首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
Despite the importance of tropical ecosystems for climate regulation, biodiversity, water and nutrient cycles, only a few Critical Zone Observatories (CZOs) are located in the tropics. Among these, most are in humid climates, while very few data exist for semi-arid and sub-humid climates, due to the difficulty of estimating hydro-geochemical balances in catchments with ephemeral streams. We contribute to fill this gap by presenting a meteorological and hydro-geochemical dataset acquired at the Mule Hole catchment (4.1 km2), a pristine dry deciduous forest located in a biosphere reserve in south India. The dataset consists of time series of variables related to (i) meteorology, including rainfall, air temperature, relative humidity, wind speed and direction, and global radiation, (ii) hydrology, including water level and discharge at the catchment outlet, (iii) hydrogeology, including manual (monthly) and/or automated (from 15 min to hourly) groundwater levels in nine piezometers and (iv) geochemistry, including suspended sediment content in the stream and chemical composition of rainfall (event based), groundwater (monthly sampling) and stream water (storm events, 15 min to hourly frequency with an automatic sampler). The time series extend from 2003 to 2019. Measurement errors are minimized by frequent calibration of sensors and quality checks, both in the field and in the laboratory. Despite these precautions, several data gaps exist, due to occasional access restriction to the site and instrument destruction by wildlife. Results show that large seasonal and interannual variations of climatic conditions were reflected in the large variations of stream flow and groundwater recharge, as well as in water chemical composition. Notably, they reveal a long-term evolution of groundwater storage, suggesting hydrogeological cycles on a decadal scale. This dataset, alone or in combination with other data, has already allowed to better understand water and element cycling in tropical dry forests, and the role of forest diversity on biogeochemical cycles. As tropical ecosystems are underrepresented by Critical Zone Observatories, we expect this data note to be valuable for the global scientific community.  相似文献   

2.
Laurie Boithias  Yves Auda  Stéphane Audry  Jean-Pierre Bricquet  Alounsavath Chanhphengxay  Vincent Chaplot  Anneke de Rouw  Thierry Henry des Tureaux  Sylvain Huon  Jean-Louis Janeau  Keooudone Latsachack  Yann Le Troquer  Guillaume Lestrelin  Jean-Luc Maeght  Pierre Marchand  Pierre Moreau  Andrew Noble  Anne Pando-Bahuon  Kongkeo Phachomphon  Khambai Phanthavong  Alain Pierret  Olivier Ribolzi  Jean Riotte  Henri Robain  Emma Rochelle-Newall  Saysongkham Sayavong  Oloth Sengtaheuanghoung  Norbert Silvera  Nivong Sipaseuth  Bounsamay Soulileuth  Xaysatith Souliyavongsa  Phapvilay Sounyaphong  Sengkeo Tasaketh  Chanthamousone Thammahacksa  Jean-Pierre Thiebaux  Christian Valentin  Olga Vigiak  Marion Viguier  Khampaseuth Xayyathip 《水文研究》2021,35(5):e14126
Mountain regions of the humid tropics are characterized by steep slopes and heavy rains. These regions are thus prone to both high surface runoff and soil erosion. In Southeast Asia, uplands are also subject to rapid land-use change, predominantly as a result of increased population pressure and market forces. Since 1998, the Houay Pano site, located in northern Lao PDR (19.85°N 102.17°E) within the Mekong basin, aims at assessing the long-term impact of the conversion of traditional slash-and-burn cultivation systems to commercial perennial monocultures such as teak tree plantations, on the catchment hydrological response and sediment yield. The instrumented site monitors hydro-meteorological and soil loss parameters at both microplot (1 m2) and small catchment (0.6 km2) scales. The monitored catchment is part of the network of critical zone observatories named Multiscale TROPIcal CatchmentS (M-TROPICS). The data shared by M-TROPICS in Houay Pano are (1) rainfall, (2) air temperature, air relative humidity, wind speed, and global radiation, (3) catchment land use, (4) stream water level, suspended particulate matter, bed particulate matter and stones, (5) soil surface features, and (6) soil surface runoff and soil detachment. The dataset has already been used to interpret suspended particulate matter and bed particulate matter sources and dynamics, to assess the impact of land-use change on catchment hydrology, soil erosion, and sediment yields, to understand bacteria fate and weed seed transport across the catchment, and to build catchment-scale models focused on hydrology and water quality issues. The dataset may be further used to, for example, assess the role of headwater catchments in large tropical river basin hydrology, support the interpretation of new variables measured in the catchment (e.g., contaminants other than faecal bacteria), and assess the relative impacts of both climate and land-use change on the catchment.  相似文献   

