首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flow from artificial subsurface (tile) drainage systems may be contributing to increasing baseflow in Midwestern rivers and increased losses of nitrate‐nitrogen. Standard hydrograph analysis techniques were applied to model simulation output and field monitoring from tile‐drained landscapes to explore how flow from drainage tiles affects stream baseflow and streamflow recession characteristics. DRAINMOD was used to simulate hydrologic response from drained (24 m tile spacing) and undrained agricultural systems. Hydrograph analysis was conducted using programs PART and RECESS. Field monitoring data were obtained from several monitoring sites in Iowa typical of heavily drained and less‐drained regions. Results indicate that flow from tile drainage primarily affects the baseflow portion of a hydrograph, increasing annual baseflow in streams with seasonal increases primarily occurring in the late spring and early summer months. Master recession curves from tile‐drained watersheds appear to be more linear than less‐tiled watersheds although comparative results of the recession index k were inconsistent. Considering the magnitude of non‐point source pollutant loads coming from tile‐drained landscapes, it is critical that more in‐depth research and analysis be done to assess the effects of tile drainage on watershed hydrology if water quality solutions are to be properly evaluated. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
3.
Abstract

Discharge in most rivers consists mainly of baseflow exfiltrating from shallow groundwater reservoirs, while surface or other direct flows cease soon after rain storms or snowmelt. Analysis of observed baseflow recessions of two rivers in Turkey with intermittent flows and different geographical and climatic characteristics yielded nonlinear storage–outflow relationships of the highly seasonal aquifers. Baseflow separation was carried out using a nonlinear reservoir algorithm. Baseflow seasonality is related to the hydro-climatic conditions influencing groundwater recharge and evapotranspiration of groundwater. As intermittent streams generally have zero flows in the dry season, calibration of recession parameters is in many cases a complicated task.

Citation Aksoy, H. & Wittenberg, H. (2011) Nonlinear baseflow recession analysis in watersheds with intermittent streamflow. Hydrol. Sci. J. 56(2), 226–237.  相似文献   

