首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Sandy beaches typically have one or more shore-parallel bars with superimposed smaller-scale three-dimensional (3D) bars. Knowledge of their morphodynamic behaviour under more realistic wave conditions is limited. This study investigates the response of beaches with two shore-parallel bars to sinusoidally time-varying angles of incidence, using a non-linear morphodynamic model. Different periods and amplitudes of this sinusoidal variation are considered, as well as different time-mean wave angles. For time-invariant and normally incident waves, results show that alongshore rhythmic 3D bars form in the domains of inner and outer shore-parallel bars. The 3D bars in the inner domain are coupled at half the outer-bars wavelength. This phase coupling breaks up when the wave angle varies in time. Initially, regular 3D bars form in the inner domain (free behaviour), which become irregular when 3D bars develop in the outer domain (forced behaviour). The heights of the 3D bars oscillate with time, reaching maximum values when the forcing period is comparable to the system adjustment time scale (∼ 10–20 days). For a time-varying wave angle around an oblique mean, alongshore migrating 3D bars emerge in both inner and outer domains. In contrast, for an oblique (constant) wave angle, 3D bars only form in the inner domain and they hardly migrate alongshore. For any forcing period, the dominant response period of the oscillating bar heights is at half the forcing period when waves are (on average) normally incident, and it equals the forcing period when waves are on average obliquely incident. Compared with time-invariant angles, heights of inner and outer 3D bars are (on average) smaller and larger, respectively, when the angle varies with time, particularly for forcing periods in the order of the system adjustment time scale. Increasing the amplitude of the time-varying wave angle weakens bar growth. Explanations of these results are also provided.  相似文献   

2.
Nearshore bars play a pivotal role in coastal behaviour, helping to protect and restore beach systems particularly in post‐storm conditions. Examination of bar behaviour under various forcing conditions is important to help understand the short‐ to medium‐term evolution of sandy beach systems. This study carried out over a nine‐week period examines, the behaviour of three intertidal bars along a high energy sandy beach system in northwest Ireland using high‐frequency topographic surveys and detailed nearshore hydrodynamic modelling. Results show that, in general, there was onshore migration for all the bars during the study period, despite the variability observed between bars, which was driven mostly by wave dominated processes. Under the prevailing conditions migration rates of up to 1.83 m day?1 and as low as 0.07 m day?1 were observed. During higher wave energy events the migration rates of the bars decelerated in their onshore route, however, under lower wave energy conditions, they quickly accelerated maintaining their shoreward migration direction. Tidal influence appears to be subordinate in these conditions, being restricted to moderating the localized wave energy at low tides and in maintaining runnel configurations providing accommodation space for advancing slip faces. The study highlights the intricate behavioural patterns of intertidal bar behaviour along a high energy sandy coastline and provides new insights into the relative importance of wave and tidal forcing on bar behaviour over a relatively short time period. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
A sandy beach in the south of Portugal (Faro beach, Ria Formosa) was surveyed from the dune crest seaward to 15 m depth 20 times over a period of 26 months. Wave time‐series between surveys were analysed to obtain relationships between wave height and vertical profile variations and to define wave thresholds for important morphological changes. Results show that the active zone of the profile lies between 5 m above and 10·4 m below mean sea level, and that there are clear cross‐shore differences in the vertical variability of the profile. Based on the pattern of vertical variability, the profile was divided into four cross‐shore sectors: A (berm), 20–80 m from the profile origin; B (sub‐tidal terrace), 80–170 m; C (long‐shore bar), 170–360 m; and D, 360–700 m. The relationship between the modulus of the maximum vertical change in each sector and the 99th percentile of significant wave height between surveys was always significant. Calculated thresholds for significant wave height generating important morphological changes were 2·3 m in sector A, 3·2 m in sectors B and C, and 4·1 m in sector D. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Erosion of hard‐rock coastal cliffs is understood to be caused by a combination of both marine and sub‐aerial processes. Beach morphology, tidal elevation and significant wave heights, especially under extreme storm conditions, can lead to variability in wave energy flux to the cliff‐toe. Wave and water level measurements in the nearshore under energetic conditions are difficult to obtain and in situ observations are rare. Here we use monthly cliff‐face volume changes detected using terrestrial laser scanning alongside beach morphological changes and modelled nearshore hydrodynamics to examine how exposed cliffs respond to changes in extreme wave conditions and beach morphology. The measurements cover the North Atlantic storms of 2013 to 2014 and consider two exposed stretches of coastline (Porthleven and Godrevy, UK) with contrasting beach morphology fronting the cliffs; a flat dissipative sandy beach at Godrevy and a steep reflective gravel beach at Porthleven. Beach slope and the elevation of the beach–cliff junction were found to influence the frequency of cliff inundation and the power of wave–cliff impacts. Numerical modelling (XBeach‐G) showed that under highly energetic wave conditions, i.e. those that occurred in the North Atlantic during winter 2013–2014, with Hs = 5.5 m (dissipative site) and 8 m (reflective site), the combination of greater wave height and steeper beach at the reflective site led to amplified wave run‐up, subjecting these cliffs to waves over four times as powerful as those impacting the cliffs at the dissipative site (39 kWm‐1 compared with 9 kWm‐1). This study highlighted the sensitivity of cliff erosion to extreme wave conditions, where the majority (over 90% of the annual value) of cliff‐face erosion ensued during the winter. The significance of these short‐term erosion rates in the context of long‐term retreat illustrates the importance of incorporating short‐term beach and wave dynamics into geomorphological studies of coastal cliff change. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

