首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transgressive dune fields often comprise a multiplicity of landforms where vegetation processes largely affect landform dynamics, which in turn, also affect vegetation processes. These associations have seldom been studied in detail. This paper examines four separate landform types in a complex coastal transgressive dunefield located in the central Gulf of Mexico, in order to assess the relationships between dunefield habitat, local environmental factors, vegetation associations and landform evolution. Topographic surveys using tape and clinometer were conducted in conjunction with vegetation survey transects at four locations across the Doña Juana dunefield. Vegetation surveys allowed the estimation of relative plant cover of each plant species found along the transects. A large variety of landforms were found at the Doña Juana Dunefield: deflation plains, gegenwalle (counter) ridges, transverse dune trailing ridges, blowouts and parabolic dunes, aklé (fish‐scale shaped) dunefields and precipitation ridges, with plant species associations developing on these different landforms equally variable. Flood tolerant species were located in the lower parts (deflation plain and gegenwalle ridges) whereas the older and dryer parts were covered by coastal matorral shrubs. Burial‐tolerant species were dominant in the most mobile areas (blowouts and aklé dunefield and margin). The dune trailing ridge, with relatively milder conditions, showed the highest richness, with no dominant species. A dual interaction was found such that colonizing species both create and affect topography, and in turn, topography determines vegetation association and succession patterns. In coastal dunes, the vegetation and abiotic environment (namely the different landforms and the inherent micronevironmental variability) interact tightly and generate a complex and highly dynamic biogeomorphic system where substrate mobility and colonization processes reinforce one another in positive feedback. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Dune mobility and vegetation cover in the Southwest Kalahari desert   总被引:1,自引:0,他引:1  
As part of a wider project investigating the palaeoenvironmental significance of partially vegetated linear dunes in the southwest Kalahari, data collected in the latter part of 1992 concerning dune movement and vegetation cover suggest that sediment transport is occurring on some dune surfaces, and that the majority of surface activity occurs on the crests and upper slopes of the dunes. The data suggest that the limiting variables on surface sediment movement vary on different parts of a dune. On interdunes and lower dune slopes the primary limiting variable is available wind energy, while on dune crests and upper slopes it is vegetation cover. Ground cover by litter has much greater importance in protecting the surface sediment from erosion than rooted vegetation. From individual data points, no evidence is found to support a threshold vegetation cover below which sediment movement occurs. Rather, a gradient of activity is suggested whereby a reduction in vegetation cover increases the potential for sediment movement and surface change. However, dunes with differing amounts of mean vegetation cover display differing degrees of surface activity, and at this scale, a vegetation cover threshold in the region of 14 per cent may be recognized.  相似文献   

3.
Several previous attempts have been made to explain the apparent poor development of coastal dunes in the humid tropics in terms of lack of wind energy, failure of sand supply to the shoreline, excessive climatic wetness, salt crust formation on beaches, and the character of tropical back-beach vegetation. However, recent published reports indicate that coastal dune occurrences are more common in the humid tropics than was formerly thought, throwing suspicion on the idea that environmental conditions militate against dune formation in these areas as a whole. Evidence from the humid tropical sector of the North Queensland coast suggests that the poor development of dunes in this area primarily reflects poor sediment sorting in the beach and nearshore zone and low wind energy at the shoreline due to the nature of the coastal orientation and physiography in relation to the prevailing southeasterly winds. These limiting factors are not unique to humid tropical climates.  相似文献   

4.
Reticulate dunes are one of the commonest dune types, and yet the least understood. Reticulate dunes at southeastern Tengger Desert are constituted by NE-SW trending primary ridges and nearly vertical secondary ridges. The result of field work studying the morphodynamics and formation mechanism for reticulate dunes in this area shows that the primary ridges were formed by dominant northwest wind and the secondary ridges developed and maintained by alternating dominant wind and subdominant northeast wind on the basis of the primary ridges. Viewed from morphodynamics, reticulate dunes correspond to the complex transverse dune on which the longitudinal element superimposed. Project supported by the National Natural Science Foundation of China (Grant No. NSFC-49501001).  相似文献   

5.