4.
Anthropogenic modifications to the landscape, with agricultural activities being a primary driver, have resulted in significant alterations to the hydrologic cycle. Artificial drainage, including surface and subsurface drainage (tile drains), is one of the most extensive manipulations in agricultural landscapes and thus is expected to provide a distinct signature of anthropogenic modification. This study adopts a data synthesis approach in an effort to characterize the signature of artificial subsurface drainage. Daily discharge data from 24 basins across the state of Iowa, which encapsulate a range of anthropogenic modifications, are assessed using a variety of flow metrics. Results indicate that the presence of artificial subsurface drainage leads to a homogenization of landscape hydrologic response. Non‐tiled watersheds exhibit a decrease in the area‐normalized peak discharge and an increase in the baseflow ratio (baseflow/streamflow) with increases in the spatial scale, while scale invariance is apparent in tiled basins. Within‐basin variability in hydrograph recession coefficients also appears to decrease with increases in the proportion of the catchment that is artificially drained. Finally, the differences between tiled and non‐tiled landscapes disappear at scales greater than approximately 2200 km2, indicating that this may be a threshold scale for studying the effects of tile drainage. This decrease in within‐basin variability and the scale invariance of hydrologic metrics in artificially drained watersheds are attributed to the creation of a bypass flow hydrologic pathway that bypasses the complexity of the catchment travel paths. Spatial homogeneity in responses implies that it may be possible to develop more parsimonious hydrologic models for these regions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
The rate of recession (dQ/dt) in a given time interval has long been plotted in log–log space against the concurrent mean discharge (Qavg). Recent interpretations of these dQ/dt–Qavg plots have sought to look at curves for individual events instead of the data cloud from all the data points together. These individual recession curves have been observed to have near‐constant slope but to have varying intercepts, features hypothesized to possibly be explained by the nature of the contraction of the active channel network during recession. For a steep, 150‐ha forested catchment in central New York state with an 8.8‐km channel network, changes in the active channel network were mapped between April and November 2013. Streamflow recession occurred in a matter of days, but changes in the active channel network occurred over a matter of weeks. Thus, in this catchment, it does not appear that channel contraction directly controls recession. Additionally, field observations indicate that dry down did not occur in a spatially organized, sequential way such that the upper end of higher‐order streams dried first. Instead, the location of groundwater seeps, in part, controlled the active portion of the channel network. Consistent with the presence of different types of flow contributing zones, the paper presents a conceptual model that consists of multiple parallel reservoirs of varying drainage rate and varying degrees of recharge at different times of the year. This conceptual model is able to reproduce a slope of 2 and a seasonal shift in intercept typical of individual recession curves. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
The paired watershed experimental (PWE) approach has long been used as an effective means to assess the impacts of forest change on hydrology in small watersheds (<100 km2). Yet, the effects of climate variability on streamflow are not often assessed in PWE design. In this study, two sets of paired watersheds, (1) Camp and Greata Creeks and (2) 240 and 241 Creeks located in the Southern Interior of British Columbia, Canada, were selected to explore relative roles of forest disturbance and climate variability on streamflow components (i.e., baseflow and surface runoff) at different time scales. Our analyses showed that forest disturbance is positively related to annual streamflow components. However, this relationship is statistically insignificant since forest disturbance can either increase or decrease seasonal streamflow components, which eventually limited the positive effect on streamflow at the annual scale. Interestingly, we found that forest disturbance consistently decreased summer streamflow components in the two PWEs as forest disturbance can augment earlier and quicker snow-melt processes and hence reduce soil moisture to maintain summer streamflow components. More importantly, this study revealed that climate variability played a more significant role than forest disturbance in both annual and seasonal streamflow components, for instance, climate variability can account for as much as 90% of summer streamflow components variation in Camp, suggesting the role of climate variability on streamflow should be highlighted in the traditional PWE approach to truly advance our understanding of the interactions of forest change, climate variability and water for sustainable water resource management.  相似文献   

7.
For the period from 1958 to 1996, streamflow characteristics of a highly urbanized watershed were compared with less‐urbanized and non‐urbanized watersheds within a 20 000 km2 region in the vicinity of Atlanta, Georgia: in the Piedmont and Blue Ridge physiographic provinces of the southeastern USA. Water levels in several wells completed in surficial and crystalline‐rock aquifers were also evaluated. Data were analysed for seven US Geological Survey (USGS) stream gauges, 17 National Weather Service rain gauges, and five USGS monitoring wells. Annual runoff coefficients (RCs; runoff as a fractional percentage of precipitation) for the urban stream (Peachtree Creek) were not significantly greater than for the less‐urbanized watersheds. The RCs for some streams were similar to others and the similar streams were grouped according to location. The RCs decreased from the higher elevation and higher relief watersheds to the lower elevation and lower relief watersheds: values were 0·54 for the two Blue Ridge streams, 0·37 for the four middle Piedmont streams (near Atlanta), and 0·28 for a southern Piedmont stream. For the 25 largest stormflows, the peak flows for Peachtree Creek were 30% to 100% greater than peak flows for the other streams. The storm recession period for the urban stream was 1–2 days less than that for the other streams and the recession was characterized by a 2‐day storm recession constant that was, on average, 40 to 100% greater, i.e. streamflow decreased more rapidly than for the other streams. Baseflow recession constants ranged from 35 to 40% lower for Peachtree Creek than for the other streams; this is attributed to lower evapotranspiration losses, which result in a smaller change in groundwater storage than in the less‐urbanized watersheds. Low flow of Peachtree Creek ranged from 25 to 35% less than the other streams, possibly the result of decreased infiltration caused by the more efficient routing of stormwater and the paving of groundwater recharge areas. The timing of daily or monthly groundwater‐level fluctuations was similar annually in each well, reflecting the seasonal recharge. Although water‐level monitoring only began in the 1980s for the two urban wells, water levels displayed a notable decline compared with non‐urban wells since then; this is attributed to decreased groundwater recharge in the urban watersheds due to increased imperviousness and related rapid storm runoff. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
We explore seasonal variability and spatiotemporal patterns in characteristic drainage timescale (K) estimated from river discharge records across the Kilombero Valley in central Tanzania. K values were determined using streamflow recession analysis with a Brutsaert–Nieber solution to the linearized Boussinesq equation. Estimated K values were variable, comparing between wet and dry seasons for the relatively small catchments draining upland positions. For the larger catchments draining through valley bottoms, K values were typically longer and more consistent across seasons. Variations in K were compared with long‐term averaged, Moderate‐resolution Imaging Spectroradiometer‐derived monthly evapotranspiration. Although the variations in K were potentially related to evapotranspiration, the influence of data quality and analysis procedure could not be discounted. As such, even though recession analysis offers a potential approach to explore aquifer release timescales and thereby gain insight to a region's hydrology to inform water resources management, care must be taken when interpreting spatiotemporal shifts in K in connection with process representation in regions like the Kilombero Valley. © 2014 The Authors. Hydrological Processes published by John Wiley & Sons Ltd.  相似文献   