3.
South Cameroon is located in a tropical and tectonically quiescent region, with landscapes characterized by thick highly weathered regolith, indicative of the long‐term predominance of chemical weathering over erosion. Currently this region undergoes huge changes due to accelerated mutations related to a growing population and economical developments with associated needs and increasing pressures on land and natural resources. We analysed two of the main south Cameroon rivers: the Nyong River and Sanaga River. The Sanaga catchment undergoes a contrasted tropical climate from sub‐humid mountainous and humid climate and is impacted by deforestation, agriculture, damming, mining and urbanization, especially in the Mbam sub‐basin, draining the highly populated volcanic highlands. By contrast, the Nyong catchment, only under humid tropical climate, is preserved from anthropogenic disturbance with low population except in the region of Yaoundé (Méfou sub‐basin). Moreover the Nyong basin is dam‐free and less impacted by agriculture and logging. We explore both denudation temporal variability and the ratio between chemical and physical denudation through two catchment‐averaged erosion and denudation datasets. The first one consists of an 11‐year long gauging dataset, while the second one comes from cosmogenic radionuclides [CRNs, here beryllium‐10 (10Be)] from sand sampled in the river mainstreams (timescale of tens to hundreds of thousands of years). Modern fluxes estimated from gauging data range from 5 to 100 m/Ma (10 to 200 t/km2/yr); our calculations indicate that the usual relative contribution of chemical versus physical denudation is 60% and 40%, respectively, of the total denudation. Beryllium‐10 denudation rates and sediment fluxes range from 4.8 to 40.3 m/Ma or 13 to 109 t/km2/yr, respectively, after correction for quartz enrichment. These fluxes are slightly less than the modern fluxes observed in Cameroon and other stable tropical areas. The highest 10Be‐derived fluxes and the highest physical versus chemical denudation ratios are attributed to anthropogenic impact. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
The 20 km2 Galabre catchment belongs to the French network of critical zone observatories (OZCAR; Gaillardet et al., Vadose Zone Journal, 2018, 17(1), 1–24). It is representative of the sedimentary lithology and meteorological forcing found in Mediterranean and mountainous areas. Due to the presence of highly erodible and sloping badlands on various lithologies, the site was instrumented in 2007 to understand the dynamics of suspended sediments (SS) in such areas. Two meteorological stations including measurements of air temperature, wind speed and direction, air moisture, rainfall intensity, raindrop size and velocity distribution were installed both in the upper and lower part of the catchment. At the catchment outlet, a gauging station records the water level, temperature and turbidity (10 min time-step). Stream water samples are collected automatically to estimate SS concentration-turbidity relationships, allowing quantification of SS fluxes with known uncertainty. The sediment samples are further characterized by measuring their particle size distributions and by applying a low-cost sediment fingerprinting approach using spectrocolorimetric tracers. Thus, the contributions of badlands located on different lithologies to total SS flux are quantified at a high temporal resolution, providing the opportunity to better analyse the links between meteorological forcing variability and watershed hydrosedimentary response. The set of measurements was extended to the dissolved phase in 2017. Both stream water electrical conductivity and major ion concentrations are measured each week and every 3 h during storm events. This extension of measurements to the dissolved phase will allow progress in understanding both the origin of the water during the events and the partitioning between particulate and dissolved fluxes of solutes in the critical zone. All data sets are available at https://doi.osug.fr/public/DRAIXBLEONE_GAL/index.html .  相似文献   

5.
The role of geomorphological research into sediment flux within modern dynamical systems and the consequent role of geomorphological research in the development of practical environmental management tools are seldom reconciled. Sediment fluxes can be estimated using instruments and numerical models, but problems arise when these results are to be interpreted to inform the environmental management debate. This paper presents one set of solutions in which we describe the work of the Humber Observatory and detail the concepts, instrumentation and software systems which have been developed to address such issues. The design and deployment of a new, automated meteorological station, new multiple sensor, radio-linked outstations and the collection of associated tidal and bathymetric data are described, together with discussion of the operational problems and data archiving and output issues. We also describe the numerical models based upon the dynamical equations which have been used to estimate water and sediment fluxes through the Humber Estuary, and we describe the design criteria for new semi-empirical models. Results from the various systems and models are presented as the basis for a regional research capability and in terms of operational delivery for environmental management.  相似文献   