This paper documents application of an established geostatistical methodology to detect significant changes in a foredune–transgressive dune complex where Parks Canada Agency (PCA) implemented a dynamic restoration program to remove invasive marram grasses (Ammophila spp.) and enhance dynamic dune habitat for an endangered species. Detailed topographic surveys of a 10 320 m2 site in the Wickaninnish Dunes in Pacific Rim National Park, British Columbia, Canada for the first year post‐treatment are compared to a pre‐restoration LiDAR baseline survey. The method incorporates inherent spatial structure in measured elevation datasets at the sub‐landscape scale and models statistically significant change surfaces within distinct, linked geomorphic units (beach, foredune, transgressive dune complex). Seasonal and annual responses within the complex are discussed and interpreted. All geomorphic units experienced positive sediment budgets following restoration treatment. The beach experienced the highest differential volumetric change (+1656 m3) and net sediment influx (+834 m3, 0 · 19 m3 m–2) mostly from supply to the supratidal beach and incipient dune. This sediment influx occurred independent of the restoration effort and was available as a buffer against wave erosion and as supply to the landward dunes. The foredune received +200 m3 (0 · 13 m3 m‐2) and its seaward profile returned to a similar pre‐restoration form following erosion at the crest from vegetation removal and scarping by high water events. Sediment bypassing and minimal change was evident at the mid‐stoss slope with appreciable extension of depositional lobes in the lee. The transgressive dune complex experienced high accretion following restoration activity (+201 m3) and over the year (+284 m3, 0 · 07 m3 m–2) mostly from depositional lobes from the foredune, precipitation ridge growth along the downwind boundary, and growth of existing lobes within the complex. Further integration of this methodology to detect significant geomorphic changes is recommended, particularly for applications where sampling densities are limited or logistically defined. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Concepts derived from previous studies of offshore winds on natural dunes are evaluated on a dune maintained for shore protection during three offshore wind events. The potential for offshore winds to form a lee‐side eddy on the backshore or transfer sediment from the dune and berm crest to the water are evaluated, as are differences in wind speed and sediment transport on the dune crest, berm crest and a pedestrian access gap. The dune is 18–20 m wide near the base and has a crest 4.5 m above backshore elevation. Two sand‐trapping fences facilitate accretion. Data were obtained from wind vanes on the crest and lee of the dune and anemometers and sand traps placed across the dune, on the beach berm crest and in the access gap. Mean wind direction above the dune crest varied from 11 to 3 deg from shore normal. No persistent recirculation eddy occurred on the 12 deg seaward slope. Wind speed on the berm crest was 85–89% of speed at the dune crest, but rates of sediment transport were 2.27 times greater during the strongest winds, indicating that a wide beach overcomes the transport limitation of a dune barrier. Limited transport on the seaward dune ramp indicates that losses to the water are mostly from the backshore, not the dune. The seaward slope gains sand from the landward slope and dune crest. Sand fences causing accretion on the dune ramp during onshore winds lower the seaward slope and reduce the likelihood of detached flows during offshore winds. Transport rates are higher in access gaps than on the dune crest despite lower wind speeds because of flatter slopes and absence of vegetation. Transport rates across dunes and through gaps can be reduced using vegetation and raised walkover structures. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
A relatively unknown coastal zone of southern Mozambique in Africa is covered by vast mobile and stabilized dunefields. The aeolian dynamics of these transgressive dunefields are studied based on mobility and stability models, statistical analysis of climate data and topographic profiles. Detailed analyses of regional winds, rainfall records, atmospheric temperature records and annual monitoring of dune migration rates helped to find reliable data about instantaneous aeolian sand transport rates, wind drift potential, dune mobility and dune migration rates. The data obtained suggest that the coastal transgressive dunefields are controlled by the southeast winds, availability of loose sediments on the beach, the presence of headland boundary between Maputo and Gaza provinces and the appropriate deposition spaces between the coastline and lacustrine‐lagoon systems. Two distinctive segments of transgressive dunefields were identified in the region studied, including the northern segment of Maputo province with active (mobile) and semi‐vegetated dunes that migrate 23 m/yr landward, and Gaza province dunefields with stabilized (vegetated) and semi‐vegetated dunes. The data obtained in this research have considerable potential to make a valuable contribution to the study of coastal dunefields. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

8.