9.
Pollutant delivery through artificial subsurface drainage networks to streams is an important transport mechanism, yet the impact of drainage tiles on groundwater hydrology at the watershed scale has not been well documented. In this study, we developed a two‐dimensional, steady‐state groundwater flow model for a representative Iowa agricultural watershed to simulate the impact of tile drainage density and incision depth on groundwater travel times and proportion of baseflow contributed by tile drains. Varying tile drainage density from 0 to 0.0038 m?1, while maintaining a constant tile incision depth at 1.2 m, resulted in the mean groundwater travel time to decrease exponentially from 40 years to 19 years and increased the tile contribution to baseflow from 0% to an upper bound of 37%. In contrast, varying tile depths from 0.3 to 2.7 m, while maintaining a constant tile drainage density of 0.0038 m?1, caused mean travel times to decrease linearly from 22 to 18 years and increased the tile contribution to baseflow from 30% to 54% in a near‐linear manner. The decrease in the mean travel time was attributed to decrease in the saturated thickness of the aquifer with increasing drainage density and incision depth. Study results indicate that tile drainage affects fundamental watershed characteristics and should be taken into consideration when evaluating water and nitrate export from agricultural regions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
In single‐event deterministic design flood estimation methods, estimates of the peak discharge are based on a single and representative catchment response time parameter. In small catchments, a simplified convolution process between a single‐observed hyetograph and hydrograph is generally used to estimate time parameters such as the time to peak (TP), time of concentration (TC), and lag time (TL) to reflect the “observed” catchment response time. However, such simplification is neither practical nor applicable in medium to large heterogeneous catchments, where antecedent moisture from previous rainfall events and spatially non‐uniform rainfall hyetographs can result in multi‐peaked hydrographs. In addition, the paucity of rainfall data at sub‐daily timescales further limits the reliable estimation of catchment responses using observed hyetographs and hydrographs at these catchment scales. This paper presents the development of a new and consistent approach to estimate catchment response times, expressed as the time to peak (TPx) obtained directly from observed streamflow data. The relationships between catchment response time parameters and conceptualised triangular‐shaped hydrograph approximations and linear catchment response functions are investigated in four climatologically regions of South Africa. Flood event characteristics using primary streamflow data from 74 flow‐gauging stations were extracted and analysed to derive unique relationships between peak discharge, baseflow, direct runoff, and catchment response time in terms of TPx. The TPx parameters are estimated from observed streamflow data using three different methods: (a) duration of total net rise of a multipeaked hydrograph, (b) triangular‐shaped direct runoff hydrograph approximations, and (c) linear catchment response functions. The results show that for design hydrology and for the derivation of empirical equations to estimate catchment response times in ungauged catchments, the catchment TPx should be estimated from both the use of an average catchment TPx value computed using either Methods (a) or (b) and a linear catchment response function as used in Method (c). The use of the different methods in combination is not only practical but is also objective and has consistent results.  相似文献   