6.
Tropical volcanic islands are biodiversity hotspots where the Critical Zone (CZ) still remains poorly studied. In such steep topographic environments associated with extreme climatic events (cyclones), deployment and maintenance of monitoring equipment is highly challenging. While a few Critical Zone Observatories (CZOS) are located in tropical volcanic regions, none of them includes a Tropical Montane Cloud Forest (TMCF) at the watershed scale. We present here the dataset of the first observatory from the French network of critical zone observatories (OZCAR) located in an insular tropical and volcanic context, integrating a ‘Tropical Montane Cloud Forest’: The ERORUN-STAFOR observatory. This collaborative observatory is located in the northern part of La Réunion island (Indian Ocean) within the 45.0 km2 watershed of Rivière des Pluies (i.e., Rainfall river) which hosts the TMCF of Plaines des Fougères, one of the best preserved natural habitats in La Réunion Island. Since 2014, the ERORUN-STAFOR monitoring in collaboration with local partners collected a multidisciplinary dataset with a constant improvement of the instrumentation over time. At the watershed scale and in its vicinity, the ERORUN-STAFOR observatory includes 10 measurement stations covering the upstream, midstream and downstream part of the watershed. The stations record a total of 48 different variables through continuous (sensors) or periodic (sampling) monitoring. The dataset consists of continuous time series variables related to (i) meteorology, including precipitation, air temperature, relative humidity, wind speed and direction, net radiation, atmospheric pressure, cloud water flux, irradiance, leaf wetness and soil temperature, (ii) hydrology, including water level and temperature, discharge and electrical conductivity (EC) of stream, (iii) hydrogeology, including (ground)water level, water temperature and EC in two piezometers and one horizontally drilled groundwater gallery completed by soil moisture measurements under the canopy. The dataset is completed by periodic time series variables related to (iv) hydrogeochemistry, including field parameters and water analysis results. The periodic sampling survey provides chemical and isotopic compositions of rainfall, groundwater, and stream water at different locations of this watershed. The ERORUN-STAFOR monitoring dataset extends from 2014 to 2022 with an acquisition frequency from 10 min to hourly for the sensor variables and from weekly to monthly frequency for the sampling. Despite the frequent maintenance of the monitoring sites, several data gaps exist due to the remote location of some sites and instrument destruction by cyclones. Preliminary results show that the Rivière des Pluies watershed is characterized by high annual precipitation (>3000 mm y−1) and a fast hydrologic response to precipitation (≈2 h basin lag time). The long-term evolution of the deep groundwater recharge is mainly driven by the occurrence of cyclone events with a seasonal groundwater response. The water chemical results support existing hydrogeological conceptual models suggesting a deep infiltration of the upstream infiltrated rainfall. The TMCF of Plaine des Fougères shows a high water storage capacity (>2000% for the Bryophytes) that makes this one a significant input of water to groundwater recharge which still needs to be quantified. This observatory is a unique research site in an insular volcanic tropical environment offering three windows of observation for the study of critical zone processes through upstream-midstream-downstream measurements sites. This high-resolution dataset is valuable to assess the response of volcanic tropical watersheds and aquifers at both event and long-term scales (i.e., global change). It will also provide insights in the hydrogeological conceptual model of volcanic islands, including the significant role of the TMCFs in the recharge processes as well as the watershed hydrosedimentary responses to extreme climatic events and their respective evolution under changing climatic conditions. All data sets are available at https://doi.org/10.5281/zenodo.7983138 .  相似文献   

7.
Exploration by the NASA rover Opportunity has revealed sulfate- and hematite-rich sedimentary rocks exposed in craters and other surface features of Meridiani Planum, Mars. Modern, Holocene, and Plio-Pleistocene deposits of the Río Tinto, southwestern Spain, provide at least a partial environmental analog to Meridiani Planum rocks, facilitating our understanding of Meridiani mineral precipitation and diagenesis, while informing considerations of martian astrobiology. Oxidation, thought to be biologically mediated, of pyritic ore bodies by groundwaters in the source area of the Río Tinto generates headwaters enriched in sulfuric acid and ferric iron. Seasonal evaporation of river water drives precipitation of hydronium jarosite and schwertmannite, while (Mg,Al,Fe3+)-copiapite, coquimbite, gypsum, and other sulfate minerals precipitate nearby as efflorescences where locally variable source waters are brought to the surface by capillary action. During the wet season, hydrolysis of sulfate salts results in the precipitation of nanophase goethite. Holocene and Plio-Pleistocene terraces show increasing goethite crystallinity and then replacement of goethite with hematite through time. Hematite in Meridiani spherules also formed during diagenesis, although whether these replaced precursor goethite or precipitated directly from groundwaters is not known. The retention of jarosite and other soluble sulfate salts suggests that water limited the diagenesis of Meridiani rocks.Diverse prokaryotic and eukaryotic microorganisms inhabit acidic and seasonally dry Río Tinto environments. Organic matter does not persist in Río Tinto sediments, but biosignatures imparted to sedimentary rocks as macroscopic textures of coated microbial streamers, surface blisters formed by biogenic gas, and microfossils preserved as casts and molds in iron oxides help to shape strategies for astrobiological investigation of Meridiani outcrops.  相似文献   