Studies have shown that the impact of climate change, human and animal actions on coastal vegetation can turn stabilized dunes into active mobile dunes and vice versa. Yet, the driving factors that trigger vegetation changes in coastal dunes are still not fully understood. In the transgressive dunefields of the Younghusband Peninsula (south-east coast of South Australia) historical aerial photographs show an increase in vegetation cover over the last ~70 years. This study attempts to identify the causes of the changes in vegetation cover (1949 to 2017) observed in a typical section of the coastal dune systems of the Peninsula. Vegetation cover was first estimated for various years using the available historical aerial photography (long-term changes – 1949 to 2017) and recent satellite imagery (short-term annual changes – 2010 to 2017) for the area, and then results were discussed against the observed changes in climatic variables and rabbit density, factors that could have played a role in this transformation. Results of long-term changes show that the vegetation cover has increased significantly from 1949 to 2017, from less than 7% vegetation cover to almost 40%, increasing dune stabilization and forming parabolic dune systems. Periods with the largest growth in vegetation cover (1952-1956 and 2009-2013) coincide with a significant decline in rabbit numbers. Rabbit density was found to be the primary factor linked to the rapid vegetation growth and stabilization of the dunefield, for both decadal long-term (last 68 years) and annual short-term changes (last 8 years). Other factors such as changes in rainfall, aeolian sediment transport, land use practices, and the introduction of invasive plants have apparently played a limited to negligible role in this stabilization process. © 2018 John Wiley & Sons, Ltd.  相似文献   

9.
Sedimentological, compositional and geochemical determinations were carried out on 54 desert and coastal dune sand samples to study the provenance of desert and coastal dunes of the Altar Desert, Sonora, Mexico. Grain size distributions of the desert dune sands are influenced by the Colorado River Delta sediment supply and wind selectiveness. The desert dune sands are derived mainly from the quartz‐rich Colorado River Delta sediments and sedimentary lithics. The dune height does not exert a control over the grain size distributions of the desert dune sands. The quartz enrichment of the desert dune sands may be due to wind sorting, which concentrates more quartz grains, and to the aeolian activity, which has depleted the feldspar grains through subaerial collisions. The desert dune sands suffer from little chemical weathering and they are chemically homogeneous, with chemical alteration indices similar to those found in other deserts of the world. The desert sands have been more influenced by sedimentary and granitic sources. This is supported by the fact that Ba and Sr concentration values of the desert sands are within the range of the Ba and Sr concentration values of the Colorado River quartz‐rich sediments. The Sr values are also linked to the presence of Ca‐bearing minerals. The Zr values are linked to the sedimentary sources and heavy mineral content in the desert dunes. The Golfo de Santa Clara and Puerto Peñasco coastal dune sands are influenced by long shore drift, tidal and aeolian processes. Coarse grains are found on the flanks whereas fine grains are on the crest of the dunes. High tidal regimens, long shore drift and supply from Colorado Delta River sediments produce quartz‐rich sands on the beach that are subsequently transported into the coastal dunes. Outcrops of Quaternary sedimentary rocks and granitic sources increase the sedimentary and plutonic lithic content of the coastal dune sands. The chemical index of alteration (CIA) values for the desert and coastal dune sands indicate that both dune types are chemically homogeneous. The trace element values for the coastal dune sands are similar to those found for the desert dune sands. However, an increase in Sr content in the coastal dune sands may be due to more CaCO3 of biogenic origin as compared to the desert dune sands. Correlations between the