5.
Reef islands are morphologically dynamic features located on atolls and platform reefs that are very sensitive to wave‐induced processes on different timescales. The planform morphological evolution of reef islands is widely described; however, the mechanisms of the volumetric variations in response to wave energy are still poorly documented. To assess their multitemporal vertical and horizontal mobility, we performed a series of synchronous measurements of the volumetric changes and incident wave energies at two reef islands and a shingle bank at the Rocas Atoll in the South Atlantic Ocean. The results show the differences in the magnitudes and locations of the sediment mobility between the reef islands. Whereas one island remained stable on all timescales, with only small volumetric changes concentrated at its extremities, the other island (Farol Island) showed high mobility, especially during the energetic northern swell season. The gross volumetric change reached 10.03 × 103 m3 (5% of the total island volume) on a daily timescale; however, on a seasonal scale, the gross erosion was compensated by the gross accretion, indicating a cyclical seasonal pattern. Moreover, the observed volumetric changes induced by the waves on both daily and seasonal timescales did not result in large shoreline displacements. However, long‐term oceanward erosion and substantial lagoonward accretion were observed at Farol Island on a decadal scale, resulting in a pronounced change in its planform morphology. This appears to be promoted by at least three sediment transport pathways induced by waves at the atoll, including sediment adjustment between the reef islands. Our results show that reef islands on the same atoll can have very distinct morphological behaviors on daily, seasonal and decadal scales in response to the same boundary conditions. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
Montjoly is a headland‐bound embayed sandy beach in Cayenne, French Guiana, that shows long‐term plan shape equilibrium in spite of periodic changes in accretion and erosion that alternately affect either end of the beach. These changes are caused by mud banks that move alongshore from the Amazon. The mechanisms involved in changes in the plan shape of the beach in response to the passage of one of these mud banks were monitored between 1997 and 2000 from airborne video imagery and field work. The beach longshore drift to the northwest, driven by the incident easterly to northeasterly swell usually affecting this coast, became temporarily reversed as the mud bank, migrating from east to west, initially sheltered the southeastern end of the beach. The difference in exposure to waves engendered a negative wave height gradient alongshore towards the southeast, resulting in the setting up of a cell circulation and counter‐active longshore drift from the exposed northwestern sector to the southeast. Sand eroded from the exposed sector accumulated first in the southeastern, and then the central sectors of the beach. The effect of increasing beach sheltering by the mudbank moving west is highlighted on the videographs by an ‘arrested’ pattern of beach shoreline development. The videographs show hardly any changes in beach plan shape since January 1999, due to sheltering of the beach from wave attack by the mud bank. It is expected that the eroded sector will recover in the future as the mud bank passes, leading to re‐establishment of the northwesterly sand drift. This temporally phased bi‐directional drift within the confines of the bounding headlands results in a rare example of mud‐bank‐induced beach rotation, and probably explains the long‐term equilibrium plan shape of Montjoly beach. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.