11.
The Arctic is warming rapidly. Changing seasonal freezing and thawing cycles of the soil are expected to affect river run‐off substantially, but how soil frost influences river run‐off at catchment scales is still largely unknown. We hypothesize that soil frost alters flow paths and therefore affects storage–discharge relations in subarctic catchments. To test this hypothesis, we used an approach that combines meteorological records and recession analysis. We studied streamflow data (1986–2015) of Abiskojokka, a river that drains a mountainous catchment (560 km2) in the north of Sweden (68° latitude). Recessions were separated into frost periods (spring) and no‐frost periods (summer) and then compared. We observed a significant difference between recessions of the two periods: During spring, discharge was linearly related to storage, whereas storage–discharge relationships in summer were less linear. An analysis of explanatory factors showed that after winters with cold soil temperatures and low snowpack, storage–discharge relations approached linearity. On the other hand, relatively warm winter soil conditions resulted in storage–discharge relationships that were less linear. Even in summer, relatively cold antecedent winter soils and low snowpack levels had a propagating effect on streamflow. This could be an indication that soil frost controls recharge of deep groundwater flow paths, which affects storage–discharge relationships in summer. We interpret these findings as evidence for soil frost to have an important control over river run‐off dynamics. To our knowledge, this is the first study showing significant catchment‐integrated effects of soil frost on this spatiotemporal scale.  相似文献   

12.
The hydrological effect of forest recovery is receiving renewed interest globally because information on forest carbon–water relationship is critically needed to support carbon management through reforestation and sustainable water management. In Northeastern China, summer (June to August) streamflow accounts for about 50% of total annual streamflow and is vital to water supply and management in the region. Understanding how forest recovery may affect streamflow is important to both reforestation campaign and long‐term water sustainability. In this study, we analysed 33 years of summer hydrologic data (1970–2002) from two comparable small‐scale watersheds located in the Xiaoxing'anling, Northeastern China. Time series analysis and two graphic methods (double mass curve and flow duration curve) with statistical testing as well as long‐term data on forest cover changes and climate were used. Our results show that the significant streamflow reduction as a result of reforestation occurred when forest cover reached 70% or 10 years after planting. After forest cover reached 85%, water reduction became stabilized. The accumulative streamflow reduction in 2002 reached 8·61% of the total accumulative streamflow. Among those water reduced, high flows (from 5 to 25 percentiles) were mostly affected, demonstrating that northeastern forests have an important role in reducing high flows. Implications of these results are discussed in the context of climate change, reforestation and water resource management. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Baseflows have declined for decades in the Lesser Himalaya but the causes are still debated. This paper compares variations in streamflow response over three years for two similar headwater catchments in northwest India with largely undisturbed (Arnigad) and highly degraded (Bansigad) oak forest. Hydrograph analysis suggested no catchment leakage, thereby allowing meaningful comparisons. The mean annual runoff coefficient for Arnigad was 54% (range 44–61%) against 62% (53–69%) at Bansigad. Despite greater total runoff Qt (by 250 mm year1), baseflow at Bansigad ceased by March, but was perennial at Arnigad (making up 90% of Qt vs. 51% at Bansigad). Arnigad storm flows, Qs, were modest (8–11% of Qt) and occurred mostly during monsoons (78–98%), while Qs at Bansigad was 49% of Qt and occurred also during post-monsoon seasons. Our results underscore the importance of maintaining soil water retention capacity after forest removal to maintain baseflow levels.
EDITOR D. Koutsoyiannis; ASSOCIATE EDITOR D. Gerten  相似文献   

