首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In the Arctic Ocean, direct dating methods are needed as an alternative to the radiocarbon (14C) method and to various indirect approaches for a longer stratigraphy. In past attempts to develop a luminescence sediment dating, the use of fine-silt (4–11 μm) mixture of quartz and feldspar grains from core tops has often produced large age overestimates by several ka. A recent application of micro-focused laser (‘micro-hole’) photon-stimulated luminescence (PSL) to medium-silt to fine-sand quartz grains (11–105 μm) from the core tops at the Alaska margin has been usefully accurate. To extend this approach to the central Arctic Ocean and to a larger grain size range, we applied micro-hole PSL dating to >11 μm quartz grains from core tops (0.5–2 cm horizon) from two sites on the central Lomonosov Ridge. We obtain a burial age estimate of ca. 2 ka for 11–62 μm grains at a multicore site 18 MC within a perched intra-ridge basin, in accord with 14C ages obtained on foraminifers. At nearby site 19 MC on the erosive ridge top, the micro-hole PSL dating of >90 μm quartz grains produces a burial age estimate of ∼ca. 25 ka, in accord with a foraminiferal 14C age of ca. 26 ka. However, the 11–90 μm grains from the same sample produce a much younger burial age estimate of ca. 9 ka. Thus, these two size fractions of quartz grains record different burial times and different deposition agents (icebergs vs. sea ice), providing insight into past sedimentary processes. Overall, our results confirm an earlier conclusion from micro-hole PSL dating study at the Alaska margin that medium to coarse silt fractions of quartz grains (11–90 μm or at least 62 μm) is the preferred material for direct dating of the last daylight exposure of detrital sediment in the Arctic Ocean.  相似文献   

3.
It was indicated in this study that there were negative relations between the concentrations of suspended solid (SS) and transparency according to the analysis of measured data of Lake Taihu. Their relations in pervious studies were reviewed, which showed that the changes of transparency in Lake Taihu could be reflected by simulating suspended solid concentration (SSC). Measured data showed that the changes of SSC with wind speed were similar at different water depths. SSC increased with the increasing of wind speed. Both wave and lake current of Lake Taihu had positive relations with SSC. However, wave was the main factor affecting sediment suspension, while flow took the second place. In this study, a numerical model coupling lake current, wave and SSC of Lake Taihu was developed. In the SS model, the combined effects of wave and current were included. The amounts of suspended and deposited sediments near the lake bed surface layer were treated separately. The stochastic characteristics of turbulent flow pulsation near lake beds were also considered, and the start-up conditions of sediment suspension were introduced to the model. The model elucidated the mutual exchange processes between sediment particles in SS and active sediments within and on the bed surface layer. Simulated results showed that lake current had relatively significant effects on the SSC at littoral areas of Lake Taihu, while SSC at the central area of the lake was mainly influenced by wave. The changes of transparency with SSC were simulated for Lake Taihu using this model. Calculated results were validated by measured data with good fitness, which indicated that the model is basically suitable for the simulation and prediction of transparency of Lake Taihu.  相似文献   

4.
Here we report new approaches of recovering the Earth gravitational field from GOCE (Gravity field and steady-state Ocean Circulation Explorer) gradiometric data with the help of the gradient tensor’s invariants. Our results only depend on GOCE satellite’s position and gradiometry, in other words, they are completely independent of the satellite attitude. First, starting from the invariants, linearization models are established, which can be referred as the general boundary conditions on the satellite’s orb...  相似文献   

5.
Harald Kling 《水文科学杂志》2015,60(7-8):1374-1393
Abstract

This study is a contribution to a model intercomparison experiment initiated during a workshop at the 2013 IAHS conference in Göteborg, Sweden. We present discharge simulations with the conceptual precipitation–runoff model COSERO in 11 basins located under different climates in Europe, Africa and Australia. All of the basins exhibit some form of non-stationary conditions, due, for example, to warming, droughts or land-cover change. The evaluation of the daily discharge simulations focuses on the overall model performance and its decomposition into three components measuring temporal dynamics, mean flow volume and distribution of flows. Calibration performance is similarly high as in previous COSERO applications. However, when looking at evaluation periods independent of the calibration, the model performance drops considerably, mainly due to severely biased discharge simulations in semi-arid basins with strong non-stationarity in rainfall. Simulations are more robust in European basins with humid climates. This highlights the fact that hydrological models frequently fail when simulations are required outside of calibration conditions in basins with non-stationary conditions. As a consequence, calibration periods should be sufficiently long to include both wet and dry periods, which should yield more robust predictions.  相似文献   