studied parameters show that the dune sands are controlled by sedimentary sources (e.g. Colorado River Delta sediments), since heavy minerals are present in low percentages in the dune sands, probably due to little heavy mineral content from the source sediment; grain sizes in the dune sands are coarser than those in which heavy minerals are found and/or the wind speed might not exert a potential entrainment effect on the heavy mineral fractions to be transported into the dune. A cluster analysis shows that the El Pinacate group is significantly different from the rest of the dune sands in terms of the grain‐size parameters due to longer transport of the sands and the long distance from the source sediment, whereas the Puerto Peñasco coastal dune sands are different from the rest of the groups in terms of their geochemistry, probably caused by their high CaCO3 content and slight decrease in the CIA value. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
For development of embryo dunes on the highly dynamic land–sea boundary, summer growth and the absence of winter erosion are essential. Other than that, however, we know little about the specific conditions that favour embryo dune development. This study explores the boundary conditions for early dune development to enable better predictions of natural dune expansion. Using a 30 year time series of aerial photographs of 33 sites along the Dutch coast, we assessed the influence of beach morphology (beach width and tidal range), meteorological conditions (storm characteristics, wind speed, growing season precipitation, and temperature), and sand nourishment on early dune development. We examined the presence and area of embryo dunes in relation to beach width and tidal range, and compared changes in embryo dune area to meteorological conditions and whether sand nourishment had been applied. We found that the presence and area of embryo dunes increased with increasing beach width. Over time, embryo dune area was negatively correlated with storm intensity and frequency. Embryo dune area was positively correlated with precipitation in the growing season and sand nourishment. Embryo dune area increased in periods of low storm frequency and in wet summers, and decreased in periods of high storm frequency or intensity. We conclude that beach morphology is highly influential in determining the potential for new dune development, and wide beaches enable development of larger embryo dune fields. Sand nourishment stimulates dune development by increasing beach width. Finally, weather conditions and non‐interrupted sequences of years without high‐intensity storms determine whether progressive dune development will take place. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
The southwestern Kalahari linear dunefield, which displays marked morphological variability, possesses a partial but temporally and spatially variable vegetation cover and has frequently been described as a palaeodunefield. Palaeo status has been ascribed on the basis of several criteria including the presence of vegetation, but also because dunes are thought to be out of alignment with modern resultant potential sand-moving wind directions and because present-day wind energy is regarded as low. For the period 1960–1992, wind data from eight dunefield meteorological stations are analysed in detail to examine these assertions. Potential sand transport directions, including spatial and temporal variations, and potential drift directions for the windiest three month periods, are calculated and explained. It is concluded that the present-day potential sand transport environment is markedly variable from year to year and from place to place. While periods of low sand transport energy do occur, it is also noted that the 1980s possessed considerable potential for sand transport in the dunefield. Directional variability is also relatively high, perhaps exceeding that under which linear dunes can be expected to form. Because linear dune aeolian activity has a number of states, however, the present-day wind environment may allow dune surface aeolian activity to occur which does not alter the overall pattern of the dunes.  相似文献   

12.