热带气旋是发生在热带洋面上的强烈气旋性涡旋.由于地转涡度梯度的存在,热带气旋在移动过程中不断发生Rossby波能量频散,并在热带气旋运动方向的后部激发出反气旋和气旋交替排列的Rossby波能量频散波列.多热带气旋共存和热带气旋的异常运动是当前国际热带气旋研究领域的热点问题,热带气旋Rossby能量频散被证实与多个热带气旋连续生成和异常运动密切相关.本文从热带气旋能量频散及波列特征、主要影响因子、反馈作用等方面,回顾总结了国内外关于热带气旋Rossby波能量频散的相关研究进展,并提出当前亟待解决的一些科学问题.目的是为深入研究热带气旋Rossby波能量频散及其影响提供基础和参考,以期使更多的研究学者关注热带气旋能量频散问题,从而进一步揭示热带气旋生成、发展和异常运动的动力学机理.

  相似文献   

8.
固体介质中非线性波的能量初探   总被引:1,自引:2,他引:1       下载免费PDF全文
本文从能源问题与勘探问题的密切关系出发,提出进行深入的非线性波研究的必要性——进一步提供可靠而详实的地质资料,以解决实际地质问题.说明了非线性科学与非线性波动的关系和特点,非线性波动是非线性科学的一个重要的分支,而地球本身的特点也决定了非线性科学是解决地质问题的重要基础.回顾了波动理论的研究历程及当今国内外非线性研究的进展情况.通过上述认识,提出了非线性波动问题中能量的重要性,然后分别从震源与冲击波的形成,界面处的能量分配,介质中能量的衰减,波的相互作用四个方面讨论了非线性波的能量问题.通过对能量问题的讨论,进一步讨论了影响非线性波能量的因素.从能量的角度出发,探讨了以后进行固体中非线性波研究的重点.最后对非线性波在地学应用中的可能性进行了探讨.  相似文献   

9.
在多次各向异性散射理论的基础上,本文重新推导了方向性散射系数的球函数展开式.引入特征时间的概念,来定义震源处初始地震波脉冲宽度,并在地震波能量密度积分方程中引入任意给定频率的初始脉冲能量谱密度的解析表达.通过离散波数方法求解了修正的地震波能量密度积分方程.基于积分方程的数值解,研究了不同散射模式对S波能量密度包络曲线的影响.计算结果表明:随着震源距的增加,在S波到时之后,多次各向异性散射模式与多次各向同性散射模式合成的能量密度包络差异逐渐增大.其中通过多次前散射模式,我们可以得到不同震源距的尾波能量密度包络的同一衰减趋势,以及S波能量密度包络随着震源距的增加而出现的展宽现象.最后,利用美国内华达州Wells地震余震的台站记录验证了多次前散射模式的实用性与有效性.  相似文献   

10.
地震波的场方程矩阵和能量的正定二次型及其意义   总被引:2,自引:0,他引:2       下载免费PDF全文
场方程是能够表述半空间地震波场的整体特征.波动方程、速度方程和能量方程.通过分析可知每个场方程都具有各自的“场方程矩阵”.能量方程能够对所有场方程矩阵进行综合和贯通,给出了能量方程以“弹性矩阵”为核心的普适性表达形式.最后,运用矩阵的正定二次型理论阐述了“能量矩阵与弹性矩阵”之间一致的对称性和正定性.能量矩阵蕴含的动态力的平衡关系、速度的时间_空间分布和能量的传播及变化的物理意义,能够从能量矩阵的正定二次型特性表述出来.本文研究分析问题的方法完全适用于复杂介质模型,相关的认识和结论可以拓展到均匀黏弹性各向同性介质、均匀弹性各向异性介质、均匀黏弹性各向异性介质以及比奥饱和流体介质.  相似文献   