6.
The state of the water area in the Bays of Koz’mina and Lake Vtoroe (Nakhodka Gulf is evaluated. The data given include water temperature and salinity, biochemical oxygen demand, pH, alkalinity, chlorophyll a, organic matter, biogenic elements, oil products, detergents, polycyclic aromatic hydrocarbons, phenols, and organochlorine pesticides in water and bottom sediments. Pollutants may enter the system of bights from both onshore sources and the open part of the bay. The water and bottom sediments in this part of the bay show higher values of BOD5 and the concentrations of oil products, polycyclic aromatic hydrocarbons, phenols, and organochlorine pesticides. The anthropogenic load on the water body is shown to increase because of the new industrial construction on its shore.  相似文献   

7.
The Nesjahraun is a basaltic lava flow erupted from a subaerial fissure, extending NE along the Tingvellir graben from the Hengill central volcano that produced pāhoehoe lava followed by ‘a‘ā. The Nesjahraun entered Iceland’s largest lake, Tingvallavatn, along its southern shore during both phases of the eruption and exemplifies lava flowing into water in a lacustrine environment in the absence of powerful wave action. This study combines airborne light detection and ranging, sidescan sonar and Chirp seismic data with field observations to investigate the behaviour of the lava as it entered the water. Pāhoehoe sheet lava was formed during the early stages of the eruption. Along the shoreline, stacks of thin (5–20 cm thick), vesicular, flows rest upon and surround low (<5 m) piles of coarse, unconsolidated, variably oxidised spatter. Clefts within the lava run inland from the lake. These are 2–5 m wide, >2 m deep, ∼50 m long, spaced ∼50 m apart and have sub-horizontal striations on the walls. They likely represent channels or collapsed tubes along which lava was delivered into the water. A circular rootless cone, Eldborg, formed when water infiltrated a lava tube. Offshore from the pāhoehoe lavas, the gradient of the flow surface steepens, suggesting a change in flow regime and the development of a talus ramp. Later, the flow was focused into a channel of ‘a‘ā lava, ∼200–350 m wide. This split into individual flow lobes 20–50 m wide along the shore. ‘A‘ā clinker is exposed on the water’s edge, as well as glassy sand and gravel, which has been locally intruded by small (<1 m), irregularly shaped, lava bodies. The cores of the flow lobes contain coherent, but hackly fractured lava. Mounds consisting predominantly of scoria lapilli and the large paired half-cone of Grámelur were formed in phreatomagmatic explosions. The ‘a‘ā flow can be identified underwater over 1 km offshore, and the sidescan data suggest that the flow lobes remained coherent flowing down a gradient of <10°. The Nesjahraun demonstrates that, even in the absence of ocean waves, phreatomagmatic explosions are ubiquitous and that pāhoehoe flows are much more likely to break up on entering the water than ‘a‘ā flows, which, with a higher flux and shallow underlying surface gradient, can penetrate water and remain coherent over distances of at least 1 km.  相似文献   

8.
Upward discharge to surface water bodies can be quantified using analytical models based on temperature–depth (T-z) profiles. The use of sediment T-z profiles is attractive as discharge estimates can be obtained using point-in-time data that are collected inexpensively and rapidly. Previous studies have identified that T-z methods can only be applied at times of the year when there is significant difference between the streambed–water interface and deeper sediment temperatures (e.g., winter and summer). However, surface water temperatures also vary diurnally, and the influence of these variations on discharge estimates from T-z methods is poorly understood. For this study, synthetic T-z profiles were generated numerically using measured streambed interface temperature data to assess the influence of diurnal temperature variations on discharge estimation and provide insight into the suitable application of T-z methods. Results show that the time of day of data collection can have a substantial influence on vertical flux estimates using T-z methods. For low groundwater discharge fluxes (e.g., 0.1 m d−1), daily transience in streambed temperatures led to relatively large errors in estimated flow magnitude and direction. For higher discharge fluxes (1.5 m d−1), the influence of transient streambed temperatures on discharge estimates was strongly reduced. Discharge estimates from point-in-time T-z profiles were most accurate when the uppermost point in the T-z profile was near the bed interface daily mean (two time periods daily). Where temperature time series data are available, daily averaged T-z profiles can produce accurate discharge estimates across a wide range of discharge rates. Seasonality in shallow groundwater temperature generally had a negligible influence on vertical flow estimates. These findings can be used to plan field campaigns and provide guidance on the optimal application of T-z methods to quantify vertical groundwater discharge to surface water bodies.  相似文献   