The evolution of barchan-to-parabolic dunes can be driven by vegetation establishment, which may be linked to climate change and/or human activity. However, little is known of the impact of changes in wind strength on vegetation development and the resulting impacts on the evolution of dune morphology and sedimentological characteristics. To address this issue, we studied the morphology and grain-size characteristics of barchan, barchan-to-parabolic and parabolic dunes in the Mu Us Desert in north China, which was combined with an analysis of changes in normalized difference vegetation index (NDVI) and climatic variables during 1982–2018. The results reveal a trend of increasing growing-season NDVI which was related to a significant decrease in drift potential (DP). Therefore, we suggest that the initiation of dune transformation was caused by the reduced wind strength which favored the establishment and development of vegetation. To reveal the response of sedimentological reorganization during the processes of dune transformation, grain-size characteristics along the longitudinal profile of the three different types of dunes were examined. The decreasing wind strength led to the transport of fine sands on the upper part of the windward face of the dunes, resulting in a progressive coarsening of the grain-size distribution (GSD) and a reduction in dune height at the crest area. No distinct trend in sorting and mean grain-size was observed on the windward slope of the barchan-to-parabolic dune, indicating that the sand in transit had little influence on the GSD. Conversely, progressive sorting and coarsening of the sand occurred towards the crest of the parabolic dune. This indicates that vegetation development limited the transport of sand from upwind of the dune, and affected a shift in the dune source material to the underlying source deposits, or to reworked pre-existing aeolian deposits, and resulted in the trapping of sand in the crest area. © 2020 John Wiley & Sons, Ltd.  相似文献   

13.
Repeated surveying of two sites on a Namib linear dune between 1980 and 2001 provides a 21‐year record of dune surface change. The surveys con?rm the view that the dunes are not inactive relics but are responding to the present‐day wind regime. They also provide no evidence that the dunes are migrating laterally. Examination of wind data for the survey period provides some evidence that the form of the crest of the dunes is actively responding to the natural year‐by‐year climate variability, such that an increase in the frequency of easterly winds leads to the development of a double‐crested form while fewer easterly winds lead to a single‐crested form. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
Submarine dune dynamics are controlled by tidal currents and wind forces. According to the relative influence of these forces and the nature of dune sediment, different bedform behaviors can be observed. The footprint of the different hydrodynamic agents is recorded into the internal architecture of dunes. This paper is concerned with bedforms that compose the thick sediment wedge located in the eastern English Channel, off the Bay of Somme. This sedimentary archive constitutes an interesting feature to achieve a better understanding of seabed sediment dynamics and its timeline building stages. The dynamics of large submarine dunes, which are organized in fields, are studied thanks to bathymetric and seismic data over the periods 1937–1993 and 1993–2007. Dune morphology presents low lee and stoss side slopes (on average 8° and 3°, respectively) and dune migration rate is not very high. Dune movements are in the direction of residual tidal currents, i.e. toward the east, with mean migration rates around 0·8 to 5 ± 0·25 m yr?1 and up to 6·6 ± 0·7 m yr?1, respectively, at multi‐decennial and decennial time scales. The dune internal architecture is complex with superimposed eastward prograding units, displaying locally opposite progradation. Second‐order discontinuities (dip of 0·5°–4° perpendicular to dune crests) constitute dune master bedding. By counting the number of second‐order reflectors between 1937–1993 and 1993–2007, the formation periodicity of these bounding surfaces is estimated to range from 4 to 18 years. These time intervals coincide with the long‐term tidal cyclicities and also with the inter‐annual to decennial variability of storm activity in northern Europe. Two theories were made to interpret the dune internal structures: the second‐order surfaces are interpreted either as the depositional surfaces corresponding to the marks of weak energy periods (weak tidal and storm action), or as erosive surfaces due to an opposite direction of dune migration provoked temporarily by exceptional storms from the northeast. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Vegetation plays an important role in shaping the morphology of aeolian dune landscapes in coastal and semi‐arid environments, where ecogeomorphic interactions are complex and not well quantified. We present a Discrete ECogeomorphic Aeolian Landscape model (DECAL) capable of simulating realistic looking vegetated dune forms, permitting exploration of relationships between ecological and morphological processes at different temporal and spatial scales. The cellular automaton algorithm applies three simple rules that lead to self‐organization of complex dune environments, including nebkhas with distinctive deposition tails that form in association with mesquite‐type shrubs, and hairpin (long‐walled) parabolic dunes with trailing ridges that evolve from blowouts in association with vegetation succession. Changing the conditions of simulations produces differing landscapes that conform qualitatively to observations of real‐world dunes. The model mimics the response of the morphology to changes in sediment supply, vegetation distribution, density and growth characteristics, as well as initial disturbances. The introduction of vegetation into the model links spatial and temporal scales, previously dimensionless in bare‐sand cellular automata. Grid resolutions coarser than the representative size of the modelled vegetation elements yield similar morphologies, but when cell size is reduced to much smaller dimensions, the resultant landscape evolution is dramatically different. The model furthermore demonstrates that the relative response characteristics of the multiple vegetation types and their mutual feedback with geomorphological processes impart a significant influence on landscape equilibria, suggesting that vegetation induces a characteristic length scale in aeolian environments. This simple vegetated dune model illustrates the power and versatility of a cellular automaton approach for exploring the effects of interactions between ecology and geomorphology in complex earth surface systems. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
On patterned peatlands, open water pools develop within a matrix of terrestrial vegetation (‘ridges’). Regional patterns in the distribution of ridge–pool complexes suggest that the relative cover of these two surface types is controlled in part by climate wetness, but landscape topography must also be an important controlling factor. In this paper, a functional model that relates relative cover of ridges and pools to climate and surface gradient was developed and tested. The model was formulated in terms of a water budget, based on the differential effects of ridges and pools on losses by evapotranspiration and subsurface flow. It predicts a positive relationship between surface gradient and ridge proportion, with a linear effect related to water supply and ridge hydraulic conductivity, modified at high ridge proportion by differences in evapotranspiration between ridges and pools. The limit to patterned peatland distribution occurs where the surface is completely covered by ridges. The model may be sensitive or insensitive to climate differences between localities, depending on whether hydraulic characteristics of ridge peat co‐vary with water supply. To distinguish between these alternative hypotheses, surface gradient and ridge proportion were surveyed along 20 transects in each of three localities in Scotland that differ threefold in net precipitation to pools. The results of the field survey served to reject the climate‐sensitive hypothesis, but were consistent with the climate‐insensitive hypothesis. Analysis of the residuals suggested that variation within localities was related more to topographic control of water supply than to ridge hydraulic conductivity or developmental stage. Hence, within this maritime climate region, the distribution of ridge–pool complexes and the relative abundance of pools are controlled mainly by topographic variables. Field surveys across both maritime and continental regions are required to confirm a subtle climatic effect that allows pools to occur on higher gradients in drier climates than in wetter climates. Further development and testing of the functional model will provide a stronger basis for assessing potential feedback between climate change, peatland surface structure and methane emission from pools. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
A cellular automata model is used to analyze the effects of groundwater levels and sediment supply on aeolian dune development occurring on sand flats close to inlets. The model considers, in a schematized and probabilistic way, aeolian transport processes, groundwater influence, vegetation development, and combined effects of waves and tides that can both erode and accrete the sand flat. Next to three idealized cases, a sand flat adjoining the barrier island of Texel, the Netherlands, was chosen as a case study. Elevation data from 18 annual LIDAR surveys was used to characterize sand flat and dune development. Additionally, a field survey was carried out to map the spatial variation in capillary fringe depth across the sand flat. Results show that for high groundwater situations, sediment supply became limited inducing formation of Coppice-like dunes, even though aeolian losses were regularly replenished by marine import during sand flat flooding. Long dune rows developed for high sediment supply scenarios which occurred for deep groundwater levels. Furthermore, a threshold depth appears to exist at which the groundwater level starts to affect dune development on the inlet sand flat. The threshold can vary spatially depending on external conditions such as topography. On sand flats close to inlets, groundwater is capable of introducing spatial variability in dune growth, which is consistent with dune development patterns found on the Texel sand flat.  相似文献   

18.