11.
12.
Conceptual models of circulation theorise that the dominant forces controlling estuarine circulation are freshwater discharge from the riverine section (landward), tidal forcing from the ocean boundary, and gravitational circulation resulting from along-estuary gradients in density. In micro-tidal estuaries, sub-tidal water level changes (classified as those with periods between 3 and 10 days) with amplitudes comparable to the spring tidal range can significantly influence the circulation and distribution of water properties. Field measurements obtained from the Swan River Estuary, a diurnal, micro-tidal estuary in south-western Australia, indicated that sub-tidal water level changes at the ocean boundary were predominantly from remotely forced continental shelf waves (CSWs). The sub-tidal water levels had maximum amplitudes of 0.8 m, were comparable to the maximum tidal range of 0.6 m, propagated into the estuary to its tidal limit, and modified water levels in the whole estuary over several days. These oscillations dominated the circulation and distribution of water properties in the estuary through changing the salt wedge location and increasing the bottom water salinity by 7 units over 3 days. The observed salt wedge excursion forced by CSW was up to 5 km, whereas the maximum tidal excursion was 1.2 km. The response of the residual currents and the salinity distribution lagged behind the water level changes by ∼24 h. It was proposed that the sub-tidal forcing at the ocean boundary, which changed the circulation, salinity, and dissolved oxygen in the upper estuary, was due to a combination of two processes: (1) a gravity current generated by a process similar to a lock exchange mechanism and (2) amplified along-estuary density gradients in the upper estuary, which enhanced the gravitational circulation in the estuary. The salt intrusions under the sub-tidal forcing caused the rapid movement of anoxic water upstream, with significant implications for water quality and estuarine health.  相似文献   

13.
Comparison of eolian transport during five high-velocity wind events over a 29 day period on a narrow estuarine beach in Delaware Bay, New Jersey, USA, reveals the temporal variability of transport, due to changes in direction of wind approach. Mean wind speed measured 6 m above the dune crest for the five events ranged from 8·5 to 15·9 ms?1. Mean wind direction was oblique to the shoreline (63° from shore-normal) during one event but was within 14° of shore-normal during the other events. Eolian transport is greatest during low tide and rising tide, when the beach source area is widest and when drying of surface sediments occurs. The quantity of sediment caught in a vertical trap for the five events varied from a total of 0·07 to 113·73 kgm?1. Differences in temperature, relative humidity and moisture and salt content of surficial sediments were slight. Mean grain sizes ranged from 0·33 to 0·58 mm, causing slight differences in threshold shear velocity, but shear velocities exceeded the threshold required for transport during all events. Beach width, measured normal to the shoreline, varied from 15·5 to 18·0 m; beach slope differed by 0·5°. The oblique wind during one event created a source width nearly double the width during other days. Beach slope, measured in the direction of the wind, was less than half as steep as the slope measured normal to the shoreline. The amount of sand trapped during the oblique wind was over 20 times greater than any other event, even those with higher shear velocities. The ability of the beach surface to supply grains to the air stream is limited on narrow beaches, but increased source width, due to oblique wind approach, can partially overcome limitations of surface conditions on the beach.  相似文献   

14.
主动空间试验中空间电荷波向电磁波的转换   总被引:2,自引:0,他引:2       下载免费PDF全文
本文理论分析了电子束沿地磁场穿越均匀、磁化等离子体密度跃变区域时,在弱磁场近似、哨声波激发、低频近似等几种典型情况下电子束流空间电荷波(Space charge wave)向电磁波的转换.先运用小信号假设求得电子束入射进均匀各向异性冷等离子体之后的色散关系和空间电荷波波数,然后借助于电磁波分量和电子束速度的边界条件,求解电子束在等离子浓度发生变化区域激发的波振幅,在几种典型情形下推导出空间电荷波转换为电磁波之间转换系数的近似解,给出了相应波辐射的坡印亭(Poynting)矢量表达式.结果表明,在渡越辐射(Transition radiation)情形下电子束可以在空间等离子体中激发出阿尔芬波(Alfven wave)和哨声波(Whistler wave).所得结论可用于对主动空间试验结果的分析.  相似文献   

15.
Energy conversions from potential to kinetic energy have been studied for a part of the Northern Hemisphere in the wave number domain. The vertical distribution of energy conversions were examined and the results have been compared with the other's observational results as well as that of forecast models.  相似文献   