9.
Science China Earth Sciences - The Chinese government has made a strategic decision to reach ‘carbon neutrality’ before 2060. China’s terrestrial ecosystem carbon sink is...  相似文献   

10.
Marine algae are ‘taught’ the basics of angular momentum   总被引:1,自引:1,他引:0  
Advanced modelling studies and high-resolution observations have shown that flows related to instability of the mesoscale (~ 1–10 km scale) may provide both the fertilisation mechanism for nutrient-depleted (oligotrophic) surface waters and a subduction mechanism for the rapid export of phytoplankton biomass to the deep ocean. Here, a detailed multidisciplinary analysis of the data from an example high-resolution observational campaign is presented. The data provide direct observations of the transport of phytoplankton through baroclinic instability. Furthermore, the data confirm that this transport is constrained by the requirement to conserve angular momentum, expressed in a stratified water column as the conservation of potential vorticity. This constraint is clearly seen to produce long thin filaments of phytoplankton populations strained out along isopycnal vorticity annuli associated with mesoscale frontal instabilities.  相似文献   

11.

An experimental investigation was made of the upstream influence in front of two‐dimensional obstacles when they were towed in a linearly stratified fluid. The experiments were performed in a plexiglas channel 30.5 feet long, 2 feet high and 14 inches wide filled with a linearly stratified salt solution. Velocity measurements and flow visualization were obtained by neutrally buoyant liquid droplets and dye lines. Density measurements were made by a salinity probe.

The existence of unattenuated upstream influence in front of an obstacle was quantitatively documented for the first time. It occurred in the form of multiple unattenuated horizontal jets when there was a separated open wake behind the obstacle. These jets were identified to be the super‐position of “columnar disturbance modes”. The total number of columnar modes was determined solely by the Froude number of the flow and was equal to the number of lee‐wave modes excited. The drag due to upstream columnar modes was estimated and found to be lower than the drag due to the lee wave modes:  相似文献   

12.
Geomagnetism and Aeronomy - The effect of electron fluxes from the Earth’s radiation belts on satellites made of dielectric materials is studied theoretically. Spherical shaped nanosatellites...  相似文献   

13.
Mylonites display petrographical and geochemical characteristics that can be related to syn-deformation fluid circulation. The South Armorican Shear Zone, a major structural feature of the Armorican Massif (France), is outlined by the presence of mylonitic rocks cropping out mostly in open quarries. These mylonites were essentially formed at the expense of peraluminous granitic bodies. Deformation occurred from ductile conditions in the biotite stability field (>400 °C) down to lower greenschist cataclasis and brecciation, where carbonation developed. U–Pb analyses on zircon and monazite define a minimum duration of 15 Ma for the deformation and hydrothermal history, between 315 Ma and 300 Ma. Fluid circulations are well documented, by way of petrographic observation (chlorite and carbonate crystallization), mineralogical composition analysis (muscovite chemistry), erratic mobility behavior of some elements (As, Sn, U for instance), and stable isotope composition analysis of the infiltrated rocks. High temperature deformation is not accompanied by alteration of the O isotope system, which implies either low fluid/rock ratio and/or the involvement of δ18O crustal fluids with a composition similar to that of the rocks. On the other hand, some low temperature mylonites show a drastic decrease in the δ18O values, which has to be related to the influx of surface derived waters. The heat source necessary for this crustal scale downward infiltration of fluids followed by upward motion was likely provided by the exhumation of lower crustal units in the South Armorican domain.  相似文献   

14.
Influent river carrying nutrient pollutants from watershed loads makes a great contribution to the eutrophication in river-fed lake. It is scientific standard to make policies on river pollution control based on loading capacity of the river of interest. To control eutrophication in Taihu Lake has been the focal point of “The Twelfth Five-Year Guideline” proposed by Chinese government. The Taigeyunhe, Caoqiaohe and Yincungang Rivers which were the most polluted influent rivers in Taihu Lake Basin were scheduled for nutrient total maximum daily load (TMDL). A variety of mechanistic and empirical models are applied worldwide for TMDL development. However, model selection depends on management objectives, site-specific characteristics and availability of data resource. In this study, based on watershed characteristics and limited data, a nutrient TMDL is developed using flow and temporally variable daily load expressions. The simple and effective approaches specify allowable daily maximum loads for controlling on instantaneous high load and allowable daily median loads for achieving long-term TMDL allocation. For the entire river system, loading capacities are much lower during low flows. The maximum percent load reductions for biochemical oxygen demand, ammonia nitrogen, total nitrogen in spring and total phosphorus in winter can be obtained when pollution source inputs seasonally vary. This study provides local authority with two different alternatives in decision-making for pollution control on influent rivers and then to reduce external loads to the lake.  相似文献   