The introduction of vegetation to bare barchan dunes can result in a morphological transformation to vegetated parabolic dunes. Models can mimic this planform inversion, but little is known about the specific processes and mechanisms responsible. Here we outline a minimalist, quantitative, and process‐based hypothesis to explain the barchan–parabolic transformation. The process is described in terms of variations in the stabilization of wind‐parallel cross‐sectional dune slices. We hypothesize that stabilization of individual ‘dune slices’ is the predictable result of feedbacks initiated from colonization of vegetation on the slipface, which can only occur when slipface deposition rates are less than the deposition tolerance of vegetation. Under a constant vegetation growth regime the transformation of a barchan dune into a parabolic dune is a geometric response to spanwise gradients in deposition rates. Initial vegetation colonization of barchan horns causes shear between the anchored sides and the advancing centre of the dune, which rotates the planform brinkline angle from concave‐ to convex‐downwind. This reduces slipface deposition rate and allows vegetation to expand inward from the arms to the dune centre. The planform inversion of bare barchans dunes into vegetated parabolic dunes ultimately leads to complete stabilization. Our hypothesis raises several important questions for future study: (i) are parabolic dunes transitional landforms between active and vegetation‐stabilized dune states? (ii) should stabilization modelling of parabolic dune fields be treated differently than linear dunes? and (iii) are stabilized parabolic dune fields ‘armoured’ against re‐activation? Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Long-term and seasonal geomorphological changes at Padre Island, Texas are identified and linked with potential external drivers. Aerial and satellite images from 1950 to 2018, monthly images from 2019 to 2020, and a 2018 LiDAR data set are used to assess long-term and seasonal geomorphological changes within a 50 km2 area of Padre Island near Port Mansfield, Texas. Trends in landcover are evaluated by mapping and comparing the relative areal coverage of each facies. Vegetated dunes, absent initially, emerged in the fore-island and expanded into the back-barrier to cover 14% of the study area. The active vegetation-free back-barrier dune field steadily decreased in areal extent from 12% to 6% as vegetation spread. Nebkha dune coverage fluctuated between 4% and 7%. Expansive microbial mats colonized the wind tidal and deflation flats surrounding the vegetated dunes and back-barrier dune field giving rise to a remarkably different landscape over the 50-year period studied. An assessment of external forcing factors identifies increased rates of relative sea level rise and decreased sediment influx as the most likely primary factors driving the geomorphological changes. These changes have induced a widespread shift toward stabilization of island sediments by vegetation and microbial mats, which in turn has starved the back-barrier of sediments resulting in low rates of accretion and increased flooding. These findings highlight the sensitivity of the back-barrier and, in particular, the dune facies to changes in sea level and sediment supply, and show that microbial mats are effective at stabilizing island sediments and may be harbingers to barrier island response to rising sea level. As shown in this study, long-term monitoring of geomorphic facies changes and topography can detect important shifts in the island state that can be used to inform decision making for these sensitive coastal landscapes.  相似文献   

20.
The formation of the complex linear dunes in the central Taklimakan Sand Sea is discussed based on analyses of wind regimes, sand grain size distributions on the topography of the dunes, and a combination of geomorphic and geophysical investigations into the morphology of the dunes. Complex linear dune formation is shown to have ?ve stages. Analysis clearly shows that under the control of wind regime, sand supply and other factors, the simple linear dunes move sideways while they evolve. This is the main cause for the formation of complex linear dunes in the central Taklimakan Sand Sea. We have not collected enough evidence to show whether the complexity of the complex linear dunes is left over from previous wind regimes or whether the previous wind regimes had different dominant wind directions compared to those of modern winds. The evolutionary processes of complex linear dunes in the region partly support the theory of ‘barchan evolution’ but do not support the ‘roll‐vortex’ and ‘bimodal wind regime’ hypotheses. After the complex linear dunes were developed, the local wind regime and the other controls such as sand supply suggest it is possible for them to maintain their linear shape. The evolutionary process discussed is limited to the region indicated in this paper, and may not be applicable to the whole Taklimakan Sand Sea. There are different evolutionary processes in different dune?elds because of variations in the factors that control complex linear dune formation. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号