8.
The Weierbach experimental catchment (0.45 km2) is the most instrumented and studied sub-catchment in the Alzette River basin in Luxembourg. Within the last decade, it has matured towards an interdisciplinary critical zone observatory focusing on a better understanding of hydrological and hydro-geochemical processes. The Weierbach catchment is embedded in an elevated sub-horizontal plateau, characterized by slate bedrock and representative of the Ardennes Massif. Its climate is semi-marine, with precipitation being rather evenly distributed throughout the year. Base flow is lowest from July to September, essentially due to higher losses through evapotranspiration in summer. The regolith is composed of Devonian slates, overlaid by Pleistocene slope deposits and entirely covered by forest with 70% deciduous and 30% coniferous trees. Since 2009, the Weierbach has been extensively equipped for continuously monitoring water fluxes and physico-chemical parameters within different compartments of the critical zone. Additionally, these compartments are sampled fortnightly at several locations to analyze δ18O and δ2H isotopic composition of water including rainfall, throughfall, soil water, groundwater and streamwater. This ongoing monitoring and sampling programme is used for answering pressing questions related to fundamental catchment functions of water infiltration, storage, mixing and release in forest ecosystems. A recently started research line aims at investigating interactions between forest eco-hydrosystems with the atmosphere and understanding how catchments will respond to a non-stationary climate.  相似文献   

9.
Groundwater is a major source of water supply for domestic and irrigation uses in semiarid, remote but rapidly developing Kilasaifullah district part of Zhob River Basin, located at Pakistan–Afghanistan Border. Zhob River is among few major rivers of perennial nature in Balochistan, which flows from WSW to ENE and falls in Gomal River, a tributary of Indus River. Keeping in view the important geopolitical position and rapid development of the region, this study is primarily focused on groundwater chemistry for contamination sources as well as agriculture development. Water samples from open and tube wells are analyzed and calculated for electrical conductivity (EC), total dissolved solids (TDS), turbidity, pH, K+, Na+, Ca2+, Mg2+, HCO, Cl?, NO, SO, PO, sodium percent (Na%), sodium adsorption ratio (SAR), Kelly's index (KI), and heavy metals (Fe, Cu, Cr, Zn, Pb, and Mn). On the basis of the chemical constituents two zones within the study area are identified and possible causes of the contaminants are pointed out. Two recharge areas were responsible for the different chemical results in groundwater, e.g., zone A was recharged from NNW saline geological formations (Nisai, Khojak, Multana, Bostan formations, and Muslim Bagh ophiolites), which are concentrated with high sodium and chloride. On the other hand Zone B was sourced from SSW from carbonate rich rocks (Alozai, Loralai, Parh formations, and Muslim Bagh ophiolites). The groundwater is classified as C2–S1, C3–S1, C3–S2, C4–S2 on the basis of EC and SAR values which indicate that most of the water of both zones can be used for irrigation safely except the samples plotted in C3–S2 and C4–S2 categories which could be dangerous for soil and crops. Groundwater samples are plotted in good to permissible limits with some samples excellent to good and few samples belong to doubtful category based on sodium percent. Groundwater of zone A is unsuitable for irrigation use due to higher values of KI (more than one) but water of zone B are good for irrigation based on KI. In general, water of both zones is suitable for irrigation but care should be taken during the selection of crops which are sensitive to alkalinity or sodium hazards particularly in zone A.  相似文献   

10.
Based on remote sensing information sources including B/W aerial photos of 1983,pseudo-color aerial photos of 1992 and JERS-1/OPS VNIR image of 1996, vegetation types ofYingbazha, in the middle reaches of the Tarim River Basin in Xinjiang, China are mapped usingARC/INFO and related software. The changes in vegetation areas and distribution conditions areanalyzed. As a result of natural and human influences, vegetation changes have temporal andspatial characteristics. According to the principles of landscape ecology and geographical informa-tion science, the landscape changes are indicated. Moreover, the remote sensing and GIS tech-niques are integrated to study vegetation and its landscape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号