14.
Tropical montane cloud forests (TMCF) are recognized for their capacity to maintain high dry-season baseflow and a host of other ecosystem services. Substantial areas of TMCF have been converted to pasture and crops such as coffee, while in other areas TCMF are recovering. However, little is known about the effects of this complex dynamic on catchment hydrology. We investigated the effect of land use on rainfall-runoff response in five neighbouring headwater micro-catchments in central Veracruz, Mexico, dominated by either mature TMCF (MF), young (20 year-old) and intermediate (40 year-old) naturally regenerating TMCF (YF and IF, respectively), shaded coffee (SC), and an intensively grazed pasture (IP). We used a 4-year record of high-resolution rainfall and streamflow (10 min) data collected from 2015 to 2019. These data were analysed via comparison of hydrologic metrics that summarize streamflow responses at various time scales and magnitudes. Results showed no statistical difference in the regulation capacity of high flows in the micro-catchment with 20 years of natural regeneration, compared to the MF. In terms of baseflow sustenance, our results support the hypothesis that MF and IF better promote this hydrologic service than the other land uses. SC exhibited a high capacity to modulate peak flows comparable to that of MF, and an intermediate capacity to sustain baseflow, suggesting that the integrated functioning of this micro-catchment was largely preserved. Finally, 40 years of intense pasture management was found to have degraded the soil hydraulic properties of IP; mainly, reducing its infiltration capacity, causing a fivefold greater peak flow response and a lower baseflow compared to MF.  相似文献   

15.
The characterization of a stream's low-flow regime is required for ecological purposes, water quality studies and various other water projects. If observed stream flow records are insufficient, low-flow characteristics may need to be estimated from simulated daily stream flow time-series. The model employed should conceptualize low-flow generation mechanisms and surface–subsurface interactions adequately. The ability of the model to simulate low-flow regimes may be assessed by means of various low-flow analysis techniques. This paper illustrates the approach using the example of the physically based, semi-distributed VTI daily rainfall–runoff model. The model has been applied to five perennial headwater catchments in South Africa, which are located in different parts of the country, represent different physiographical environments and are characterized by different baseflow responses. The model simulations are evaluated in terms of both conventional goodness-of-fit criteria and several low-flow measures such as recession characteristics, baseflow volumes, flow duration curves and continuous low-flow events below specified threshold discharges. For all the catchments considered the model has been found to perform successfully in terms of conventional fit statistics and flow duration curves. However, its ability to reproduce recession characteristics and continuous low-flow spells appears to be less satisfactory. This suggests that daily model simulations should be evaluated by low-flow criteria, which are frequently ignored in water resource assessment practices. © 1998 John Wiley & Sons, Ltd.  相似文献   

16.
鄱阳湖流域水文极值演变特征、成因与影响   总被引:1,自引:3,他引:1  
张强  孙鹏  江涛 《湖泊科学》2011,23(3):445-453
选用11种概率分布函数,系统分析了鄱阳湖流域"五河"的6个水文站年最大径流量与连续3d、7d最大平均日流量,函数参数以及拟合优度分别由线性矩法与柯尔莫哥洛夫-斯米尔诺夫方法检验,选出最适合该区流量极值分布函数.在此基础上,对引起该流域水文极值变化的原因及其影响作了有益的探讨.结果表明:(1)韦克比分布是用于研究都阳湖流...  相似文献   

