全文
海洋地球物理以物理学的思维与方法研究占地球三分之二面积的海洋系统.20世纪地球科学迅猛发展,它的重大进展是海底扩张说与板块构造说的出现和海底大洋的发现,以及前者所引发的地球科学思想革命,从固定论向活动论的思维转变.海底研究对于20世纪地球科学发展的贡献极为巨大,而海洋地球物理是推动海底科学研究的重要原动力.海洋地球物理在20世纪地球科学的发展中有过辉煌的成就,占有十分重要的地位;在新的21世纪里,海洋地球物理研究仍然保持着前沿科学的地位,继续推动着地球科学的进展.目前的海底探测主要还是依赖于声学探测技术.水下声学定位技术是实现水下探测系统精确定位和海底高精度探测的基础.传统性的海洋地震探测技术是研究海底构造与海洋岩石圈深部结构和寻找海底矿产的主力技术,它近年来无论在海上采集技术还是数据处理技术方面都发展得很快.多波束测深、侧扫声呐测图和海底地层剖面测量等则是近数十年快速发展起来探测海底浅部结构信息的技术.这些技术已经在当代海底科学研究、海底资源勘查、海洋工程和海洋开发,以及海洋军事活动等方面发挥出极其重要的作用.  相似文献   

11.
The British Society for Geomorphology (BSG), established as the British Geomorphological Research Group (BGRG) in 1960, is considering how best to represent geomorphology and geomorphologists in the light of recent changes in the nature of communication. These changes provide the BSG and other academic societies with challenges and opportunities. Seven drivers of communication change are outlined: the changing position of geomorphology in higher education, the nature of academic interaction, the means of communication available, a transformation in the nature of geomorphological research, changes in funding support, the government role in resource allocation, and developments in quantifying international research impact. Challenges arising from changing communications are identified as occurring beyond the ‘academy’, in the nature of publication within the ‘academy’, and associated with meetings of the ‘academy’. Although national societies now have to contemplate significantly different purposes to provide for their members than in the twentieth century, there are opportunities available that cannot be fulfilled by international organizations alone. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Obtaining a better understanding of the underlying dynamics of the interaction of turbulent flows and the bed surface that contains them, leading to the transport of coarse particles in fluvial, coastal, and aeolian environments, is considered as one of the fundamental objectives and the most complex problems in Earth surface dynamics and engineering. Recent technological advancements have made it possible to directly assess sediment entrainment rather than monitoring surrogate flow metrics, which could be related indirectly to sediment entrainment. In this work, a novel and low-cost instrumented particle, 7 cm in diameter, is used to directly assess the incipient entrainment of a coarse particle resting on a bed surface. The particle has inertial measurement units (IMUs) embedded within its waterproof shell, enabling it to track the particle's motions and quantify its inertial dynamics. The sensors of the instrumented particle are calibrated using simple and easy-to-validate theoretically physical motions to estimate the uncertainties in their readings, which are reduced using an inertial sensor fusion process. A series of well-designed laboratory flume incipient motion experiments are performed to assess the entrainment of the instrumented particle for a range of flowrates near the threshold of motion. The readings of the instrumented particle are used to derive metrics that are related to the probability of its incipient entrainment. The flow velocity measurements are obtained for the experiment runs, and the derived metrics are explicitly linked to the flow hydrodynamics responsible for the entrainment. The framework presented in this work can be used for a range of similar applications of low-cost instrumented particles, spanning the interface of sensing and instrumentation in engineering (i.e., infrastructure and environmental monitoring) and geosciences (e.g., habitat assessment).  相似文献   

13.
地球深部研究—地球科学发展的挑战与机遇   总被引:1,自引:1,他引:1  
本文扼要地介绍了国际地球深部研究的发展及现状,简要地讨论了地球深部研究与地球科学相关学科的关系,力图说明及时地组织和开展地球深部研究是发展我国地球科学的新机遇,是迎接未来世纪挑战的正确选择。  相似文献   