16.
A computational method of energy evaluation is derived to study the elastic responses and energy distribution of actively controlled single‐degree‐of‐freedom (SDOF) structures during earthquakes. Contrary to the common perception that applying active control force pumps energy into the structure, the applied control force can actually reduce the energy in the structure by reducing the input energy from earthquakes to the structure. In addition, applying control force can dissipate a large amount of energy in the structure when this control force is applied in the direction opposite to the displacement and velocity responses. To demonstrate this energy mechanism in active controlled structures, the two most popular control algorithms, optimal linear control (OLC) and instantaneous optimal control (IOC) algorithms, are used to calculate the control response and energy spectra. One‐step time delay is incorporated into the algorithms to take into consideration the practical aspect of active control. The effects of different earthquakes and damping ratios on control energy and response spectra are studied. These studies show that both OLC and IOC are very effective in reducing the structural displacement and velocity responses by reducing the input earthquake energy as well as dissipating a large amount of energy in the structure. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

17.
安徽及邻区平均波速比的测定及研究   总被引:6,自引:1,他引:5  
将安徽及邻区(29°~36°N,114°~124°E),按1°×1°分成70个区,依据中国地震局分析预报中心编制的1998年1月1日至2003年12月31日全国地震月报目录,采用单事件多台观测资料,在所分区域里进行平均波速比值的计算,结果在其空间分布图像中显示了一定的特征。这些特征可能与地质构造环境即地质构造所形成的断裂带两侧的介质特性差异有关。计算所得的各区平均波速比对以后波速比值的变化分析有一定的参考作用。  相似文献   

18.
局部地形下入射波散射效应对场地地震响应的影响是目前众多学者所关注的问题.其影响主要由入射波频率、入射角度、地形几何形状、介质性质等几个因素所制约,所反应出来的散射效应主要体现在地表位移变化上.本文归纳了凹陷地形、凸起地形、沉积谷地以及复合地形这四类局部地形入射波散射效应对场地地震响应的影响,对目前研究成果进行了评述,并针对数学技术、工程应用、模型建立等7个方面指出了现今存在的问题和今后发展的方向.  相似文献   

19.
A strong low‐pressure system traveled along the Japanese main island Honshu in October 2006. High waves and storm surge attacked the Kashima Coast resulting in huge erosion over the area. Airborne laser data measured in October 2005 and November 2006 were analyzed to estimate cross‐sectional changes within the subaerial zone. The results of the alongshore distribution of the changes of cross‐sectional area indicate that the amount of erosion of the 38 km‐long northern and 15 km‐long southern parts decreased toward the south in each part and that the amount of erosion was smaller in protected areas with artificial headlands than in unprotected areas. The local alongshore variation of the erosion and accretion patterns showed wavy fluctuations of several hundreds of meters. The total amounts of the estimated eroded volume of the subaerial zone over the northern and southern parts were 620 000 m3 and 600 000 m3, respectively. The Simulating Waves Nearshore (SWAN) wave model was applied to estimate wave conditions along the coast during the storm. The computational results were verified, and then the alongshore distribution of wave energies, expressed as the alongshore and cross‐shore components of the wave energy flux, was compared with the alongshore distribution of cross‐sectional change. The results show that the distribution of energy flux explains the distribution of erosion well: The alongshore variability in the cross‐shore energy flux is responsible for the large‐scale variability in erosion, and shorter‐scale variability is due to gradients in the alongshore energy fluxes, especially for the areas without coastal works. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
二维轴对称介质中电磁波测井的响应函数   总被引:2,自引:1,他引:2       下载免费PDF全文
单发双收电磁波测井测的是两接收线圈的感应电动势之间的相位差和幅度比及测井响应与地层介电常数和电导率两者有关的一般情况,对此本文推导出其在二维轴对称介质中响应函数公式,给出它的快速算法.通过建立二维非均质反演Jacobi矩阵与响应函数的关系,开辟了Jacobi矩阵快速算法构造的有效途径.从理论上得到了在均匀介质中相位差和幅度比对地层的介电常数和电导率的空间分布探测特性具有交叉互补性的结果,即相位差对电导率(介电常数)的空间分布敏感区域和幅度比对介电常数(电导率)的空间分布敏感区域是相同的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号