15.
Understanding photosynthesis and plant water management as a coupled process remains an open scientific problem. Current eco-hydrologic models characteristically describe plant photosynthetic and hydraulic processes through ad hoc empirical parameterizations with no explicit accounting for the main pathways over which carbon and water uptake interact. Here, a soil–plant-atmosphere continuum model is proposed that mechanistically couples photosynthesis and transpiration rates, including the main leaf physiological controls exerted by stomata. The proposed approach links the soil-to-leaf hydraulic transport to stomatal regulation, and closes the coupled photosynthesis–transpiration problem by maximizing leaf carbon gain subject to a water loss constraint. The approach is evaluated against field data from a grass site and is shown to reproduce the main features of soil moisture dynamics and hydraulic redistribution. In particular, it is shown that the differential soil drying produced by diurnal root water uptake drives a significant upward redistribution of moisture both through a conventional Darcian flow and through the root system, consistent with observations. In a numerical soil drying experiment, it is demonstrated that more than 50% of diurnal transpiration is supplied by nocturnal upward water redistribution, and some 12% is provided directly through root hydraulic redistribution. For a prescribed leaf area density, the model is then used to diagnose how elevated atmospheric CO2 concentration and increased air temperature jointly impact soil moisture, transpiration, photosynthesis, and whole-plant water use efficiency, along with compensatory mechanisms such as hydraulic lift using several canonical forms of root-density distribution.  相似文献   

16.
This paper investigates the transferability of calibrated HBV model parameters under stable and contrasting conditions in terms of flood seasonality and flood generating processes (FGP) in five Norwegian catchments with mixed snowmelt/rainfall regimes. We apply a series of generalized (differential) split-sample tests using a 6-year moving window over (i) the entire runoff observation periods, and (ii) two subsets of runoff observations distinguished by the seasonal occurrence of annual maximum floods during either spring or autumn. The results indicate a general model performance loss due to the transfer of calibrated parameters to independent validation periods of ?5 to ?17%, on average. However, there is no indication that contrasting flood seasonality exacerbates performance losses, which contradicts the assumption that optimized parameter sets for snowmelt-dominated floods (during spring) perform particularly poorly on validation periods with rainfall-dominated floods (during autumn) and vice versa.  相似文献   

17.
Subalpine forests are hydrologically important to the function and health of mountain basins. Identifying the specific water sources and the proportions used by subalpine forests is necessary to understand potential impacts to these forests under a changing climate. The recent “Two Water Worlds” hypothesis suggests that trees can favour tightly bound soil water instead of readily available free-flowing soil water. Little is known about the specific sources of water used by subalpine trees Abies lasiocarpa (Subalpine fir) and Picea engelmannii (Engelmann spruce) in the Canadian Rocky Mountains. In this study, stable water isotope (δ18O and δ2H) samples were obtained from S. fir and Engelmann spruce trees at three points of the growing season in combination with water sources available at time of sampling (snow, vadose zone water, saturated zone water, precipitation). Using the Bayesian Mixing Model, MixSIAR, relative source water proportions were calculated. In the drought summer examined, there was a net loss of water via evapotranspiration from the system. Results highlighted the importance of tightly vadose zone, or bound soil water, to subalpine forests, providing insights of future health under sustained years of drought and net loss in summer growing seasons. This work builds upon concepts from the “Two Water Worlds” hypothesis, showing that subalpine trees can draw from different water sources depending on season and availability. In our case, water use was largely driven by a tension gradient within the soil allowing trees to utilize vadose zone water and saturated zone water at differing points of the growing season.  相似文献   

18.
Wyatt  Lucy R. 《Ocean Dynamics》2019,69(1):123-144
Ocean Dynamics - An ability to reliably measure the first five Fourier coefficients of the directional distribution of ocean wave energy is becoming an international requirement for any directional...  相似文献   

19.
20.
The traditional Richards’ equation implies that the wetting front in unsaturated soil follows Boltzmann scaling, with travel distance growing as the square root of time. This study proposes a fractal Richards’ equation (FRE), replacing the integer-order time derivative of water content by a fractal derivative, using a power law ruler in time. FRE solutions exhibit anomalous non-Boltzmann scaling, attributed to the fractal nature of heterogeneous media. Several applications are presented, fitting the FRE to water content curves from previous literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号