17.
Quantifying the relative contributions of different sources of water to a stream hydrograph is important for understanding the hydrology and water quality dynamics of a given watershed. To compare the performance of two methods of hydrograph separation, a graphical program [baseflow index (BFI)] and an end‐member mixing analysis that used high‐resolution specific conductance measurements (SC‐EMMA) were used to estimate daily and average long‐term slowflow additions of water to four small, primarily agricultural streams with different dominant sources of water (natural groundwater, overland flow, subsurface drain outflow, and groundwater from irrigation). Because the result of hydrograph separation by SC‐EMMA is strongly related to the choice of slowflow and fastflow end‐member values, a sensitivity analysis was conducted based on the various approaches reported in the literature to inform the selection of end‐members. There were substantial discrepancies among the BFI and SC‐EMMA, and neither method produced reasonable results for all four streams. Streams that had a small difference in the SC of slowflow compared with fastflow or did not have a monotonic relationship between streamflow and stream SC posed a challenge to the SC‐EMMA method. The utility of the graphical BFI program was limited in the stream that had only gradual changes in streamflow. The results of this comparison suggest that the two methods may be quantifying different sources of water. Even though both methods are easy to apply, they should be applied with consideration of the streamflow and/or SC characteristics of a stream, especially where anthropogenic water sources (irrigation and subsurface drainage) are present. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Dramatic drainage reorganization from initial longitudinal to transversal domains has occurred in the Eastern Cordillera of Colombia. We perform a regional analysis of drainage basin geometry and transformed river profiles based on the integral form of the slope-area scaling, to investigate the dynamic state of drainage networks and to predict the degree of drainage reorganization in this region. We propose a new model of drainage rearrangement for the Eastern Cordillera, based on the analyses of knickpoint distribution, normalized river profiles, landforms characteristic of river capture, erosion rates and palaeodrainage data. We establish that the oldest longitudinal basin captured by the Magdalena River network was the Suárez Basin at ≈409 ka, inferring the timing of abandonment of a river terrace using in situ produced cosmogenic beryllium-10 (10Be) depth profiles and providing a first estimation of incision rate of 0.07 mm/yr. We integrate published geochronologic data and interpret the last capture of the Sabana de Bogotá, providing a minimum age of the basin opening to the Magdalena drainage at ≈38 ka. Our results suggest that the Magdalena basin Increased its drainage area by integrating the closed basins from the western flank of the Eastern Cordillera. Our study also suggests that the Magdalena basin is an aggressor compared to the basins located in the eastern flank of the orogen and provides a framework for examining drainage reorganization within the Eastern Cordillera and in similar orogenic settings. The results improve our understanding of headward integration of closed basins across orogenic plateaux. © 2020 John Wiley & Sons, Ltd.  相似文献   

19.
气候变化和人类活动导致珠江流域水文变化,变化前后洪水频率分布显著不同.运用滑动秩和(Mann-Whitney U test)结合Brown-Forsythe、滑动T、有序聚类和Mann-Kendall检验法,并用累积距平曲线法获取年最大流量序列详细信息,综合确定样本最佳变化节点,并对水文变化成因做了系统分析.在此基础上,对整体序列、变化前后序列用线性矩法推求广义极值分布参数以及不同重现期设计流量.结果表明:(1)西江大部以及北江流域最佳变化节点在1991年左右;东江流域最佳变化节点与该流域内3大控制性水库建成时间基本吻合;(2)变化后,西江、北江年最大流量持续增加,洪峰强度增大,尤其是西江干流年最大流量显著增加;东江流域年最大流量显著减小,洪峰强度降低;(3)变化后,西江与北江洪水风险增加,尤其是下游珠三角地区本身受人类活动显著影响,加之西江与北江持续增加的洪水强度,珠三角地区发生洪水的强度及频次加剧,而东江洪水风险减小.此研究对于珠江流域在变化环境下的洪水风险评估与防洪抗灾具有重要意义.  相似文献   

20.
For geological and environmental research in an arid area, a unique advantage of radar remote sensing is that radar wave can penetrate a certain layer of dry sand (a few centimeters to meters thick) to reach the buried bedrock. The penetration capability is able to reveal the subsurface geological structure and old drainage paths. Based on the analysis of SIR-A, SIR-B, SIR-C, Radarsat ScanSAR, Landsat MSS and Landsat TM images acquired on different dates and the investigations made in several field trips in Alxa Plateau of Inner Mongolia, a number of old river valley and lake basins buried by wind-blown sand were recognized. Two parallel old drainage systems in the north and middle of the study area are delineated. The study suggests that the moving sand belts mainly follow the old drainage courses. This study also establishes a preliminary drainage evolution model for an area of about 300 000 km2 since the Tertiary, and finds that the Alxa Plateau was once an area with many rivers and lakes with a warm and humid climate. The relief reversion caused by neotectonic movement since "Qinghai-Tibet movement" is also analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号