14.
An important and highly active research agenda has developed at the interface of fluvial geomorphology and ecology that addresses the capacity for vegetation and animals to act as ecosystem engineers within fluvial systems. This paper briefly introduces this research domain and describes the 15 papers that contribute to the special issue on 'Dynamic riverine landscapes: the role of ecosystem engineers'. The papers illustrate the breadth of research activity at this interface, investigating the influence of a range of ecosystem engineering organisms through a combination of field study, laboratory experiments, numerical simulation and analysis of remotely sensed data. Together, the papers address a series of key themes: conceptual frameworks for feedbacks between aquatic biota, hydraulics, sediment dynamics and nutrient dynamics and their quantification through experimental and field research; the potential contribution of ecosystem engineering species to assist river recovery and restoration; and the contribution of riparian vegetation to bank stability and morphodynamics across a range of spatio‐temporal scales. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Within and beyond academia, debates around equality, diversity and inclusion (EDI) have been gathering pace. We focus on EDI and geomorphology and address four main questions: (1) why does EDI matter for geomorphology?; (2) what are the barriers to greater EDI in geomorphology?; (3) how can we address these EDI barriers?; (4) can we ensure a resilient future for geomorphology by addressing EDI? At a time of critical environmental, social and economic transition, we contend that addressing EDI is essential for ensuring a resilient geomorphology, defined here as a discipline that is seen to be adapting to these changing external circumstances so that it remains relevant, vibrant and accessible to a wide cross-section of society. Not doing so will limit the intellectual development of geomorphology, incur reputational risk for geomorphological groups and organizations like the British Society for Geomorphology, and ensure that the many potential benefits of geomorphology for science and society remain underutilized at best. © 2020 John Wiley & Sons, Ltd.  相似文献   

16.
This paper reviews some of the challenges and objectives in the application of fluvial geomorphology to improved river management in the U.K. It describes the mechanisms by which geomorphology can be applied to solve problems, including the development of design guidance, policy, management approaches, procedures and training. While it is true that geomorphology is being used increasingly, there remain a number of challenges, such as the need to promote a more professional image and to develop appropriate standards. The scientific basis on which decisions relating to the water environment are made needs to be developed further. Perhaps some of the most significant challenges for fluvial geomorphology in U.K. river management during the next decade will concern river and floodplain restoration.  相似文献   

17.
This paper addresses the role that fluvial geomorphology might play in the management of sediment-related river maintenance in the U.K. Sediment-related river maintenance refers to the operational requirement of river management authorities to remove deposits of sediment or protect river boundaries from erosion, where these compromise the flood defence levels of service. Using data collected as part of a National Rivers Authority (NRA) Research and Development Project it is possible to identify the geomorphic causes of problems, and engineering responses to sediment-related river maintenance (SRRM) in England and Wales. The Project identified the management problem as widespread and often treated in isolation from the causative processes. Geomorphological guidance is shown to be both relevant and complementary to conventional engineering practice through its ability to identify the cause of a SRRM problem. A methodology for conducting a geomorphological survey, or ‘fluvial audit’, is presented, which synthesizes historical data on the catchment land-use and channel network, with contemporary morphological maps to present a statement of the location and type of sediment supply, transport and storage within the river basin under scrutiny. The application of geomorphology to two contrasting SRRM problems is explored using case studies from two catchments: the River Sence, a fine sediment system, and the Shelf Brook, a coarse sediment system.  相似文献   

18.
根据陕西省2001和2003年两期的GPS测站的观测资料,给出了鄂尔多斯块体南缘现今地壳水平应变场。结果表明,最大剪应变和面应变的高值区主要集中在该区中部和东部,尤其是在中部的咸阳、泾阳附近,东部的合阳、大荔、渭南一带以及西北部的陇县附近,主要受面收缩影响,分别形成了几个较为显著的应挛高值区。等值线较密集并且应变梯度也较大,这些区域具备一定的孕震条件,有可能是未来发震地点。  相似文献   

19.
Three hundred and twenty‐eight geomorphology articles published in the last quarter of the 20th century were cited 20 or more times in Institute for Scientific Information (ISI) indices, as of 15 May 2001. At the close of the 20th century, well‐cited geomorphology is highly multidisciplinary and interdisciplinary with the most dominant fields being in biological, civil engineering, earth science, geography, geological, and soils disciplines. The very strong English‐language bias of well‐cited journal articles creates a geographical bias in study site selection, which may in turn bias geomorphic theory. Water‐based research (fluvial processes and landforms, riparian, drainage basin) dominates well‐cited papers, with the ‘hottest’ subfield in the 1990s being riparian research with a biological emphasis. Over 90 journals publish well‐cited papers, but Earth Surface Processes and Landforms hosts the largest number of well‐cited papers. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
运用CNKI学术不端检测系统对《华南地震》2012年5月至2014年5月的318篇来稿进行检测,对文字复制比、作者单位、基金论文比进行分析。结果表明,地学论文中,文字复制比的数值高低与作者单位及是否基金项目支持无必然的联系,地学研究多有继承性和关联性,易出现文字重合,期刊编辑应从论文的创新性和实用性等多方面来进行判断。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号